Efficient Diode Performance with Improved Effective Carrier Lifetime and Absorption Using Bismuth Nanoparticles Passivated Silicon Nanowires
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, P.; Wu, J.; Liu, S.; Xiong, J.; Jagadish, C.; Wang, Z.M. Design and fabrication of silicon nanowires towards efficient solar cells. Nano Today 2016, 11, 704–737. [Google Scholar] [CrossRef]
- Peng, K.-Q.; Wang, X.; Li, L.; Hu, Y.; Lee, S.-T. Silicon nanowires for advanced energy conversion and storage. Nano Today 2013, 8, 75–97. [Google Scholar] [CrossRef]
- Naffeti, M.; Postigo, P.A.; Chtourou, R.; Zaïbi, M.A. Elucidating the Effect of Etching Time Key-Parameter toward Optically and Electrically-Active Silicon Nanowires. Nanomaterials 2020, 25, 404. [Google Scholar] [CrossRef]
- Jeong, H.; Song, Y.; Pak, I.K.; Kwon, K.; Jo, H.; Lee, G.Y. Jung, Enhanced light absorption of silicon nanotube arrays for organic/inorganic hybrid solar cells. Adv. Mater. 2014, 26, 3445–3450. [Google Scholar] [CrossRef]
- Priolo, F.; Gregorkiewicz, T.; Galli, M.; Krauss, T.F. Silicon nanostructures for photonics and photovoltaics. Nat. Nanotechnol. 2014, 9, 19–32. [Google Scholar] [CrossRef]
- Ingenito, A.; Isabella, O.; Zeman, M. Nano-cones on micro-pyramids: Modulated surface textures for maximal spectral response and high-efficiency solar cells. Prog. Photovolt. Res. Appl. 2015, 23, 1649–1659. [Google Scholar] [CrossRef]
- Jeong, S.; McGehee, M.; Cui, Y. All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency. Nat. Commun. 2013, 4, 2950. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhang, W.; Lu, C.; Zhang, Y.; Ni, C.; Liu, H.; Yu, W. Enhancing light harvesting in planar halide perovskite film solar cells by silicon nanorods. Ceram. Int. 2019, 45, 14880–14888. [Google Scholar] [CrossRef]
- Peng, K.Q.; Wang, X.; Li, L.; Wu, X.L.; Lee, S.T. High-performance silicon nanohole solar cells. J. Am. Chem. Soc. 2010, 132, 6872–6873. [Google Scholar] [CrossRef] [PubMed]
- Han, S.E.; Chen, G. Optical Absorption Enhancement in Silicon Nanohole Arrays for Solar Photovoltaics. Nano Lett. 2010, 10, 1012–1015. [Google Scholar] [CrossRef] [PubMed]
- Prashant, V. Kamat, Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters. J. Phys. Chem. C 2008, 112, 18737–18753. [Google Scholar] [CrossRef]
- Pudasaini, P.R.; Ruiz-Zepeda, F.; Sharma, M.; Elam, D.; Ponce, A.; Ayon, A.A. High efficiency hybrid silicon nanopillar-polymer solar cells. ACS. Appl. Mater. Interfaces 2013, 5, 9620–9627. [Google Scholar] [CrossRef]
- Kalem, S. Si nanopillar arrays as possible electronic device platforms. Solid-State Electron. 2021, 183, 108102. [Google Scholar] [CrossRef]
- Kashyap, V.; Kashyap, V.; Goyal, N.; Saxena, K. Fabrication and characterization of silicon nanowires with MACE method to influence the optical properties. Mater. Today Proc. 2021, 49, 3409–3413. [Google Scholar] [CrossRef]
- Kaya, A.; Polat, K.G.; Mayet, A.S.; Mao, H.; Altındal, Ş.; Islam, M.S. Manufacturing and electrical characterization of Al-doped ZnO-coated silicon nanowires. Mater. Sci. Semicon. Proc. 2018, 75, 124–129. [Google Scholar] [CrossRef]
- Chiou, A.-H.; Wu, S.-D.; Hsiao, R.-C.; Hsu, C.-Y. TiO2-silicon nanowire arrays for heterojunction diode applications. Thin Solid Film. 2016, 616, 116–121. [Google Scholar] [CrossRef]
- Amri, C.; Ouertani, R.; Hamdi, A.; Ezzaouia, H. Enhancement of silicon nanowire opto-electric properties by combining acid vapor etching and lithium pore-filling. J. Mater. Sci. Mater. Electron. 2017, 28, 13426–13435. [Google Scholar] [CrossRef]
- Zaïbi, F.; Slama, I.; Okolie, C.; Deshmukh, J.; Hawco, L.; Mastouri, M.; Bennett, C.; Mkandawire, M.; Chtourou, R. Electro-performance of Functionalized Silicon Nanowires by Conductive Polymer-coated with Gold Nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2020, 589, 124450. [Google Scholar] [CrossRef]
