Nanowires-Assembled TiO2 Nanorods Anchored on Multilayer Graphene for High-Performance Anodes of Lithium-Ion Batteries
Abstract
:1. Introduction
2. Experimental Section
2.1. Preparation of Samples
2.2. Materials Characterization
2.3. Anode Performance Measurements for LIBs
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Turcheniuk, K.; Bondarev, D.; Amatucci, G.G.; Yushin, G. Battery materials for low-cost electric transportation. Mater. Today 2021, 42, 57–72. [Google Scholar] [CrossRef]
- Wu, W.; Sun, Z.; He, Q.; Shi, X.; Ge, X.; Cheng, J.; Wang, J.; Zhang, Z. Boosting Lithium-Ion Transport Kinetics by Increasing the Local Lithium-Ion Concentration Gradient in Composite Anodes of Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2021, 13, 14752–14758. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.Y.; Yuan, Y.F.; Zhu, M.; Yin, S.M.; Cheng, J.P.; Guo, S.Y. Superior rate-capability and long-lifespan carbon nanotube-in-nanotube@Sb2S3 anode for lithium-ion storage. J. Mater. Chem. A 2021, 9, 22334–22346. [Google Scholar] [CrossRef]
- Chen, X.; Kure Chu, S.Z.; Matsubara, T.; Hihara, T.; Yashiro, H.; Okido, M. Fabrication and electrochemical performance of TiO2–TiN/Sn–SnO2 composite films on Ti for LIB anodes with high capacity and excellent conductivity. Adv. Mater. Interfaces 2022, 9, 2200956. [Google Scholar] [CrossRef]
- Finegan, D.P.; Quinn, A.; Wragg, D.S.; Colclasure, A.M.; Lu, X.; Tan, C.; Heenan, T.M.M.; Jervis, R.; Brett, D.J.L.; Das, S.; et al. Spatial dynamics of lithiation and lithium plating during high-rate operation of graphite electrodes. Energy Environ. Sci. 2020, 13, 2570–2584. [Google Scholar] [CrossRef]
- Cai, W.; Yan, C.; Yao, Y.; Xu, L.; Chen, X.; Huang, J.; Zhang, Q. The Boundary of Lithium Plating in Graphite Electrode for Safe Lithium-Ion Batteries. Angew. Chem. Int. Ed. 2021, 60, 13007–13012. [Google Scholar] [CrossRef]
- Divakaran, A.M.; Minakshi, M.; Bahri, P.A.; Paul, S.; Kumari, P.; Manjunatha, K.N. Rational design on materials for developing next generation lithium-ion secondary battery. Prog. Solid State Chem. 2021, 62, 100298. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, J.; Hu, X.; Song, K.; Wu, J.; Li, B.; Cheng, J.P. Ultra-small Co-doped Mn3O4 nanoparticles tiled on multilayer graphene with enhanced performance for lithium ion battery anodes. J. Appl. Electrochem. 2019, 49, 1193–1202. [Google Scholar] [CrossRef]
- Xu, J.; Xu, D.; Wu, J.; Wu, J.; Zhou, J.; Zhou, T.; Wang, X.; Cheng, J. Ultra-small Fe2O3 nanoparticles anchored on ultrasonically exfoliated multilayer graphene for LIB anode application. Ceram. Int. 2022, 48, 32524–32531. [Google Scholar] [CrossRef]
- Zhao, W.; Shi, Z.; Qi, Y.; Cheng, J. The Carbon-Coated ZnCo2O4 Nanowire Arrays Pyrolyzed from PVA for Enhancing Lithium Storage Capacity. Processes 2020, 8, 1501. [Google Scholar] [CrossRef]
- He, Q.; Sun, Z.; Shi, X.; Wu, W.; Cheng, J.; Zhuo, R.; Zhang, Z.; Wang, J. Electrochemical Performance Enhancement of Nitrogen-Doped TiO2 for Lithium-Ion Batteries Investigated by a Film Electrode Model. Energy Fuels 2021, 35, 2717–2726. [Google Scholar] [CrossRef]
- Wang, S.; Yang, Y.; Dong, Y.; Zhang, Z.; Tang, Z. Recent progress in Ti-based nanocomposite anodes for lithium ion batteries. J. Adv. Ceram. 2019, 8, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Pham, T.N.; Bui, V.K.H.; Lee, Y. Recent advances in hierarchical anode designs of TiO2-B nanostructures for lithium-ion batteries. Int. J. Energy Res. 2021, 45, 17532–17562. [Google Scholar] [CrossRef]
- Paul, S.; Rahman, M.A.; Sharif, S.B.; Kim, J.; Siddiqui, S.; Hossain, M.A.M. TiO2 as an Anode of high-performance lithium-ion batteries: A Comprehensive Review towards Practical Application. Nanomaterials 2022, 12, 2034. [Google Scholar] [CrossRef]
