Research Progress of Bifunctional Oxygen Reactive Electrocatalysts for Zinc–Air Batteries
Abstract
:1. Introduction
2. ORR/OER Reaction Mechanism
2.1. ORR Reaction Mechanism
- (1)
- * + O2 (g) + H2O(l) + e− → *OOH + OH−(aq);
- (2)
- *OOH + e− → *O + OH−(aq);
- (3)
- *O + H2O(l) + e− → *OH + OH−(aq);
- (4)
- *OH + e−→ * + OH−(aq).
- (5)
- O2 + H2O(l) + 2e− → HO2- + OH−(aq)
- (6)
- HO2− + H2O(l) + 2e− →3OH−(aq)
2.2. OER Reaction Mechanism
- (7)
- * + OH− → *OH + e–;
- (8)
- *OH + OH− → *O + H2O + e–;
- (9)
- *O + OH− → *OOH + e–;
- (10)
- *OOH + OH− → * + O2 + H2O + e–;
- (11)
- Overall reaction: 4OH− → O2 + 2H2O + 4e–.
3. Classification of Bifunctional ORR/OER Catalysts
3.1. Heterojunction Structure
3.2. Defect Engineering
3.3. Heteroatomic Doping
4. Synthetic Method
4.1. Thermal Decomposition
4.2. Electrodeposition
4.3. Electrostatic Spinning
4.4. Other Methods
5. Research on Catalytic Mechanism
6. Application of Zinc–Air Battery
7. Summary and Prospect
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Z.Y.; Han, W.J.; Jia, P.; Jiang, Y.F.; Ding, Q.J. Co3O4 Nanoneedle Array Grown on Carbon Fiber Paper for Air Cathodes towards Flexible and Rechargeable Zn–Air Batteries. Nanomaterials 2021, 11, 3321. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhao, Y.; Ding, L.; Wang, D.; Guo, Q.; Li, Z.; Luo, H.; Zhang, D.; Yu, Y. Enhancing the Capacity and Stability by CoFe2O4 Modified g-C3N4 Composite for Lithium-Oxygen Batteries. Nanomaterials 2021, 11, 1088. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Y.; Zou, Q.M.; Li, Z.J.; Xie, D.; Niu, Y.; Zou, J.Z.; Zeng, X.R.; Huang, J.F. MOF Derived Ni-Fe Based Alloy Carbon Materials for Efficient Bifunctional Electrocatalysts Applied in Zn-Air Battery. Appl. Surf. Sci. 2022, 572, 151286. [Google Scholar] [CrossRef]
- Chen, W.D.; Yu, H.P.; Chang, S.M.; Li, W.M.; Liu, R.J.; Wang, Y.X.; Zhang, H.; Zhang, Z.Y. Wheat Straw as Carbon Source to Prepare FeCoP2/N, P Dual-doped Carbon Matrix as Bifunctional Catalyst for Application in Rechargeable Zinc-Air and Aluminum-Air Batteries. Appl. Surf. Sci. 2022, 573, 151486. [Google Scholar] [CrossRef]
- Xiang, Y.; Xu, C.L.; Fu, T.T.; Tang, Y.B.; Li, G.J.; Xiong, Z.P.; Guo, C.Z.; Si, Y.J. Enhanced Bifunctional Catalytic Performance of Nitrogen- Doped Carbon Composite to Oxygen Reduction and Evolution Reactions with the Regulation of Graphene for Rechargeable Zn-Air Batteries. Appl. Surf. Sci. 2022, 575, 151730. [Google Scholar] [CrossRef]
- Sun, L.P.; Yang, J.Q.; Niu, Y.S. Overview of Electrochemical Method in the Treatment of Municipal Sewage. Int. J. Electrochem. Sci. 2022, 17, 220612. [Google Scholar] [CrossRef]
- Ahmed, M.; Zhao, R.H.; Du, J.P.; Li, J.P. Review—Nanostructural ZnO-Based Electrochemical Sensor for Environmental Application. J. Electrochem. Soc. 2022, 169, 020573. [Google Scholar] [CrossRef]
- Bakhir, V.M.; Pogorelov, A.G. Universal Electrochemical Technology for Environmental Protection. Int. J. Pharm. Res. Allied Sci. 2018, 7, 41–57. [Google Scholar]
- Lu, J.C.; Zhuo, Q.F.; Ren, X.W.; Qiu, Y.F.; Li, Y.L.; Chen, Z.Y.; Huang, K.F. Treatment of Wastewater from Adhesive-Producing Industries by Electrocoagulation and Electrochemical Oxidation. Process. Saf. Environ. Prot. 2022, 157, 527–536. [Google Scholar] [CrossRef]
- Leong, K.W.; Wang, Y.F.; Ni, M.; Pan, W.D.; Luo, S.J.; Leung, D.Y.C. Rechargeable Zn-Air Batteries: Recent Trends and Future Perspectives. Renew. Sustain. Energy Rev. 2022, 154, 111771. [Google Scholar] [CrossRef]
- Li, M.; Huang, Y.J.; Lin, J.Q.; Li, M.Z.; Jiang, M.Q.; Ding, L.F.; Sun, D.M.; Huang, K.; Tang, Y.W. Carbon Nanotubes Interconnected NiCo Layered Double Hydroxide Rhombic Dodecahedral Nanocages for Efficient Oxygen Evolution Reaction. Nanomaterials 2022, 12, 1015. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Xiong, Y.; Tang, K.; Wu, M.Z.; Hu, H.B.; Zhou, T.P.; Wu, Y.D.; Cao, Z.Q.; Sun, J.Y.; Yu, X.X.; et al. Modulation of Pore-size in N, S-codoped Carbon/Co9S8 Hybrid for a Stronger O2 Affinity toward Rechargable Zinc-Air Bbattery. Nano Energy 2022, 92, 106750. [Google Scholar] [CrossRef]
