Alpha-Germanium Nanolayers for High-Performance Li-ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of 2D α-Ge
2.2. Electrochemical Measurements
3. Results and Discussion
3.1. Preparation and Characterization of a-Germanium Nanolayers
3.2. Electrochemical Characterization
3.3. Physico-Chemical Characterization and Structural Analysis for Cycled Materials
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, S.Z.; Hollen, S.M.; Cao, L.; Cui, Y.; Gupta, J.A.; Gutierrez, H.R.; Heinz, T.F.; Hong, S.S.; Huang, J.; Ismach, A.F.; et al. Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene. ACS Nano 2013, 7, 2898. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Cao, X.; Wu, X.J.; He, Q.; Yang, J.; Zhang, X.; Chen, J.; Zhao, W.; Han, S.; Nam, G.H.; et al. Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chem. Rev. 2017, 117, 6225. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Choudhary, N.; Han, G.H.; Park, J.; Akinwande, D.; Lee, Y.H. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 2017, 20, 116. [Google Scholar] [CrossRef]
- Wang, Q.; O’Hare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 2012, 112, 4124. [Google Scholar] [CrossRef] [PubMed]
- Anasori, B.; Lukatskaya, M.R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098. [Google Scholar] [CrossRef]
- Wang, T.; Wang, H.; Kou, Z.; Liang, W.; Luo, X.; Verpoort, F.; Zeng, Y.J.; Zhang, H. Xenes as an Emerging 2D Monoelemental Family: Fundamental Electrochemistry and Energy Applications. Adv. Funct. Mater. 2020, 30, 2002885. [Google Scholar] [CrossRef]
- Kaur, H.; Coleman, J.N. Liquid-phase Exfoliation of Nonlayered non-van der Waals Crystals into Nanoplatelets. Adv. Mater. 2022, 34, 2202164. [Google Scholar] [CrossRef]
- Guan, G.; Xia, J.; Liu, S.; Cheng, Y.; Bai, S.; Tee, S.Y.; Zhang, Y.W.; Han, M.Y. Electrostatic-Driven Exfoliation and Hybridization of 2D Nanomaterials. Adv. Mater. 2017, 29, 1700326. [Google Scholar] [CrossRef]
- Gibaja, C.; Rodriguez-San-Miguel, D.; Paz, W.S.; Torres, I.; Salagre, E.; Segovia, P.; Michel, E.G.; Assebban, M.; Ares, P.; Hernandez-Maldonado, D.; et al. Exfoliation of Alpha-Germanium: A Covalent Diamond-Like Structure. Adv. Mater. 2021, 33, 2006826. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, R.; Zhang, J.; Cui, J.; Qin, Y.; Zhang, Y.; Wu, J.; Chatterjee, K.; Ajayan, P.M.; Wu, Y. Directly Exfoliated Ultrathin Silicon Nanosheets for Enhanced Photocatalytic Hydrogen Production. J. Phys. Chem. Lett. 2020, 11, 8668. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Jing, L.; Liu, W.; Lin, J.; Tay, R.Y.; Tsang, S.H.; Teo, E.H.T. Scalable Production of Few-Layer Boron Sheets by Liquid-Phase Exfoliation and Their Superior Supercapacitive Performance. ACS Nano 2018, 12, 1262. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Tian, R.; Roy, A.; McCrystall, M.; Smith, R.; Horvath, D.V.; Nicolosi, V.; Coleman, J.N. 2D nanosheets from fool’s gold by LPE: High performance lithium-ion battery anodes made from stone. FlatChem 2021, 30, 100295. [Google Scholar] [CrossRef]