- Zhang, W.; Tian, Y.; He, H.; Xu, L.; Li, W.; Zhao, D. Recent advances in the synthesis of hierarchically mesoporous TiO2 materials for energy and environmental applications. Natl. Sci. Rev. 2020, 7, 1702–1725. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Tang, Y.; Li, W.; Chen, X. Nanostructured TiO2-Based Anode Materials for High-Performance Rechargeable Lithium-Ion Batteries. ChemNanoMat 2016, 2, 764–775. [Google Scholar] [CrossRef]
- Wei, T.-T.; Wang, F.-F.; Li, X.-Z.; Zhang, J.-H.; Zhu, Y.-R.; Yi, T.-F. Towards high-performance battery systems by regulating morphology of TiO2 materials. Sustain. Mater. Technol. 2021, 30, e00355. [Google Scholar] [CrossRef]
- Zhen, M.; Zhen, X.; Liu, L. Mesoporous nanoplate TiO2/reduced graphene oxide composites with enhanced lithium storage properties. J. Mater. Lett. 2017, 193, 150–153. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Lan, Q.; Yang, Z.; Lv, X.-J. Multiple phase N-doped TiO2 nanotubes/TiN/graphene nanocomposites for high rate lithium ion batteries at low temperature. J. Power Source 2019, 423, 166–173. [Google Scholar] [CrossRef]
- Fu, Y.; Dai, Y.; Pei, X.; Lyu, S.; Heng, Y.; Mo, D. TiO2 nanorods anchor on reduced graphene oxide (R-TiO2/rGO) composite as anode for high performance lithium-ion batteries. Appl. Surf. Sci. 2019, 497, 143553. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, B.; Yuan, W.; Wu, J.; Liu, H.; Wu, H.; Zhang, Y. Reduced graphene oxide modified N-doped carbon foam supporting TiO2 nanoparticles as flexible electrode for high-performance Li/Na ion batteries. Electrochim. Acta 2019, 311, 141–149. [Google Scholar] [CrossRef]
- Ma, Y.; Li, Y.; Li, D.; Liu, Y.; Zhang, J. Uniformly distributed TiO2 nanorods on reduced graphene oxide composites as anode material for high rate lithium ion batteries. J. Alloys Compd. 2019, 771, 885–891. [Google Scholar] [CrossRef]
- Wang, C.; Sun, X.; Li, H.; Liu, J.; Cheng, S.; Li, H.; Yuan, X. Hybrid TiO2/Graphite/Nanodiamond Anode for Realizing High Performance Lithium Ion Battery. ChemistrySelect 2021, 6, 1458–1465. [Google Scholar] [CrossRef]
- Yin, J.; Yu, J.; Shi, X.; Kong, W.; Zhou, Z.; Man, J.; Sun, J.; Wen, Z. TiO2 quantum dots confined in 3D carbon framework for outstanding surface lithium storage with improved kinetics. J. Colloid Interface Sci. 2021, 582, 874–882. [Google Scholar] [CrossRef]
- Yu, W.-J.; He, W.; Wang, C.; Liu, F.; Zhu, L.; Tian, Q.; Tong, H.; Guo, X. Confinement of TiO2 quantum dots in graphene nanoribbons for high-performance lithium and sodium ion batteries. J. Alloys Compd. 2022, 898, 162856. [Google Scholar] [CrossRef]
- Chen, L.; Tao, Y.; Shang, H.; Ma, Z.; Li, S.; Cao, H.; Li, Q.; Li, G.; Li, H.; Xiao, S.; et al. Rutile TiO2 nanorods grown on carbon nanotubes as high-performance lithium-ion batteries anode via one-dimensional electron pathways. J. Sol-Gel Sci. Technol. 2022, 103, 437–446. [Google Scholar] [CrossRef]
- Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2014, 14, 271–279. [Google Scholar] [CrossRef]
- Wang, J.-F.; Zhang, J.-J.; He, D.-N. Flower-like TiO2-B particles wrapped by graphene with different contents as an anode material for lithium-ion batteries. Nano-Struct. Nano-Objects 2018, 15, 216–223. [Google Scholar] [CrossRef]
- Qiu, B.; Xing, M.; Zhang, J. Mesoporous TiO2 Nanocrystals Grown in Situ on Graphene Aerogels for High Photocatalysis and Lithium-Ion Batteries. J. Am. Chem. Soc. 2014, 136, 5852–5855. [Google Scholar] [CrossRef]
- Li, W.; Wang, F.; Feng, S.; Wang, J.; Sun, Z.; Li, B.; Li, Y.; Yang, J.; Elzatahry, A.A.; Xia, Y.; et al. Sol–Gel Design Strategy for Ultradispersed TiO2 Nanoparticles on Graphene for High-Performance Lithium Ion Batteries. J. Am. Chem. Soc. 2013, 135, 18300–18303. [Google Scholar] [CrossRef]
- Cheng, L.; Qiao, D.; Zhao, P.; He, Y.; Sun, W.; Yu, H.; Jiao, Z. Template-free synthesis of mesoporous succulents-like TiO2/graphene aerogel composites for lithium-ion batteries. J. Electrochim. Acta 2019, 300, 417–425. [Google Scholar] [CrossRef]