- Deng, W.H.; Li, G.; Wu, T.J.; He, L.; Wu, J.Y.; Liu, J.C.; Zheng, H.T.; Li, X.L.; Yang, Y.Q.; Jing, M.J.; et al. Heteroatom Functionalized Double-layer Carbon Nanocages as Highly Efficient Oxygen Electrocatalyst for Zn-Air Batteries. Carbon 2022, 186, 589–598. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, D.; Zhang, D.D.; Yu, H.; Zheng, Y.P.; Li, W.J.; Wang, L.; Liu, Q.; Yang, W.Y. Fe, N-Modulated Carbon Fibers Aerogel as Freestanding Cathode Catalyst for Rechargeable Zn-Air Battery. Carbon 2022, 187, 196–206. [Google Scholar] [CrossRef]
- Huang, Q.; Xu, Y.W.; Guo, Y.Y.; Zhang, L.J.; Hu, Y.; Qian, J.J.; Huang, S.M. Highly Graphitized N-doped Carbon Nanosheets from 2-Dimensional Coordination Polymers for Efficient Metal-Air Batteries. Carbon 2022, 188, 135–145. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, T.; Duan, Y.E.; Dai, X.; Tan, Q.; Chen, Y.Z.; Liu, Y.N. N, O-codoped Carbon Spheres with Uniform Mesoporous Entangled Co3O4 Nanoparticles as a Highly Efficient Electrocatalyst for Oxygen Reduction in a Zn-Air Battery. J. Colloid Interface Sci. 2021, 604, 746–756. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.H.; Lou, S.; Gao, Y.; Kong, L.J.; Yan, S.C.; Wang, K.; Song, H.Z. Effect of Co Doping on Electrocatalytic Performance of Co-NiS2/CoS2 Heterostructures. Nanomaterials 2021, 11, 1245. [Google Scholar] [CrossRef]
- Zhang, T.; Mao, S.M.; Sun, P.; Gao, X.Y.; Fang, H.; Luo, H.T.; Zhang, W.F.; Zhou, B.L. Nanosized FeS/ZnS Heterojunctions Derived Using Zeolitic Imidazolate Framework-8 (ZIF-8) for pH-Universal Oxygen Reduction and High-Efficiency Zn-Air Battery. J. Colloid Interface Sci. 2022, 608, 446–458. [Google Scholar] [CrossRef]
- Sun, R.M.; Zhang, L.; Feng, J.J.; Fang, K.M.; Wang, A.J. In Situ Produced Co9S8 Nanoclusters/Co/Mn-S, N Multi-doped 3D Porous Carbon Derived from Eriochrome Black T as an Effective Bifunctional Oxygen Electrocatalyst for Rechargeable Zn-Air Batteries. J. Colloid Interface Sci. 2022, 608, 2100–2110. [Google Scholar] [CrossRef]
- Cui, L.F.; Xiang, K.; Kang, X.M.; Zhi, K.K.; Wang, L.; Zhang, J.J.; Fu, X.Z.; Luo, J.L. ZnS Anchored on Porous N,S-Codoped Carbon as Superior Oxygen Reduction Reaction Electrocatalysts for Al-Air Batteries. J. Colloid Interface Sci. 2022, 609, 868–877. [Google Scholar] [CrossRef]
- Zhou, D.; Fu, H.Q.; Long, J.L.; Shen, K.; Gou, X.L. Novel Fusiform Core-Shell-MOF Derived Intact Metal@carbon Composite: An Efficient Cathode Catalyst for Aqueous and Solid-State Zn-Air Batteries. J. Energy Chem. 2022, 64, 385–394. [Google Scholar] [CrossRef]
- Li, Y.; Xu, K.D.; Zhang, Q.Z.; Zheng, Z.; Li, S.N.; Zhao, Q.S.; Li, C.; Dong, C.; Mei, Z.W.; Pan, F.; et al. One-pot Synthesis of FeNxC as Efficient Catalyst for High-Performance Zinc-Air Battery. J. Energy Chem. 2022, 66, 100–106. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.X.; Yin, Z.Y.; He, R.; Wang, Y.H.; Qiao, J.L. In-situ Growth of CoNi Bimetal Anchored on Carbon Nanoparticle/ Nanotube Hybrid for Boosting Rechargeable Zn-Air Battery. J. Energy Chem. 2022, 66, 348–355. [Google Scholar] [CrossRef]
- Zhao, X.; Li, X.; Bi, Z.H.; Wang, Y.W.; Zhang, H.B.; Zhou, X.H.; Wang, Q.; Zhou, Y.T.; Wang, H.S.; Hu, G.Z. Boron Modulating Electronic Structure of FeN4C to Initiate High-Efficiency Oxygen Reduction Reaction and High-Performance Zinc-Air Battery. J. Energy Chem. 2022, 66, 514–524. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, Q.X.; Tang, Y.W.; Zhang, L.; Li, Y.G. Zinc-Air Batteries: Are They Ready for Prime Time? Chem. Sci. 2019, 10, 8924–8929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, E.; Shin, H.; Hooch Antink, W.; Sung, Y.E.; Hyeon, T. Recent Advances in Electrochemical Oxygen Reduction to H2O2: Catalyst and Cell Design. ACS Energy Lett. 2020, 5, 1881–1892. [Google Scholar] [CrossRef]