- Tai, Z.; Subramaniyam, C.M.; Chou, S.L.; Chen, L.; Liu, H.K.; Dou, S.X. Few Atomic Layered Lithium Cathode Materials to Achieve Ultrahigh Rate Capability in Lithium-Ion Batteries. Adv. Mater. 2017, 29, 1700605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, C.; Zhang, Y.; Tian, Y.; Tan, L.; An, Y.; Qian, Y.; Xi, B.; Xiong, S.; Feng, J.; Qian, Y. Design of safe, long-cycling and high-energy lithium metal anodes in all working conditions: Progress, challenges and perspectives. Energy Storage Mater. 2021, 38, 157. [Google Scholar] [CrossRef]
- Li, D.; Wang, H.; Zhou, T.; Zhang, W.; Liu, H.K.; Guo, Z. Unique Structural Design and Strategies for Germanium-Based Anode Materials Toward Enhanced Lithium Storage. Adv. Energy Mater. 2017, 7, 1700488. [Google Scholar] [CrossRef] [Green Version]
- An, W.; Gao, B.; Mei, S.; Xiang, B.; Fu, J.; Wang, L.; Zhang, Q.; Chu, P.K.; Huo, K. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nat. Commun. 2019, 10, 1447. [Google Scholar] [CrossRef] [Green Version]
- Feng, M.; Tian, J.; Xie, H.; Kang, Y.; Shan, Z. Nano-silicon/polyaniline composites with an enhanced reversible capacity as anode materials for lithium ion batteries. J. Solid State Electrochem. 2015, 19, 1773. [Google Scholar] [CrossRef]
- Bensalah, N.; Matalkeh, M.; Mustafa, N.K.; Merabet, H. Binary Si–Ge Alloys as High-Capacity Anodes for Li-Ion Batteries. Phys. Status Solidi A 2019, 217, 1900414. [Google Scholar] [CrossRef]
- Schulze, M.C.; Belson, R.M.; Kraynak, L.A.; Prieto, A.L. Electrodeposition of Sb/CNT composite films as anodes for Li- and Na-ion batteries. Energy Storage Mater. 2020, 25, 572. [Google Scholar] [CrossRef]
- Liu, R.; Luo, F.; Zeng, L.; Liu, J.; Xu, L.; He, X.; Xu, Q.; Huang, B.; Qian, Q.; Wei, M.; et al. Dual carbon decorated germanium-carbon composite as a stable anode for sodium/potassium-ion batteries. J. Colloid Interface Sci. 2021, 584, 372. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, J.; Chen, X.; Kang, B.; Wang, H.-E.; Xiong, P.; Chen, Q.; Wei, M.; Li, N.; Qian, Q.; et al. Structural engineering of tin sulfides anchored on nitrogen/phosphorus dual-doped carbon nanofibres in sodium/potassium-ion batteries. Carbon 2022, 189, 46. [Google Scholar] [CrossRef]
- Ge, M.; Cao, C.; Biesold, G.M.; Sewell, C.D.; Hao, S.M.; Huang, J.; Zhang, W.; Lai, Y.; Lin, Z. Recent Advances in Silicon-Based Electrodes: From Fundamental Research toward Practical Applications. Adv. Mater. 2021, 33, 2004577. [Google Scholar] [CrossRef] [PubMed]
- Ke, F.S.; Mishra, K.; Jamison, L.; Peng, X.X.; Ma, S.G.; Huang, L.; Sun, S.G.; Zhou, X.D. Tailoring nanostructures in micrometer size germanium particles to improve their performance as an anode for lithium ion batteries. Chem. Commun. 2014, 50, 3713. [Google Scholar] [CrossRef] [PubMed]
- Park, M.H.; Kim, K.; Kim, J.; Cho, J. Flexible dimensional control of high-capacity Li-ion-battery anodes: From 0D hollow to 3D porous germanium nanoparticle assemblies. Adv. Mater. 2010, 22, 415. [Google Scholar] [CrossRef]