- Baba Ahmed, L.; Naama, S.; Keffous, A.; Hassein-Bey, A.; Hadjersi, T. H2 sensing properties of modified silicon nanowires. Prog. Nat. Sci. 2015, 25, 101–110. [Google Scholar] [CrossRef]
- Liu, X.; Ji, Y.; Lu, Z.; Sun, Y.; Yang, H.; Liu, J.; Zhang, Y.; Li, D.; Cao, Y.; Li, W.; et al. Enhanced device performance of Si nanowires/Si nanocrystals heterojunction solar cells with ultrathin Al2O3 passivation. Phys. E Low-Dimens. Syst. Nanostruct. 2020, 120, 114048. [Google Scholar] [CrossRef]
- Sun, H.-T.; Zhou, J.; Qiu, J. Recent advances in bismuth activated photonic materials. Prog. Mater. Sci. 2014, 64, 1–72. [Google Scholar] [CrossRef]
- Benabdallah, I.; Boujnah, M.; El Kenz, A.; Benyoussef, A.; Abatal, M.; Bassam, A. Lead-free perovskite based bismuth for solar cells absorbers. J. Alloy. Compd. 2018, 773, 796–801. [Google Scholar] [CrossRef]
- Dong, F.; Xiong, T.; Sun, Y.; Zhao, Z.; Zhou, Y.; Feng, X.; Wu, Z. A semimetal bismuth element as a direct plasmonic photocatalyst. Chem. Commun. 2014, 50, 10386–10389. [Google Scholar] [CrossRef] [PubMed]
- Sivasubramanian, P.; Chang, J.H.; Nagendran, S.; Dong, C.D.; Shkir, M.; Kumar, M. A review on bismuth-based nanocomposites for energy and environmental applications. Chemosphere 2022, 307, 135652. [Google Scholar] [CrossRef] [PubMed]
- Ensafi, A.A.; Abarghoui, M.M.; Rezaei, B. Metal (Ni and Bi) coated porous silicon nanostructure, high-performance anode materials for lithium ion batteries with high capacity and stability. J. Alloy. Compd. 2017, 712, 233–240. [Google Scholar] [CrossRef]
- Rodil, S.E.; Garcia-Zarco, O.; Camps, E.; Estrada, H.; Lejeune, M.; Bourja, L.; Zeinert, A. Preferential orientation in bismuth thin films as a function of growth conditions. Thin Solid Film. 2017, 636, 384–391. [Google Scholar] [CrossRef]
- Xu, Y.; Li, L.; Zang, Y.; Hu, J.; Li, Z.; Chen, H.; Zhang, G.; Xia, C.; Cho, J.-H. Forward bending of silicon nanowires induced by strain distribution in asymmetric growth. Mater. Lett. 2021, 297, 129929. [Google Scholar] [CrossRef]
- Ashrafabadi, S.; Eshghi, H. Single-crystalline Si nanowires fabrication by one-step metal assisted chemical etching: The effect of etching time and resistivity of Si wafer. Superlattices Microstruct. 2018, 120, 517–524. [Google Scholar] [CrossRef]
- Rahmani, M.; Jerbi, L.; Meftah, A. Strong photoluminescence enhancement of silicon nanowires by poly(3-hexylthiophene) deposition. J. Lumin. 2020, 217, 116805. [Google Scholar] [CrossRef]
- Salman, K.A.; Omar, K.; Hassan, Z. The effect of etching time of porous silicon on solar cell performance. Superlattices Microstruct. 2011, 50, 647–658. [Google Scholar] [CrossRef]
- Dariani, R.S.; Ahmadi, Z. Study of porous silicon structure by Raman scattering. Opt. Int. J. Light Electron Opt. 2013, 124, 5353–5356. [Google Scholar] [CrossRef]
- Rani, S.; Shukla, A.K. Investigation of silver decorated silicon nanowires as ultrasensitive and cost-effective surface-enhanced Raman substrate. Thin Solid Film. 2021, 723, 138595. [Google Scholar] [CrossRef]
- Pal, A.; Ghosh, R.; Giri, P.K. Early stages of growth of Si nanowires by metal assisted chemical etching: A scaling study. Appl. Phys. Lett. 2015, 107, 072104. [Google Scholar] [CrossRef]
- Das, M.; Nath, P.; Sarkar, D. Influence of etching current density on microstructural, optical and electrical properties of porous silicon (PS):n-Si heterostructure. Superlattices Microstruct. 2016, 90, 77–86. [Google Scholar] [CrossRef]
- Dariani, R.S.; Zabihipour, M. Effect of electrical behavior of ZnO microparticles grown on porous silicon substrate. Appl. Phys. A 2016, 122, 1047. [Google Scholar] [CrossRef]
