Photocatalytic and Antibacterial Activity of CoFe2O4 Nanoparticles from Hibiscus rosa-sinensis Plant Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Hibiscus rosa-sinensis Leaf Extract
2.3. Synthesis of CoFe2O4 NPs
2.4. Characterization of CoFe2O4 NPs
2.5. Antibacterial Activity
2.6. Photocatalytic Dye Degradation Activity
3. Result and Discussions
3.1. XRD Analysis
3.2. FTIR Analysis
3.3. UV-Visible Analysis
3.4. VSM Analysis
3.5. SEM with EDX
3.6. TEM Analysis
3.7. Photocatalytic Activity
Comparison to P25 Catalyst
3.8. Antibacterial Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farahani, H.; Wagiran, R.; Hamidon, M.N. Humidity Sensors Principle, Mechanism, and Fabrication Technologies: A Comprehensive Review. Sensors 2014, 14, 7881–7939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Si, R.; Xie, X.; Li, T.; Zheng, J.; Cheng, C.; Huang, S.; Wang, C. TiO2/(K,Na)NbO3 Nanocomposite for Boosting Humid-itySensing Performances. ACS Sens. 2020, 5, 1345–1353. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors 2010, 10, 2088–2106. [Google Scholar] [CrossRef] [Green Version]
- Steele, J.J.; Taschuk, M.T.; Brett, M.J. Nanostructured Metal Oxide Thin Films for Humidity Sensors. IEEE Sens. J. 2008, 8, 1422–1429. [Google Scholar] [CrossRef]
- Shaheen, K.; Shah, Z.; Khan, B.; Adnan Omer, M.; Alamzeb, M.; Suo, H. Electrical, Photocatalytic, and Humidity Sensing Applications of Mixed Metal Oxide Nanocomposites. ACS Omega 2020, 5, 7271–7279. [Google Scholar] [CrossRef] [PubMed]
- Pelino, M.; Cantalini, C.; Faccio, M. Principles and Applications of Ceramic Humidity Sensors. Act. Passiv. Electron. Components 1994, 16, 69–87. [Google Scholar] [CrossRef] [Green Version]
- Issa, B.; Obaidat, I.M.; Albiss, B.A.; Haik, Y. Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedi-cine Applications. Int. J. Mol. Sci. 2013, 14, 21266–21305. [Google Scholar] [CrossRef] [Green Version]
- Naseri, M.G.; Saion, E.B.; Ahangar, H.A.; Shaari, A.H.; Hashim, M. Simple Synthesis and Characterization of Cobalt Ferrite Nanoparticles by a Thermal Treatment Method. J. Nanomater. 2010, 2010, 907686. [Google Scholar] [CrossRef] [Green Version]
- Charan, C.; Shahi, V.K. Cobalt ferrite (CoFe2O4) nanoparticles (size: ∼10 nm) with high surface area for selective non-enzymatic detection of uric acid with excellent sensitivity and stability. RSC Adv. 2016, 6, 59457–59467. [Google Scholar] [CrossRef]
- Malinowska, I.; Ryzynska, Z.; Mrotek, E.; Klimczuk, T.; Zielinska-Jurek, A. Synthesis of CoFe2O4 Nanoparticles: The Effect of Ionic Strength, Concentration, and Precursor Type on Morphology and Magnetic Properties. J. Nanomater. 2020, 2020, 9046219. [Google Scholar] [CrossRef]
- Kumar, Y.; Alfa Sharma, A.; Shirage, P.M. Shape-Controlled CoFe2O4 Nanoparticles as an Excellent Material for Hu-midity Sensing. RSC Adv. 2017, 7, 55778–55785. [Google Scholar] [CrossRef] [Green Version]
- Jia, Z.; Ren, D.; Zhu, R. Synthesis, characterization and magnetic properties of CoFe2O4 nanorods. Mater. Lett. 2012, 66, 128–131. [Google Scholar] [CrossRef]
- Li, X.; Chen, G.; Po-Lock, Y.; Kutal, C. Preparation and characterization of superparamagnetic nanocrystalline cobalt ferrite materials. J. Mater. Sci. Lett. 2002, 21, 1881–1883. [Google Scholar] [CrossRef]
- Cannas, C.; Falqui, A.; Musinu, A.; Peddis, D.; Piccaluga, G. CoFe2O4 nanocrystalline powders prepared by citrate-gel methods: Synthesis, structure and magnetic properties. J. Nanopartic. Res. 2006, 8, 255–267. [Google Scholar] [CrossRef]