- Dong, H.; Dong, B.B.; Sun, L.; Chi, Z.X.; Wang, M.Y.; Yu, H.B. Electro-UV/H2O2 System with RGO-modified Air Diffusion Cathode for Simulative Antibiotic-Manufacture Effluent Treatment. Chem. Eng. J. 2020, 124650. [Google Scholar] [CrossRef]
- He, R.F.; Liang, H.O.; Li, C.P.; Bai, J. Enhanced Photocatalytic Hydrogen Production Over Co3O4@g-C3N4 p-n Junction Adhering on One-dimensional Carbon Fiber. Colloids Surf. A Physicochem. Eng. Asp. 2020, 586, 124200. [Google Scholar] [CrossRef]
- Kulkarni, A.; Siahrostami, S.; Patel, A.; Norskov, J.K. Understanding Catalytic Activity Trends in the Oxygen Reduction Reaction. Chem. Rev. 2018, 118, 2302–2312. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, W.H.; Zheng, L.C.; Liu, J.; Tang, R.R.; Shi, K.J.; Zhang, Y.Y. Hollow Porous Nitrogen-Doped Carbon Formed by Fe-modified Bimetallic Organic Framework for Rechargeable Liquid/Solid Zn-Air Batteries. J. Alloys Compd. 2021, 886, 161227. [Google Scholar] [CrossRef]
- Huang, L.; Zuo, L.Z.; He, Z.Y.; Xiao, B.B.; Zhou, H.; Su, S.C.; Li, Y.; Bian, T.; Yuan, A. g-C3N4 Templated Synthesis of the Tubular CoFe/N Doped Carbon Composite as Advanced Bifunctional Oxygen Electrocatalysts for Zinc-Air Batteries. J. Alloys Compd. 2021, 884, 161011. [Google Scholar] [CrossRef]
- Luo, X.L.; Liu, Z.; Ma, Y.P.; Nan, Y.X.; Gu, Y.; Li, S.L.; Zhou, Q.L.; Mo, J.M. Biomass Derived Fe,N-doped Carbon Material as Bifunctional Electrocatalysts for Rechargeable Zn-Air Batteries. J. Alloys Compd. 2021, 888, 161464. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, G.Y.; Wang, L.; Fu, H.G. Structural Design Strategy and Active Site Regulation of High-Efficient Bifunctional Oxygen Reaction Electrocatalysts for Zn-Air Battery. Small 2021, 17, 2006766. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.H.; Liu, Y.; Hu, S.Q.; Zheng, P.F.; Fu, Y.D.; Dong, P.; Xiao, J.; Han, L.N.; Zhang, Y.J. Synthesis of a Highly Efficient Bifunctional Co2P@N-doped Carbon Nanotubes Electrocatalyst by GO-Induced Assembly Strategy for Rechargeable Zn-Air Batteries. J. Alloys Compd. 2021, 889, 161628. [Google Scholar] [CrossRef]
- Calle-Vallejo, F.; Martinez, J.I.; Rossmeisl, J. Density Functional Studies of Functionalized Graphitic Materials with Late Transition Metals for Oxygen Reduction Reactions. Phys. Chem. Chem. Phys. 2011, 13, 15639–15643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.L.; Song, Z.H.; Li, Z.; Yang, Z.; Zhang, J.M.; Li, H.; Zheng, Z.M. Integrated CoO Nanoparticles@porous Carbon Nanosheets Arrays on Carbon Cloth as Cathode for rechargeable Zn-Air Batteries. J. Alloys Compd. 2022, 894, 162456. [Google Scholar] [CrossRef]
- Sha, J.C.; Qiao, M.L.; Bao, J.X.; Liu, H.L.; Yin, S.Q.; Liu, W.H.; Zhao, Z.; Zhao, Z.L.; Cui, J.Z.; Zhang, Z.Q. Improving the Electrochemical Behaviors and Discharge Performance of as-Rolled Mg-4Li Alloys through Multicomponent Alloying. J. Alloys Compd. 2022, 895, 162536. [Google Scholar] [CrossRef]
- Shi, J.; Guo, X.M.; Liu, S.J.; Sun, Y.; Zhang, J.H.; Liu, Y.J.; Zheng, X.; Kong, Q. An Altered Nanoemulsion Assembly Strategy for In-situ Synthesis of Co2P/NP-C Nanospheres as Advanced Oxygen Reduction Electrocatalyst for Zinc-Air Batteries. Compos. Part B Eng. 2022, 231, 109589. [Google Scholar] [CrossRef]
- Wang, A.; Zhao, C.N.; Yu, M.; Wang, W.C. Trifunctional Co Nanoparticle confined in Defect-Rich Nitrogen-Doped Graphene for Rechargeable Zn-Air Battery with a Long Lifetime. Appl. Catal. B Environ. 2021, 281, 119514. [Google Scholar] [CrossRef]
- Khan, K.; Yan, X.X.; Yu, Q.M.; Bae, S.H.; White, J.J.; Liu, J.X.; Liu, T.C.; Sun, C.J.; Kim, J.W.; Cheng, H.M.; et al. Stone-Wales Defect-rich Carbon-supported Dual-Metal Single Atom Sites for Zn-air Batteries. Nano Energy 2021, 90, 106488. [Google Scholar] [CrossRef]