- Yu, L.; Fortuna, F.; O’Donnell, B.; Jeon, T.; Foldyna, M.; Picardi, G.; Roca i Cabarrocas, P. Bismuth-Catalyzed and Doped Silicon Nanowires for One-Pump-Down Fabrication of Radial Junction Solar Cells. Nano Lett. 2012, 12, 4153–4158. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.R.; Rao, K.N.; Phani, A.R. Bismuth catalyzed growth of silicon nanowires by electron beam evaporation. Mater. Lett. 2012, 82, 163–166. [Google Scholar] [CrossRef]
- Nama Manjunatha, K.; Paul, S. Carrier selective metal-oxides for self-doped silicon nanowire solar cells. Appl. Surf. Sci. 2019, 492, 856–861. [Google Scholar] [CrossRef]
- Qiu, J.; Shang, Y.; Chen, X.; Li, S.; Ma, W.; Wan, X.; Yang, J.; Lei, Y.; Chen, Z. Chen, Enhanced efficiency of graphene-silicon Schottky junction solar cell through inverted pyramid arrays texturization. J. Mater. Sci. Technol. 2018, 34, 2197–2204. [Google Scholar] [CrossRef]
- Jbira, E.; Derouiche, H.; Missaoui, K. Enhancing effect of silver nanoparticles (AgNPs) interfacial thin layer on silicon nanowires (SiNWs)/PEDOT: PSS hybrid solar cell. Sol. Energy 2020, 211, 1230–1238. [Google Scholar] [CrossRef]
- Naik, B.N.; Agarwal, L.; Tripathi, S. Microstructural and electrical characterization of Pt/Si nanowires Schottky diode grown by metal assisted chemical etching method. Int. J. Thin Film. Sci. Technol. 2017, 6, 107–111. [Google Scholar] [CrossRef]
- Cho, W.-M.; Lin, Y.-J.; Chang, H.-C.; Chen, Y.-H. Electronic transport for polymer/Si-nanowire arrays/n-type Si diodes with and without Si-nanowire surface passivation. Microelectron. Eng. 2013, 108, 24–27. [Google Scholar] [CrossRef]
- Chaliyawala, H.A.; Ray, A.; Pati, R.K.; Mukhopadhyay, I. Strong light absorption capability directed by structured profile of vertical Si nanowires. Opt. Mater. 2017, 73, 449–458. [Google Scholar] [CrossRef]
- Mussabek, G.; Lysenko, V.; Yermukhamed, D.; Sivakov, V.; Timoshenko, V.Y. Thermally induced evolution of the structure and optical properties of silicon nanowires. Results Phys. 2020, 18, 103258. [Google Scholar] [CrossRef]
Ln (I) vs. V (TE Model) | Cheung’s Functions | ||||
---|---|---|---|---|---|
Is (µA) | η | φb (eV) | RS (kΩ) | η | |
SiNWs | 0.21 | 5.91 | 0.806 | 93.65 | 3.65 |
Bi-1@SiNWs | 0.85 | 3.06 | 0.770 | 14.06 | 2.85 |
Bi-2@SiNWs | 1.94 | 1.88 | 0.748 | 8.25 | 1.96 |
Bi-3@SiNWs | 1.33 | 2.58 | 0.758 | 10.19 | 2.29 |
Samples | Effective Minority Carrier Lifetime τeff (µs) | Effective Surface Recombination Velocity Seff (cm·s−1) |
---|---|---|
Si | 8.1 | 3086.4 |
SiNWs | 6 | 4166.6 |
Bi-1@SiNWs | 8.6 | 2906.9 |
Bi-2@SiNWs | 10.7 | 2336.4 |
Bi-3@SiNWs | 10.1 | 2475.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naffeti, M.; Zaïbi, M.A.; García-Arias, A.V.; Chtourou, R.; Postigo, P.A. Efficient Diode Performance with Improved Effective Carrier Lifetime and Absorption Using Bismuth Nanoparticles Passivated Silicon Nanowires. Nanomaterials 2022, 12, 3729. https://doi.org/10.3390/nano12213729
Naffeti M, Zaïbi MA, García-Arias AV, Chtourou R, Postigo PA. Efficient Diode Performance with Improved Effective Carrier Lifetime and Absorption Using Bismuth Nanoparticles Passivated Silicon Nanowires. Nanomaterials. 2022; 12(21):3729. https://doi.org/10.3390/nano12213729
Chicago/Turabian StyleNaffeti, Mariem, Mohamed Ali Zaïbi, Alejandro Vidal García-Arias, Radhouane Chtourou, and Pablo Aitor Postigo. 2022. "Efficient Diode Performance with Improved Effective Carrier Lifetime and Absorption Using Bismuth Nanoparticles Passivated Silicon Nanowires" Nanomaterials 12, no. 21: 3729. https://doi.org/10.3390/nano12213729
APA StyleNaffeti, M., Zaïbi, M. A., García-Arias, A. V., Chtourou, R., & Postigo, P. A. (2022). Efficient Diode Performance with Improved Effective Carrier Lifetime and Absorption Using Bismuth Nanoparticles Passivated Silicon Nanowires. Nanomaterials, 12(21), 3729. https://doi.org/10.3390/nano12213729