- Gingasu, D.; Mindru, I.; Patron, L.; Calderon-Moreno, J.M.; Mocioiu, O.C.; Preda, S.; Stanica, N.; Nita, S.; Dobre, N.; Popa, M.; et al. Green Synthesis Methods of CoFe2O4 and Ag-CoFe2O4 Nanoparticles Using Hibiscus Extracts and Their Antimicrobial Potential. J. Nanomater. 2016, 2016, 2106756. [Google Scholar] [CrossRef] [Green Version]
- Mak, Y.W.; Chuah, L.O.; Ahmad, R.; Bhat, R. Antioxidant and Antibacterial Activities of Hibiscus (Hibiscus rosasinensis L.) and Cassia (Senna bicapsularis L.) Flower Extracts. J. King Saud. Univ. Sci. 2013, 25, 275–282. [Google Scholar] [CrossRef] [Green Version]
- Rana, A.K.; Kumar, Y.; Saxena, N.; Das, R.; Sen, S.; Shirage, P.M. Studies on the control of ZnO nanostructures by wet chemical method and plausible mechanism. AIP Adv. 2015, 5, 097118. [Google Scholar] [CrossRef] [Green Version]
- Kumar, Y.; Rana, A.K.; Bhojane, P.; Pusty, M.; Bagwe, V.; Sen, S.; Shirage, P.M. Controlling of ZnO nanostructures by solute concentration and its effect on growth, structural and optical properties. Mater. Res. Express 2015, 2, 105017. [Google Scholar] [CrossRef] [Green Version]
- Das, R.; Kumar, A.; Kumar, Y.; Sen, S.; Shirage, P.M. Effect of growth temperature on the optical properties of ZnO nanostructures grown by simple hydrothermal method. RSC Adv. 2015, 5, 60365–60372. [Google Scholar] [CrossRef]
- Rana, A.K.; Das, R.; Kumar, Y.; Sen, S.; Shirage, P.M. Growth of transparent Zn1−Sr O (0.0 ≤x≤ 0.08) films by facile wet chemical method: Effect of Sr doping on the structural, optical and sensing properties. Appl. Surf. Sci. 2016, 379, 23–32. [Google Scholar] [CrossRef]
- Mohamed, R.; Rashad, M.; Haraz, F.; Sigmund, W. Structure and magnetic properties of nanocrystalline cobalt ferrite powders synthesized using organic acid precursor method. J. Magn. Magn. Mater. 2010, 322, 2058–2064. [Google Scholar] [CrossRef]
- Tabit, R.; Amadine, O.; Essamlali, Y.; Dânoun, K.; Rhihil, A.; Zahouily, M. Magnetic CoFe2O4 Nanoparticles Supported on Graphene Oxide (CoFe2O4/GO) with High Catalytic Activity for Peroxymonosulfate Activation and Degradation of Rhodamine B. RSC Adv. 2018, 8, 1351–1360. [Google Scholar] [CrossRef] [Green Version]
- Joseph, A.M.; Thangaraj, B.; Gomathi, R.S.; Adaikalam, A.A.R. Synthesis and characterization of Cobalt Ferrite Mag-netic Nanoparticles coated with Polyethylene Glycol. Adv. Nano Biol. M&D 2017, 1, 71–77. [Google Scholar]
- Bohara, R.A.; Thorat, N.D.; Yadav, H.M.; Pawar, S.H. OneStep Synthesis of Uniform and Biocompatible Amine Func-tionalized Cobalt Ferrite Nanoparticles: A Potential Carrier for Biomedical Applications. New J. Chem. 2014, 38, 2979–2986. [Google Scholar]
- Basak, M.; Rahman, L.; Ahmed, F.; Biswas, B.; Sharmin, N. The use of X-ray diffraction peak profile analysis to determine the structural parameters of cobalt ferrite nanoparticles using Debye-Scherrer, Williamson-Hall, Halder-Wagner and Size-strain plot: Different precipitating agent approach. J. Alloys Compd. 2021, 895, 162694. [Google Scholar] [CrossRef]
- Sadegh, Fatemeh and Tavakol, Hossein, Eco-Friendly Synthesis of a Noble Trimetallic Magnetic Aerogel, Ag/Cofe2o4, and Employing it as a Catalyst in the Reduction of Nitroaromatics. Available online: https://ssrn.com/abstract=4159517 (accessed on 21 September 2022).