- Zhang, Z.A.; Lai, Y.Q.; Li, J.; Liu, Y.X. Effect of Ni-doping on Electrochemical Capacitance of MnO2 Electrode Materials. J. Cent. South Univ. Technol. 2007, 14, 638–642. [Google Scholar] [CrossRef]
- Surajit, M.; Rahul, M.; Quazi, A.I.; Sayan, B. 2D Heterojunction Between Double Perovskite Oxide Nanosheet and Layered Double Hydroxide to Promote Rechargeable Zinc-Air Battery Performance. ChemElectroChem 2020, 7, 24. [Google Scholar]
- Bao, X.J.; Xie, K.F.; Zhang, Z.J.; Liu, Z.X.; Zhou, H.S.; Luo, F.X.; Zhou, D.B.; Wang, H.E. NiFe-LDHs@MnO2 Heterostructure as a Bifunctional Electrocatalyst for Oxygen-involved Reactions and Zn-air Batteries. Ionics 2022, 28, 1273–1283. [Google Scholar] [CrossRef]
- Hao, Y.X.; Kang, Y.M.; Kang, H.C.; Xin, H.Y.; Liu, F.Q.; Li, L.F.; Wang, W.; Lei, Z.Q. Self-Grown Layered Double Hydroxide Nanosheets on Bimetal-organic Frameworks-derived N-doped CoOx Carbon Polyhedra for Flexible All-Solid-State Rechargeable Zn-air Batteries. J. Power Sources 2022, 524, 231076. [Google Scholar] [CrossRef]
- Zhong, L.; Zhou, H.; Li, R.F.; Cheng, H.; Wang, S.; Chen, B.Y.; Zhuang, Y.Y.; Chen, J.F.; Yuan, A.H. Co/CoOx Heterojunctions Encapsulated N-doped Carbon Sheets Via a Dual-Template-Guided Strategy as Efficient Electrocatalysts for Rechargeable Zn-air Battery. J. Colloid Interface Sci. 2021, 599, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.Y.; Liu, A.M.; Kang, Q.L.; Ye, X.Y.; Chen, H.L.; Su, W.N.E.; Ma, T.L. Synthesis of One-dimensional Vanadium-Doped CoS/Co9S8 Heterojunctions as Bifunctional Electrocatalysts for Zinc-Air Battery. Mater. Today Energy 2022, 25, 100968. [Google Scholar] [CrossRef]
- Leng, P.; Luo, F.; Li, M.; Ma, S.X.; Long, X.; Yang, Z.H. Construction of Abundant Co3O4/Co(OH)2 Heterointerfaces as Air Electro- Catalyst for Flexible All-Solid-State Zinc-air Batteries. Electrochim. Acta 2022, 413, 140158. [Google Scholar] [CrossRef]
- Xu, F.F.; Wang, J.L.; Zhang, Y.X.; Wang, W.; Guan, T.T.; Wang, N.; Li, K.X. Structure-engineered Bifunctional Oxygen Electro- Catalysts with Ni3S2 Quantum Dot Embedded S/N-Doped Carbon Nanosheets for Rechargeable Zn-air Batteries. Chem. Eng. J. 2022, 432, 134256. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, X.D.; Jiang, X.; Wu, X.R.; Tang, Y.W.; Sun, D.M.; Fu, G.T. Citrulline-induced Mesoporous CoS/CoO Hetero- Junction Nanorods Triggering High-Efficiency Oxygen Electrocatalysis in Solid-state Zn-air Batteries. Chem. Eng. J. 2022, 434, 134744. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Shi, W.P.; Bo, L.L.; Shen, Y.X.; Ji, X.C.; Xia, L.C.; Guan, X.L.; Wang, Y.X.; Tong, J.H. Electrospinning Construction of Hetero-Structural Co3W3C/CoP Nanoparticles Embedded in N, P-Doped Hierarchically Porous Carbon Fibers as Excellent Multifunctional Electrocatalyst for Zn-Air Batteries and water splitting. Chem. Eng. J. 2022, 431, 134188. [Google Scholar] [CrossRef]
- Shang, X.N.; Shen, Q.J.; Xiong, Y.; Jiang, Z.Q.; Qin, C.; Tian, X.N.; Yang, X.F.; Jiang, Z.J. Effect of Co-Fe Alloy Nanoparticles on the Surface Electronic Structure of Molybdenum Disulfide Nanosheets and Its Application as a Bifunctional Catalyst for Rechargeable Zinc Air Battery. J. Alloys Compd. 2022, 916, 165482. [Google Scholar] [CrossRef]
- Xu, L.; Wu, S.Q.; He, X.Y.; Wang, H.; Deng, D.J.; Wu, J.C.; Li, H.N. Interface Engineering of Anti-Perovskite Ni3FeN/VN Hetero- Structure for High-Performance Rechargeable Zin-Air batteries. Chem. Eng. J. 2022, 437, 135291. [Google Scholar] [CrossRef]
- Zeng, Z.W.; Yi, L.; He, J.W.; Hu, Q.; Liao, Y.C.; Wang, Y.D.; Luo, W.B.; Pan, M. Hierarchically Porous Carbon with Pentagon Defects as Highly Efficient Catalyst for Oxygen Reduction and Oxygen Evolution Reactions. J. Mater. Sci. 2020, 55, 4780–4791. [Google Scholar] [CrossRef]