- Zou, X.; Ji, L.; Pang, Z.; Xu, Q.; Lu, X. Continuous electrodeposition of silicon and germanium micro⁄nanowires from their oxides precursors in molten salt. J. Energy Chem. 2020, 44, 147. [Google Scholar] [CrossRef] [Green Version]
- Mishra, K.; Liu, X.-C.; Ke, F.-S.; Zhou, X.-D. Porous germanium enabled high areal capacity anode for lithium-ion batteries. Compos. Part B 2019, 163, 158. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, T.; Chen, J.; Liu, H.; Su, D.; Tang, Z.; Xie, J.; Chen, L.; Yuan, A.; Kong, Q. Germanium-based complex derived porous GeO2 nanoparticles for building high performance Li-ion batteries. Ceram. Int. 2018, 44, 1127. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, S.; Chen, M.; Wu, L. Uniformly Confined Germanium Quantum Dots in 3D Ordered Porous Carbon Framework for High-Performance Li-ion Battery. Adv. Funct. Mater. 2020, 30, 2000373. [Google Scholar] [CrossRef]
- Schmid, M.; Steinrück, H.-P.; Gottfried, J.M. A new asymmetric Pseudo-Voigt function for more efficient fitting of XPS lines. Surf. Interface Anal. 2014, 46, 505. [Google Scholar] [CrossRef]
- Yan, S.; Song, H.; Lin, S.; Wu, H.; Shi, Y.; Yao, J. GeO2 Encapsulated Ge Nanostructure with Enhanced Lithium-Storage Properties. Adv. Funct. Mater. 2019, 29, 1807946. [Google Scholar] [CrossRef]
- Cheng, X.; Ren, Y.; Shang, J.; Song, Y. Contrasting Structural Stabilities and New Pressure-Induced Polymorphic Transitions of Scheelite- and Zircon-Type ZrGeO4. J. Phys. Chem. C 2017, 121, 723. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, W.; Fu, X.; Sun, Z.; Wang, J.; Zhang, J.; Rosenbach, D.; Qi, R.; Jiang, K.; Jing, C.; et al. Evaluation of lattice dynamics, infrared optical properties and visible emissions of hexagonal GeO2 films prepared by liquid phase deposition. J. Mater. Chem. C 2017, 5, 12792. [Google Scholar] [CrossRef]
- Schmeisser, D.; Schnell, R.D.; Bogen, A.; Himpsel, F.J.; Rieger, D.; Landgren, G.; Morar, J.F. Surface oxidation states of germanium. Surf. Sci. 1986, 172, 455. [Google Scholar] [CrossRef]
- Wang, L.; Bao, K.; Lou, Z.; Liang, G.; Zhou, Q. Chemical synthesis of germanium nanoparticles with uniform size as anode materials for lithium ion batteries. Dalton Trans. 2016, 45, 2814. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ma, L.; Shen, X.; Ji, Z.; Yuan, A.; Xu, K.; Shah, S.A. In-situ synthesis of Ge/reduced graphene oxide composites as ultrahigh rate anode for lithium-ion battery. J. Alloys Compd. 2019, 801, 90. [Google Scholar] [CrossRef]
- Wang, B.; Jin, J.; Hong, X.; Gu, S.; Guo, J.; Wen, Z. Facile synthesis of the sandwich-structured germanium/reduced graphene oxide hybrid: An advanced anode material for high-performance lithium ion batteries. J. Mater. Chem. A 2017, 5, 13430. [Google Scholar] [CrossRef]
- Lim, L.Y.; Liu, N.; Cui, Y.; Toney, M.F. Understanding Phase Transformation in Crystalline Ge Anodes for Li-Ion Batteries. Chem. Mater. 2014, 26, 3739. [Google Scholar] [CrossRef]