- Yao, K.; Zhang, Y.; Xu, W.; Li, J.; Wang, F.; Xu, M.; Tian, F.; Zhou, C.; Yang, S. Exploiting a pronounced photo-magnetic effect over the rational design of facile core–shell ferromagnet. Mater. Lett. 2022, 320, 132359. [Google Scholar] [CrossRef]
- Kianfar, A.H.; Fattahi, S. Synthesis and characterization of magnetically recoverable CoFe2O4/ZnS/CuO na-noparticles as an effective photocatalyst and catalyst for degradation of MB and reduction of 4-nitrophenol. Appl. Phys. A 2022, 128, 1–14. [Google Scholar] [CrossRef]
- Miri, A.; Sarani, M.; Najafidoust, A.; Mehrabani, M.; Zadeh, F.A.; Varma, R.S. Photocatalytic performance and cytotoxic activity of green-synthesized cobalt ferrite nanoparticles. Mater. Res. Bull. 2022, 149, 111706. [Google Scholar] [CrossRef]
- Barkat, F.; Afzal, M.; Khan, B.S.; Saeed, A.; Bashir, M.; Mukhtar, A.; Mehmood, T.; Wu, K. Formation Mechanism and Lat-tice Parameter Investigation for Copper-Substituted Cobalt Ferrites from Zingiber officinale and Elettaria cardamom Seed Extracts Using Biogenic Route. Materials 2022, 15, 4374. [Google Scholar] [CrossRef]
- Tatarchuk, T.; Danyliuk, N.; Shyichuk, A.; Kotsyubynsky, V.; Lapchuk, I.; Mandzyuk, V. Green synthesis of cobalt ferrite using grape extract: The impact of cation distribution and inversion degree on the catalytic activity in the decomposition of hydrogen peroxide. Emergent Mater. 2021, 5, 89–103. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, T. Active Co/Fe composite oxide nanoparticles for efficient photocatalytic hydrogen production. J. Mater. Sci. Mater. Electron. 2022, 33, 13444–13453. [Google Scholar] [CrossRef]
- Kant, S.; Dosanjh, H.S. UV-Vis adsorption studies of Nickel-Cobalt ferrite developed by combustion method. J. Phys. Conf. Ser. 2022, 2267, 2086. [Google Scholar] [CrossRef]
- Kakavandi, B.; Alavi, S.; Ghanbari, F.; Ahmadi, M. Bisphenol A degradation by peroxymonosulfate pho-to-activation coupled with carbon-based cobalt ferrite nanocomposite: Performance, upgrading synergy and mechanistic pathway. Chemosphere 2022, 287, 132024. [Google Scholar] [CrossRef] [PubMed]
- Das, S.B.; Kumar, V.; Singh, R.K.; Kumar, N.; Satyapal, H.K.; Jyoti, A. Structural, Optical and Magnetic Properties of Cobalt Ferrite Nanomaterials, Synthesized by a Green Technological Approach Using Lemon Juice. In Advancement in Materials, Manufacturing and Energy Engineering; Springer: Berlin/Heidelberg, Germany, 2021; Volume 1, pp. 249–261. [Google Scholar] [CrossRef]
- Ibiyemi, A.A.; Akinrinola, O.; Yusuf, G.T. Photoelectric and optoelectronic effects of hard ferromagnetic man-ganese cobalt (Mn–Co) ferrite nanoparticles for high-frequency device application. Appl. Phys. A 2022, 128, 1–18. [Google Scholar]