- Xiao, M.; Xing, Z.; Jin, Z.; Liu, C.; Ge, J.; Zhu, J.; Wang, Y.; Zhao, X.; Chen, Z. Preferentially Engineering FeN4 Edge Sites onto Graphitic Nanosheets for Highly Active and Durable Oxygen Electrocatalysis in Rechargeable Zn-Air Batteries. Adv. Mater. 2020, 32, e2004900. [Google Scholar] [CrossRef]
- Cheng, W.; Yuan, P.; Lv, Z.; Guo, Y.; Qiao, Y.; Xue, X.; Liu, X.; Bai, W.; Wang, K.; Xu, Q.; et al. Boosting Defective Carbon by Anchoring Well-Defined Atomically Dispersed Metal-N4 sites for ORR, OER, and Zn-Air Batteries. Appl. Catal. B Environ. 2019, 260, 118198. [Google Scholar] [CrossRef]
- Wang, X.; Jia, Y.; Mao, X.; Liu, D.; He, W.; Li, J.; Liu, J.; Yan, X.; Chen, J.; Song, L.; et al. Edge-rich Fe-N4 Active Sites in Defective Carbon for Oxygen Reduction Catalysis. Adv. Mater. 2020, 32, 2000966. [Google Scholar] [CrossRef]
- Zeng, Y.Q.; Li, X.N.; Wang, J.H.; Sougrati, M.T.; Huang, Y.Q.; Zhang, T.; Liu, B. In Situ/Operando Mössbauer Spectroscopy for Probing Heterogeneous Catalysis. Chem. Catal. 2021, 1, 1215–1233. [Google Scholar] [CrossRef]
- Chen, J.Y.C.; Dang, L.N.; Liang, H.F.; Bi, W.L.; Gerken, J.B.; Jin, S.; Alp, E.E.; Stahl, S.S. Operando Analysis of NiFe and Fe Oxyhydroxide Electrocatalysts for Water Oxidation: Detection of Fe4+ by Mössbauer Spectroscopy. J. Am. Chem. Soc. 2015, 137, 15090–15093. [Google Scholar] [CrossRef]
- Li, J.k.; Sougrati, M.T.; Zitolo, A.; Ablett, J.M.; Oğuz, I.C.; Mineva, T.; Matanovic, I.; Atanassov, P.; Huang, Y.; Zenyuk, I.; et al. Identification of Durable and Non-Durable FeNx Sites in Fe-N-C Materials for Proton Exchange Membrane Fuel Cells. Nat. Catal. 2020, 4, 10–19. [Google Scholar] [CrossRef]
- Tang, C.; Wang, B.; Wang, H.F.; Zhang, Q. Defect Engineering Toward Atomic Co-Nx-C in Hierarchical Graphene for Recharge- Able Flexible Solid Zn-Air Batteries. Adv. Mater. 2017, 29, 1703185. [Google Scholar] [CrossRef]
- Huang, N.; Yan, S.F.; Yang, L.; Zhang, M.Y.; Sun, P.P.; Lv, X.W.; Sun, X.H. Morphology and Defect Modification on In-Situ Derived Co9S8-Porous Nitrogen-Doped Carbon as a Bifunctional Electrocatalyst for Oxygen Evolution and Reduction. J. Solid State Chem. 2020, 285, 121185. [Google Scholar] [CrossRef]
- Luo, H.; Jiang, W.; Niu, S.; Zhang, X.; Zhang, Y.; Yuan, L.; He, C.; Hu, J. Self-catalyzed Growth of Co-N-C Nanobrushes for Efficient Rechargeable Zn-Air Batteries. Small 2020, 16, 2001171. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.X.; Jia, Y.; Zhang, C.; Xiong, X.Y.; Sun, K.; Chen, R.D.; Chen, W.X.; Kuang, Y.; Zheng, L.R.; Tang, H.L.; et al. A General Route via Formamide Condensation to Prepare Atomically Dispersed Metal-Nitrogen-carbon Electrocatalysts for Energy Technologies. Energy Environ. Sci. 2019, 12, 1317–1325. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.Y.; Kumar, A.; Ma, M.; Jia, Y.; Wang, Y.; Zhang, Y.; Zhang, G.X.; Sun, X.M.; Yan, Z.F. Hierarchical Peony-Like FeCo-NC With Conductive Network and Highly Active Sites as Efficient Electrocatalyst for Rechargeable Zn-Air Battery. Nano Res. 2020, 13, 1090–1099. [Google Scholar] [CrossRef]
- Wu, M.J.; Wei, Q.L.; Zhang, G.X.; Qiao, J.X.; Wu, M.X.; Zhang, J.H.; Gong, Q.J.; Sun, S.H. Fe/Co Double Hydroxide/Oxide Nanoparticles on N- Doped CNTs as Highly Efficient Electrocatalyst for Rechargeable Liquid and Quasi-Solid-State Zinc–Air Batteries. Adv. Energy Mater. 2018, 1801836. [Google Scholar] [CrossRef]
- Gupta, S.; Qiao, L.; Zhao, S.; Xu, H.; Lin, Y.; Devaguptapu, S.V.; Wang, X.L.; Swihart, M.T.; Wu, G. Highly Active and Stable Graphene Tubes Decorated with FeCoNi Alloy Nanoparticles via a Template-Free Graphitization for Bifunctional Oxygen Reduction and Evolution. Adv. Energy Mater. 2016, 6, 1601198. [Google Scholar] [CrossRef]
- Xu, L.; Jiang, Q.Q.; Xiao, Z.H.; Li, X.Y.; Huo, J.; Wang, S.Y.; Dai, L.M. Plasma-Engraved Co3O4 Nanosheets with Oxygen Vacancies and High Surface Area for the Oxygen Evolution Reaction. Angew. Chem. Int. Ed. 2016, 55, 5277–5281. [Google Scholar] [CrossRef]