- Xu, J.; Wu, J.; Luo, L.; Chen, X.; Qin, H.; Dravid, V.; Mi, S.; Jia, C. Co3O4 nanocubes homogeneously assembled on few-layer graphene for high energy density lithium-ion batteries. J. Power Source 2015, 274, 816–822. [Google Scholar] [CrossRef]
- Xia, X.; Peng, S.; Bao, Y.; Wang, Y.; Lei, B.; Wang, Z.; Huang, Z.; Gao, Y. Control of interface between anatase TiO2 nanoparticles and rutile TiO2 nanorods for efficient photocatalytic H2 generation. J. Power Source 2018, 376, 11–17. [Google Scholar] [CrossRef]
- Manickam, M.; Singh, P.; Issa, T.B.; Thurgate, S. Electrochemical behavior of anatase TiO2 in aqueous lithium hydroxide electrolyte. J. Appl. Electrochem. 2006, 36, 599–602. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, G.; Huo, J.; Li, J.; Liu, Y.; Guo, S. Flower-like TiO2 hollow microspheres with mixed-phases for high-pseudocapacitive lithium storage. J. Alloys Compd. 2022, 902, 163730. [Google Scholar] [CrossRef]
TiO2 Based Materials | Synthesis Method | Cycle Capacity (mAh g−1) | Cycle Number (n) | Current Density (A g−1) | Publication Year | Reference |
---|---|---|---|---|---|---|
Mesoporous nanoplate TiO2/reduced graphene oxide | Hydrothermal treatment at 150 °C for 18 h | ∼200 | 300 | 1.2C | 2017 | [18] |
N-doped TiO2 nanotubes/TiN/graphene | Hydrothermal treatment at 160 °C for 48 h and heated at 500 °C for 3 h under Ar atmosphere | 191.4 | 500 | 2 | 2019 | [19] |
R-TiO2/rGO | Hydrothermal treatment at 180 °C for 12 h, annealing at 500 °C for 4 h in a N2 atmosphere | 267 | 100 | 1C | 2019 | [20] |
151 | 500 | 10C | ||||
Reduced graphene oxide modified N-doped carbon foam-TiO2 (NCF@rGO-TiO2) | Soak of NCF@rGO in TBOT solution, hydrolysis of TBOT, calcination at 400 °C for 3 h in Ar atmosphere | 214 | 150 | 1C | 2019 | [21] |
133.3 | 3000 | 10C | ||||
TiO2 nanorods on reduced graphene oxide | Solvothermal process at 180 °C for 30 h and annealed treatment at 550 °C for 2 h under N2 atmosphere) | 353.6 | 100 | 0.1 | 2019 | [22] |
Hybrid TiO2/Graphite/Nanodiamond | Microwave treatment method | 540 | 100 | 0.5C | 2021 | [23] |
300 | 1000 | 5C | ||||
TiO2 quantum dots confined in 3D carbon framework | Reverse microemulsion method combined with heat treatment | 370.5 | 200 | 0.1 | 2021 | [24] |
Flower-like TiO2 hollow microspheres | Sol-gel method with a silicon dioxide (SiO2) template | 121 | 1000 | 1 | 2022 | [35] |
TiO2 quantum dots on graphene nanoribbons | Hydrolysis strategy followed by heat-treatment | 320.8 | 100 | 0.5 | 2022 | [25] |
Rutile TiO2 nanorods grown on carbon nanotubes | Microwave-assisted hydrothermal method | 138.3 (1–3 V) | 200 | 1C | 2022 | [26] |
TiO2-NR/MLG | Chemical deposition at 90 °C | 631.4 | 100 | 0.1 | This work | |
456.5 | 300 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Chen, D.; Wu, J.; Wu, J.; Zhou, J.; Zhou, T.; Wang, X.; Cheng, J. Nanowires-Assembled TiO2 Nanorods Anchored on Multilayer Graphene for High-Performance Anodes of Lithium-Ion Batteries. Nanomaterials 2022, 12, 3697. https://doi.org/10.3390/nano12203697
Xu J, Chen D, Wu J, Wu J, Zhou J, Zhou T, Wang X, Cheng J. Nanowires-Assembled TiO2 Nanorods Anchored on Multilayer Graphene for High-Performance Anodes of Lithium-Ion Batteries. Nanomaterials. 2022; 12(20):3697. https://doi.org/10.3390/nano12203697
Chicago/Turabian StyleXu, Junming, Dongfang Chen, Jianfeng Wu, Jun Wu, Jijun Zhou, Tao Zhou, Xinchang Wang, and Jipeng Cheng. 2022. "Nanowires-Assembled TiO2 Nanorods Anchored on Multilayer Graphene for High-Performance Anodes of Lithium-Ion Batteries" Nanomaterials 12, no. 20: 3697. https://doi.org/10.3390/nano12203697
APA StyleXu, J., Chen, D., Wu, J., Wu, J., Zhou, J., Zhou, T., Wang, X., & Cheng, J. (2022). Nanowires-Assembled TiO2 Nanorods Anchored on Multilayer Graphene for High-Performance Anodes of Lithium-Ion Batteries. Nanomaterials, 12(20), 3697. https://doi.org/10.3390/nano12203697