- Abdullah, M.; Hasany, S.; Amir Qureshi, M.; Hussain, S. Cost-Effective Synthesis of Cobalt Ferrite Nanoparticles by Sol-Gel Technique. In Materials Science Forum; Trans Tech Publications Ltd.: Bäch SZ, Switzerland, 2022; Volume 1067, pp. 213–219. [Google Scholar]
- Caldeira, L.E.; Erhardt, C.S.; Mariosi, F.R.; Venturini, J.; Zampiva, R.Y.S.; Montedo, O.R.K.; Arcaro, S.; Bergmann, C.P.; Bragança, S.R. Correlation of synthesis parameters to the structural and magnetic properties of spinel cobalt ferrites (CoFe2O4)—An experimental and statistical study. J. Magn. Magn. Mater. 2022, 550, 169128. [Google Scholar] [CrossRef]
- Islam, M.B.; Pavel, M.R.; Islam, M.R.; Haque, M.J. Synthesis of Cobalt Ferrite Nanoparticles Using Micro-emulsion Method: Structure, Morphology, and Magnetic Properties. J. Eng. Sci. 2022, 13, 81–87. [Google Scholar] [CrossRef]
- Anukool, W.; El-Nabulsi, R.A.; Dabagh, S.; Almessiere, M.; Ashiq, M.G.B.; Guner, S.; Baykal, A. Effects of aluminum substitution on the microstructure and magnetic properties of cobalt ferrites prepared by the co-precipitation precursor. Appl. Phys. A 2022, 128, 1–10. [Google Scholar] [CrossRef]
- Aziz, C.; Azhdar, B. Synthesis of dysprosium doped cobalt ferrites nanoparticles by solgel auto-combustion method and influence of grinding techniques on structural, Morphological, and magnetic properties. J. Magn. Magn. Mater. 2021, 542, 168577. [Google Scholar] [CrossRef]
- Sharmila, M.; Mani, R.J.; Parvathiraja, C.; Kader, S.M.A.; Siddiqui, M.R.; Wabaidur, S.M.; Islam, A.; Lai, W.-C. Visible Light Photocatalyst and Antibacterial Activity of BFO (Bismuth Ferrite) Nanoparticles from Honey. Water 2022, 14, 1545. [Google Scholar] [CrossRef]
- Ptitsyna, K.O.; Il’In, A.A.; Rumyantsev, R.N.; Sakharova, Y.N. Mechanochemical and Ceramic Synthesis of Cobalt Ferrite. Glas. Ceram. 2022, 79, 15–21. [Google Scholar] [CrossRef]
- Kalia, S.; Kumar, A.; Sharma, S.; Prasad, N. Properties, applications, and synthesis of first transition series substituted cobalt ferrite: A mini review. J. Phys. Conf. Ser. 2022, 2267, 012133. [Google Scholar] [CrossRef]
- Sadeghpour, F.; Nabiyouni, G.; Ghanbari, D. Simple synthesis of conductive poly aniline/cobalt ferrite magnetic nanocomposite: Its radio waves absorption and photo catalyst ability. J. Clust. Sci. 2021, 33, 1257–1266. [Google Scholar] [CrossRef]
- Sumalatha, E.; Nyathani, M.; Babu, T.A.; Ravinder, D.; Prasad, N.K.; Katlakunta, S. Eco-friendly synthesis, TEM and magnetic properties of Co-Er nano-ferrites. Biointerface Res. Appl. Chem 2022, 12, 910–928. [Google Scholar]