- Tang, H.B.; Luo, J.M.; Tian, X.L.; Dong, Y.Y.; Li, J.; Liu, M.R.; Liu, L.N.; Song, H.Y.; Liao, S.J. Template-Free Preparation of 3D Porous Co-Doped VN Nanosheet-Assembled Microflowers with Enhanced Oxygen Reduction Activity. ACS Appl. Mater. Interface 2018, 10, 11604–11612. [Google Scholar] [CrossRef]
- Li, P.; Wang, H.L.; Fan, W.J.; Huang, M.H.; Shi, J.; Shi, Z.C.; Liu, S. Salt Assisted Fabrication of Lignin-Derived Fe, N, P, S Co-doped Porous Carbon as Trifunctional Catalyst for Zn-Air Batteries and Water-Splitting Devices. Chem. Eng. J. 2021, 421, 129704. [Google Scholar] [CrossRef]
- Wei, P.; Li, X.G.; He, Z.M.; Sun, X.P.; Liang, Q.R.; Wang, Z.Y.; Fang, C.; Li, Q.; Yang, H.; Han, J.T.; et al. Porous N,B Co-Coped Carbon Nanotubes as Efficient Metal-Free Electrocatalysts for ORR and Zn-Air Batteries. Chem. Eng. J. 2021, 422, 130134. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Zhao, X.; Tang, F.M.; Zheng, X.S.; Cheng, W.R.; Che, W.; Hu, F.C.; Jiang, Y.; Liu, Q.H.; Wei, S.Q. Strongly Electrophilic Heteroatoms Confined in Atomic CoOOH Nanosheets Realizing Efficient Electrocatalytic Water Oxidation. J. Mater. Chem. A 2018, 6, 3202–3210. [Google Scholar] [CrossRef]
- Zhou, Q.; Chen, Y.P.; Zhao, G.Q.; Lin, Y.; Yu, Z.W.; Xu, X.; Wang, X.L.; Liu, H.K.; Sun, W.P.; Dou, S.X. Active-Site-Enriched Iron-Doped Nickel/Cobalt Hydroxide Nanosheets for Enhanced Oxygen Evolution Reaction. ACS Catal. 2018, 8, 5382–5390. [Google Scholar] [CrossRef]
- Li, T.F.; Hu, Y.J.; Liu, K.H.; Yin, J.W.; Li, Y.F.; Fu, G.T.; Zhang, Y.W.; Tang, Y.W. Hollow Yolk-Shell Nanoboxes Assembled by Fe-Doped Mn3O4 Nanosheets for High-Efficiency Electrocatalytic Oxygen Reduction in Zn-Air Battery. Chem. Eng. J. 2022, 427, 131992. [Google Scholar] [CrossRef]
- Lu, Z.W.; Wu, L.; Zhang, J.J.; Dai, W.L.; Mo, G.Q.; Ye, J.S. Bifunctional and Highly Sensitive Electrochemical Non-enzymatic Glucose and Hydrogen Peroxide Biosensor Based on NiCo2O4 Nanoflowers Decorated 3D Nitrogen Doped Holey Graphene Hydrogel. Mater. Sci. Eng. C 2019, 102, 708–717. [Google Scholar] [CrossRef]
- Yin, P.Q.; Yao, T.; Wu, Y.; Zheng, L.R.; Lin, Y.; Liu, W.; Ju, H.X.; Zhu, J.F.; Hong, X.; Deng, Z.X.; et al. Single Cobalt Atoms with Precise N-Coordination as Superior Oxygen Reduction Reaction Catalysts. Angew. Chem. Int. Ed. 2016, 128, 10958–10963. [Google Scholar] [CrossRef]
- Zhang, G.Y.; Liu, X.; Wang, L.; Sun, F.F.; Yang, Y.Q.; Tian, C.G.; Yu, P.; Pan, Q.W.; Fu, H.G. B, N-Doped Defective Carbon Entangled Fe3C Nanoparticles as the Superior Oxygen Reduction Electrocatalyst for Zn–Air Batteries. ACS Sustain. Chem. Eng. 2019, 7, 19104–19112. [Google Scholar] [CrossRef]
- He, Y.; Shang, W.X.; Ni, M.; Huang, Y.Y.; Zhao, H.; Tan, P. In-situ Observation of the Gas Evolution Process on the Air Electrode of Zn-Air Batteries during Charging. Chem. Eng. J. 2022, 427, 130862. [Google Scholar] [CrossRef]
- Lin, L.; Sun, H.; Yuan, X.Z.; Gu, Y.D.; Mu, Q.Q.; Qi, P.W.; Yan, T.R.; Zhang, L.; Peng, Y.; Deng, Z. Rational Design and Mass-Scale Synthesis of Guar-Derived Bifunctional Oxygen Catalyst for Rechargeable Zn-Air Battery with Active Sites Validation. Chem. Eng. J. 2022, 428, 131225. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, Z.K.; Song, H.H. Preparation and Application of Fe-N Co-Doped GN@CNT Cathode Oxygen Reduction Reaction Catalyst in Microbial Fuel Cells. Nanomaterials 2021, 11, 377. [Google Scholar] [CrossRef]
- Li, G.J.; Tang, Y.B.; Fu, T.T.; Xiang, Y.; Xiong, Z.P.; Si, Y.J.; Guo, C.Z.; Jiang, Z.Q. S,N co-doped Carbon Nanotubes Coupled with CoFe Nanoparticles as an Efficient Bifunctional ORR/OER Electrocatalyst for Rechargeable Zn-Air Batteries. Chem. Eng. J. 2022, 429, 132174. [Google Scholar] [CrossRef]