- Goriparti, S.; Gulzar, U.; Miele, E.; Palazon, F.; Scarpellini, A.; Marras, S.; Monaco, S.; Proietti Zaccaria, R.; Capiglia, C. Facile synthesis of Ge–MWCNT nanocomposite electrodes for high capacity lithium ion batteries. J. Mater. Chem. A 2017, 5, 19721. [Google Scholar] [CrossRef]
- He, X.; Hu, Y.; Shen, Z.; Chen, R.; Wu, K.; Cheng, Z.; Zhang, X.; Wu Pan, P. Channelized carbon nanofiber with uniform-dispersed GeO2 as anode for long-lifespan lithium-ion batteries. J. Alloys Compd. 2017, 729, 313. [Google Scholar] [CrossRef]
- Royuela, S.; Almarza, J.; Mancheno, M.J.; Perez-Flores, J.C.; Michel, E.G.; Ramos, M.M.; Zamora, F.; Ocon, P.; Segura, J.L. Synergistic Effect of Covalent Bonding and Physical Encapsulation of Sulfur in the Pores of a Microporous COF to Improve Cycling Performance in Li-S Batteries. Chem. Eur. J. 2019, 25, 12394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, K.S.; Yang, K.-W.; Kim, H.; Tak Lee, H.; Lee, J.C.; Sohn, Y.-S. Size Control of Crystalline Germanium Nanoparticles Using Inductively Coupled Nonthermal Plasma. J. Nanoelectron. Optoelectron. 2013, 8, 571. [Google Scholar] [CrossRef]
- Zhou, X.; Li, T.; Cui, Y.; Meyerson, M.L.; Weeks, J.A.; Mullins, C.B.; Jin, Y.; Shin, H.; Liu, Y.; Zhu, L. Blade-Type Reaction Front in Micrometer-Sized Germanium Particles during Lithiation. ACS Appl. Mater. Interfaces 2020, 12, 47574. [Google Scholar] [CrossRef] [PubMed]
- Wentao, L.; Hui, Y.; Feifei, F.; Yang Liu, X.; Hua Liu, J.; Yu, H.; Ting, Z.; Sulin, Z. Tough Germanium Nanoparticles under Electrochemical Cycling. ACS Nano 2013, 7, 3427. [Google Scholar] [CrossRef]
- Loaiza, L.C.; Dupré, N.; Davoisne, C.; Madec, L.; Monconduit, L.; Seznec, V. Complex Lithiation Mechanism of Siloxene and Germanane: Two Promising Battery Electrode Materials. J. Electrochem. Soc. 2021, 168, 10510. [Google Scholar] [CrossRef]
Scan Rate 0.5 C (Specific Capacity) | Cycle 1 | Cycle 20 | Cycle 50 | Cycle 100 | Cycle 200 | Cycle 400 |
---|---|---|---|---|---|---|
2D α-Ge 1 mg cm−2 | 1104 | 884 | 711 | 697 | 608 | 599 |
2D α-Ge 2 mg cm−2 | 1526 | 1095 | 941 | 790 | 368 | 162 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sierra, L.; Gibaja, C.; Torres, I.; Salagre, E.; Avilés Moreno, J.R.; Michel, E.G.; Ocón, P.; Zamora, F. Alpha-Germanium Nanolayers for High-Performance Li-ion Batteries. Nanomaterials 2022, 12, 3760. https://doi.org/10.3390/nano12213760
Sierra L, Gibaja C, Torres I, Salagre E, Avilés Moreno JR, Michel EG, Ocón P, Zamora F. Alpha-Germanium Nanolayers for High-Performance Li-ion Batteries. Nanomaterials. 2022; 12(21):3760. https://doi.org/10.3390/nano12213760
Chicago/Turabian StyleSierra, Laura, Carlos Gibaja, Iñigo Torres, Elena Salagre, Juan Ramón Avilés Moreno, Enrique G. Michel, Pilar Ocón, and Félix Zamora. 2022. "Alpha-Germanium Nanolayers for High-Performance Li-ion Batteries" Nanomaterials 12, no. 21: 3760. https://doi.org/10.3390/nano12213760
APA StyleSierra, L., Gibaja, C., Torres, I., Salagre, E., Avilés Moreno, J. R., Michel, E. G., Ocón, P., & Zamora, F. (2022). Alpha-Germanium Nanolayers for High-Performance Li-ion Batteries. Nanomaterials, 12(21), 3760. https://doi.org/10.3390/nano12213760