- Ahmadi, R.; Siefoddini, A.; Hasany, M.; Hasani, S. Cobalt ferrite nanoparticles synthesis by sol–gel au-to-combustion method in the presence of agarose: A non-isothermal kinetic analysis. J. Therm. Anal. Calorim. 2022, 147, 12217–12230. [Google Scholar] [CrossRef]
- Hoang, V.-T.; Trang, N.L.N.; Nga, D.T.N.; Ngo, X.-D.; Pham, T.N.; Tran, V.T.; Mai, M.; Tam, L.T.; Tri, D.Q.; Le, A.-T. Facile synthesis and characterisations of cobalt ferrite-silver-graphene oxide nanocomposite in enhancing electrochemical response capacity. Adv. Nat. Sci. Nanosci. Nanotechnol. 2022, 13, 5002. [Google Scholar] [CrossRef]
- Mmelesi, O.K.; Masunga, N.; Kuvarega, A.; Nkambule, T.T.; Mamba, B.B.; Kefeni, K.K. Cobalt ferrite nano-particles and nanocomposites: Photocatalytic, antimicrobial activity and toxicity in water treatment. Mater. Sci. Semicond. Processing 2021, 123, 105523. [Google Scholar] [CrossRef]
- Magdalane, C.M.; Priyadharsini, G.M.A.; Kaviyarasu, K.; Jothi, A.I.; Simiyon, G.G. Synthesis and character-ization of TiO2 doped cobalt ferrite nanoparticles via microwave method: Investigation of photocatalytic performance of congo red degradation dye. Surf. Interfaces 2021, 25, 101296. [Google Scholar] [CrossRef]
- Maksoud, M.A.; El-Sayyad, G.S.; Ashour, A.; El-Batal, A.I.; Elsayed, M.A.; Gobara, M.; El-Khawaga, A.M.; Abdel-Khalek, E.; El-Okr, M. Antibacterial, antibiofilm, and photocatalytic activities of metals-substituted spinel cobalt ferrite nanoparticles. Microb. Pathog. 2018, 127, 144–158. [Google Scholar] [CrossRef]
- Fu, W.; Yang, H.; Li, M.; Li, M.; Yang, N.; Zou, G. Anatase TiO2 nanolayer coating on cobalt ferrite nanoparti-cles for magnetic photocatalyst. Mater. Lett. 2005, 59, 3530–3534. [Google Scholar] [CrossRef]
- Sun, M.; Han, X.; Chen, S. Synthesis and photocatalytic activity of nano-cobalt ferrite catalyst for the pho-to-degradation various dyes under simulated sunlight irradiation. Mater. Sci. Semicond. Processing 2019, 91, 367–376. [Google Scholar] [CrossRef]
- Sharmila, M.; Mani, R.J.; Parvathiraja, C.; Kader, S.M.A.; Siddiqui, M.R.; Wabaidur, S.M.; Islam, M.A.; Lai, W.-C. Photocatalytic Dye Degradation and Bio-Insights of Honey-Produced α-Fe2O3 Nanoparticles. Water 2022, 14, 2301. [Google Scholar] [CrossRef]
- Nazarkovsky, M.A.; Bogatyrov, V.M.; Czech, B.; Urubkov, I.V.; Polshin, E.V.; Wojcik, G.; Gun’Ko, V.M.; Galaburda, M.V.; Skubiszewska-Zięba, J. Titania-coated nanosilica-cobalt ferrite composites: Structure and photocatalytic activity. J. Photochem. Photobiol. Chem. 2016, 18, 319–320. [Google Scholar] [CrossRef]
- Borgohain, C.; Senapati, K.K.; Sarma, K.; Phukan, P. A facile synthesis of nanocrystalline CoFe2O4 embedded one-dimensional ZnO hetero-structure and its use in photocatalysis. J. Mol. Catal. A Chem. 2012, 363, 495–500. [Google Scholar] [CrossRef]