- Li, D.H.; Li, C.Y.; Zhang, L.J.; Li, H.; Zhu, L.K.; Yang, D.J.; Fang, Q.R.; Qiu, S.L.; Yao, X.D. Metal-Free Thiophene-Sulfur Covalent Organic Frameworks: Precise and Controllable Synthesis of Catalytic Active Sites for Oxygen Reduction. J. Am. Chem. Soc. 2020, 142, 8104–8108. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Q.; Zhao, Y.F.; Chen, C.; Huang, Y.C.; Dong, C.L.; Chen, C.J.; Liu, R.S.; Wang, C.Y.; Yan, K.; Li, Y.D.; et al. Tuning the Coordination Environment in Single-Atom Catalysts to Achieve Highly Efficient Oxygen Reduction Reactions. J. Am. Chem. Soc. 2019, 141, 20118–20126. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.Y.; Zhang, Y.Q.; Liu, S.P. Preparation of Trace Fe2P Modified N,P Co-doped Carbon Materials and their Application to Hydrogen Peroxide Detection. Electroanalysis 2020, 33, 831–837. [Google Scholar] [CrossRef]
- Chen, Y.J.; Ji, S.F.; Zhao, S.; Chen, W.X.; Dong, J.C.; Cheong, W.C.; Shen, R.G.; Wen, X.D.; Zheng, L.R.; Rykov, A.I.; et al. Enhanced Oxygen Reduction with Single-Atomic-Site Iron Catalysts for a Zinc-Air Battery and Hydrogen-Air Fuel Cell. Nat. Commun. 2018, 9, 5422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeon, J.; Park, K.R.; Kim, K.M.; Ko, D.Y.; Han, H.S.; Oh, N.; Yeo, S.; Ahn, C.; Mhin, S. CoFeS2@CoS2 Nanocubes Entangled with CNT for Efficient Bifunctional Performance for Oxygen Evolution and Oxygen Reduction Reactions. Nanomaterials 2022, 12, 983. [Google Scholar] [CrossRef] [PubMed]
- Shao, Q.; Wang, P.T.; Huang, X.Q. Opportunities and Challenges of Interface Engineering in Bimetallic Nanostructure for Enhanced Electrocatalysis. Adv. Funct. Mater. 2018, 29, 1806419. [Google Scholar] [CrossRef]
- Guo, C.X.; Zheng, Y.; Ran, J.R.; Xie, F.X.; Jaroniec, M.; Qiao, S.Z. Engineering High-Energy Interfacial Structures for High- Performance Oxygen-Involving Electrocatalysis. Angew. Chem. Int. Ed. 2017, 56, 8539–8543. [Google Scholar] [CrossRef] [Green Version]
- Luo, M.H.; Sun, W.P.; Xu, B.B.; Pan, H.G.; Jiang, Y.Z. Interface Engineering of Air Electrocatalysts for Rechargeable Zinc–Air Batteries. Adv. Energy Mater. 2020, 11, 2002762. [Google Scholar] [CrossRef]
- Wu, Z.H.; Wang, H.; Xiong, P.; Li, G.H.; Qiu, T.L.; Gong, W.B.; Zhao, F.F.; Li, C.L.; Li, Q.W.; Wang, G.X.; et al. Molecularly Thin Nitride Sheets Stabilized by Titanium Carbide as Efficient Bifunctional Electrocatalysts for Fiber-Shaped Rechargeable Zinc-Air Batteries. Nano Lett. 2020, 20, 2892–2898. [Google Scholar] [CrossRef]
- Amiinu, I.S.; Pu, Z.H.; Liu, X.B.; Owusu, K.A.; Monestel, H.G.R.; Boakye, F.O.; Zhang, H.N.; Mu, S.C. Multifunctional Mo-N/C@ Mo-S2 Electrocatalysts for HER, OER, ORR, and Zn-Air Batteries. Adv. Funct. Mater. 2017, 27, 1702300. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X.; Wang, R.; Hong, M. Structural Evolution from Metal–Organic Framework to Hybrids of Nitrogen-Doped Porous Carbon and Carbon Nanotubes for Enhanced Oxygen Reduction Activity. Chem. Mater. 2015, 27, 7610–7618. [Google Scholar] [CrossRef]
- Ji, D.; Fan, L.; Li, L.L.; Mao, N.; Qin, X.H.; Peng, S.J.; Ramakrishna, S. Hierarchical Catalytic Electrodes of Cobalt-Embedded Carbon Nanotube/Carbon Flakes Arrays for Flexible Solid-State Zinc-Air Batteries. Carbon 2019, 142, 379–387. [Google Scholar] [CrossRef]
- Ma, M.Y.; Miao, Y.J.; Mu, G.M.; Lin, D.M.; Xu, C.G.; Zeng, W.; Xie, F.Y. Highly Enhanced OER Performance by Er-Doped Fe-MOF Nanoarray at Large Current Densities. Nanomaterials 2021, 11, 1847. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.G.; Qin, J.W.; Meng, T.; Cao, M.H. Metal–Organic Framework-Induced Construction of Actiniae-Like Carbon Nanotube Assembly as Advanced Multifunctional Electrocatalysts for Overall Water Splitting and Zn-Air Batteries. Nano Energy 2017, 39, 626–638. [Google Scholar] [CrossRef]