- Li, Z.; Ai, J.; Ge, M. A facile approach assembled magnetic CoFe2O4/AgBr composite for dye degradation under visible light. J. Environ. Chem. Eng. 2017, 5, 1394–1403. [Google Scholar] [CrossRef]
- Mao, J.-X.; Wang, J.-C.; Gao, H.; Shi, W.; Jiang, H.-P.; Hou, Y.; Li, R.; Zhang, W.; Liu, L. S-scheme heterojunction of CuBi2O4 supported Na doped P25 for enhanced photocatalytic H2 evolution. Int. J. Hydrogen Energy 2022, 47, 8214–8223. [Google Scholar] [CrossRef]
- Xie, Z.; Chen, J.; Chen, Y.; Wang, T.; Jiang, X.; Xie, Y.; Lu, C.Z. A Z-scheme Pd modified ZnIn2S4/P25 hetero-junction for enhanced photocatalytic hydrogen evolution. Appl. Surf. Sci. 2022, 579, 152003. [Google Scholar] [CrossRef]
- Zirar, F.-E.; Katir, N.; Qourzal, S.; Ichou, I.A.; El Kadib, A. The solvent-free mechano-chemical grinding of a bifunctional P25–graphene oxide adsorbent–photocatalyst and its configuration as porous beads. RSC Adv. 2022, 12, 21145–21152. [Google Scholar] [CrossRef]
- Wang, K.; Wei, Z.; Colbeau-Justin, C.; Nitta, A.; Kowalska, E. P25 and its components—Electronic properties and photocatalytic activities. Surf. Interfaces 2022, 31, 102057. [Google Scholar] [CrossRef]
- Nasiri, A.; Tamaddon, F.; Mosslemin, M.H.; Gharaghani, M.A.; Asadipour, A. New magnetic nanobiocomposite CoFe2O4@methycellulose: Facile synthesis, characterization, and photocatalytic degradation of metronidazole. J. Mater. Sci. Mater. Electron. 2019, 30, 8595–8610. [Google Scholar] [CrossRef]
- El-Sayed, E.-S.R.; Abdelhakim, H.K.; Zakaria, Z. Extracellular biosynthesis of cobalt ferrite nanoparticles by Monascus purpureus and their antioxidant, anticancer and antimicrobial activities: Yield enhancement by gamma irradiation. Mater. Sci. Eng. C 2020, 107, 110318. [Google Scholar] [CrossRef]
- Mahajan, P.; Sharma, A.; Kaur, B.; Goyal, N.; Gautam, S. Green synthesized (Ocimum sanctum and Allium sa-tivum) Ag-doped cobalt ferrite nanoparticles for antibacterial application. Vacuum 2019, 161, 389–397. [Google Scholar] [CrossRef]
- Kombaiah, K.; Vijaya, J.J.; Kennedy, L.J.; Bououdina, M.; Ramalingam, R.J.; Al-Lohedan, H.A. Okra ex-tract-assisted green synthesis of CoFe2O4 nanoparticles and their optical, magnetic, and antimicrobial properties. Mater. Chem. Phys. 2018, 204, 410–419. [Google Scholar] [CrossRef]
- Satheeshkumar, M.; Kumar, E.R.; Srinivas, C.; Suriyanarayanan, N.; Deepty, M.; Prajapat, C.; Rao, T.C.; Sastry, D. Study of structural, morphological and magnetic properties of Ag substituted cobalt ferrite nanoparticles prepared by honey assisted combustion method and evaluation of their antibacterial activity. J. Magn. Magn. Mater. 2018, 469, 691–697. [Google Scholar] [CrossRef]
- Naik, M.M.; Naik, H.B.; Nagaraju, G.; Vinuth, M.; Vinu, K.; Viswanath, R. Green synthesis of zinc doped co-balt ferrite nanoparticles: Structural, optical, photocatalytic and antibacterial studies. Nano-Struct. Nano-Objects 2019, 19, 100322. [Google Scholar] [CrossRef]
S.No. | Nanomaterials | Dye | Time | Light | Degradation | Reference |
---|---|---|---|---|---|---|
1. | MxCo1-xFe2O4 NPs | Methylene Blue | 100 min | UV-light irradiation | 96.0% | [50] |
2. | TiO2/CoFe2O4 | Procion Red MX-5B | 300 min | UV illumination | 95% | [51] |
3. | CoFe2O4 | RhB | 150 min | sunlight irradiation | 68% | [52] |
4. | CoFe2O4 | CR | 150 min | sunlight irradiation | 96% | [52] |
5. | CoFe2O4 | MO | 150 min | sunlight irradiation | 87% | [52] |
6. | CoFe2O4 | MB | 150 min | sunlight irradiation | 81% | [52] |
7. | CoFe2O4 | 4-N | 150 min | sunlight irradiation | 63% | [52] |
8. | CoFe2O4 | 4-C | 150 min | sunlight irradiation | 55% | [52] |
9. | CoFe2O4 | Carbamazepine | 100 min | Hg lamp | 80% | [53] |
10. | Co1-xZnxFe2O4 a | Rhodamine B | 210 min | Halide lamp | 99.9% | [54] |
11. | CoFe2O4/ZnOa | Phenolphthalein | 45 min | UV-lamp | 89% | [55] |
12. | CoFe2O4/AgBr | Methyl orange | 60 min | LED lamp | 89% | [56] |
13. | CoFe2O4@methycellulose | Metronidazole | 120 min | UV lamp | 85.3% | [57] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velayutham, L.; Parvathiraja, C.; Anitha, D.C.; Mahalakshmi, K.; Jenila, M.; Alasmary, F.A.; Almalki, A.S.; Iqbal, A.; Lai, W.-C. Photocatalytic and Antibacterial Activity of CoFe2O4 Nanoparticles from Hibiscus rosa-sinensis Plant Extract. Nanomaterials 2022, 12, 3668. https://doi.org/10.3390/nano12203668
Velayutham L, Parvathiraja C, Anitha DC, Mahalakshmi K, Jenila M, Alasmary FA, Almalki AS, Iqbal A, Lai W-C. Photocatalytic and Antibacterial Activity of CoFe2O4 Nanoparticles from Hibiscus rosa-sinensis Plant Extract. Nanomaterials. 2022; 12(20):3668. https://doi.org/10.3390/nano12203668
Chicago/Turabian StyleVelayutham, Lakshmi, C. Parvathiraja, Dhivya Christo Anitha, K. Mahalakshmi, Mary Jenila, Fatmah Ali Alasmary, Amani Salem Almalki, Amjad Iqbal, and Wen-Cheng Lai. 2022. "Photocatalytic and Antibacterial Activity of CoFe2O4 Nanoparticles from Hibiscus rosa-sinensis Plant Extract" Nanomaterials 12, no. 20: 3668. https://doi.org/10.3390/nano12203668
APA StyleVelayutham, L., Parvathiraja, C., Anitha, D. C., Mahalakshmi, K., Jenila, M., Alasmary, F. A., Almalki, A. S., Iqbal, A., & Lai, W. -C. (2022). Photocatalytic and Antibacterial Activity of CoFe2O4 Nanoparticles from Hibiscus rosa-sinensis Plant Extract. Nanomaterials, 12(20), 3668. https://doi.org/10.3390/nano12203668