- Jia, G.; Zhang, W.; Fan, G.Z.; Li, Z.S.; Fu, D.G.; Hao, W.C.; Yuan, C.W.; Zou, Z.G. Three-Dimensional Hierarchical Architectures Derived from Surface-Mounted Metal-Organic Framework Membranes for Enhanced Electrocatalysis. Angew. Chem. Int. Ed. 2017, 129, 13969–13973. [Google Scholar] [CrossRef]
- Aijaz, A.; Masa, J.; Rosler, C.; Xia, W.; Weide, P.; Botz, A.J.; Fischer, R.A.; Schuhmann, W.; Muhler, M. Co@Co3O4 Encapsulated in Carbon Nanotube-Grafted Nitrogen-Doped Carbon Polyhedra as an Advanced Bifunctional Oxygen Electrode. Angew. Chem. Int. Ed. 2016, 55, 4087–4091. [Google Scholar] [CrossRef]
- Wang, T.T.; Kou, Z.K.; Mu, S.C.; Liu, J.P.; He, D.P.; Amiinu, I.S.; Meng, W.; Zhou, K.; Luo, Z.X.; Chaemchuen, S.; et al. 2D Dual-Metal Zeolitic-Imidazolate-Framework-(ZIF)-Derived Bifunctional Air Electrodes with Ultrahigh Electrochemical Properties for Rechargeable Zinc-Air Batteries. Adv. Funct. Mater. 2018, 28, 1705048. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, T.T.; Sumboja, A.; Zang, W.J.; Xie, J.P.; Gao, D.Q.; Pennycook, S.J.; Liu, Z.L.; Guan, C.; Wang, J. Integrated Hierarchical Carbon Flake Arrays with Hollow P-Doped CoSe2 Nanoclusters as an Advanced Bifunctional Catalyst for Zn-Air Batteries. Adv. Funct. Mater. 2018, 28, 1804846. [Google Scholar] [CrossRef]
- Liu, W.X.; Yu, L.H.; Yin, R.L.; Xu, X.L.; Feng, J.X.; Jiang, X.; Zheng, D.; Gao, X.L.; Gao, X.B.; Que, W.B.; et al. Non-3d Metal Modulation of a 2D Ni-Co Heterostructure Array as Multifunctional Electrocatalyst for Portable Overall Water Splitting. Small 2020, 16, 1906775. [Google Scholar] [CrossRef]
- Guo, Y.Y.; Yuan, P.F.; Zhang, J.N.; Hu, Y.F.; Amiinu, I.S.; Wang, X.; Zhou, J.G.; Xia, H.C.; Song, Z.B.; Xu, Q.; et al. Carbon Nanosheets Containing Discrete Co-Nx-By-C Active Sites for Efficient Oxygen Electrocatalysis and Rechargeable Zn-Air Batteries. ACS Nano 2018, 12, 1894–1901. [Google Scholar] [CrossRef]
- Han, X.P.; Ling, X.F.; Yu, D.S.; Xie, D.Y.; Li, L.L.; Peng, S.J.; Zhong, C.; Zhao, N.Q.; Deng, Y.D.; Hu, W.B. Atomically Dispersed Binary Co-Ni Sites in Nitrogen-Doped Hollow Carbon Nanocubes for Reversible Oxygen Reduction and Evolution. Adv. Mater. 2019, 31, 1905622. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Tsega, T.T.; Liu, X.; Zai, J.T.; Li, X.H.; Liu, X.J.; Li, W.H.; Ali, N.; Qian, X.F. Utilizing the Space-Charge Region of the FeNi-LDH/CoP p-n Junction to Promote Performance in Oxygen Evolution Electrocatalysis. Angew. Chem. Int. Ed. 2019, 58, 11903–11909. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Liu, X.; Xie, Y.; Sun, F.F.; Liang, Z.J.; Wang, L.; Fu, H.G. N-Doped Carbon Coating Enhances the Bifunctional Oxygen Reaction Activity of CoFe Nanoparticles for a Highly Stable Zn–Air Battery. J. Mater. Chem. A 2020, 8, 21189–21198. [Google Scholar] [CrossRef]
- Ratso, S.; Walke, P.R.; Mikli, V.; Ločs, J.; Šmits, K.; Vītola, V.; Šutka, A.; Kruusenberg, I. CO2 Turned into a Nitrogen Doped Carbon Catalyst for Fuel Cells and Metal–Air Battery Applications. Green Chem. 2021, 23, 4435–4445. [Google Scholar] [CrossRef]
- Remmel, A.L.; Ratso, S.; Divitini, G.; Danilson, M.; Mikli, V.; Uibu, M.; Aruväli, J.; Kruusenberg, I. Nickel and Nitrogen-Doped Bifunctional ORR and HER Electrocatalysts Derived from CO2. ACS Sustain. Chem. Eng. 2021, 10, 134–145. [Google Scholar] [CrossRef]
- Lacarbonara, G.; Chini, S.; Ratso, S.; Kruusenberg, I.; Arbizzani, C.A. MnOx–graphitic Carbon Composite from CO2 for Sustainable Li-ion Battery Anodes. Mater. Adv. 2022, 3, 7087–7097. [Google Scholar] [CrossRef]
- Pei, Z.X.; Yuan, Z.W.; Wang, C.J.; Zhao, S.L.; Fei, J.Y.; Wei, L.; Chen, J.S.; Wang, C.; Qi, R.J.; Liu, Z.W.; et al. A Flexible Rechargeable Zinc-Air Battery with Excellent Low-Temperature Adaptability. Angew. Chem. Int. Ed. 2020, 59, 12. [Google Scholar] [CrossRef]
- Pan, Z.H.; Chen, H.; Yang, J.; Ma, Y.Y.; Zhang, Q.C.; Kou, Z.K.; Ding, X.Y.; Pang, Y.J.; Zhang, L.; Gu, Q.L.; et al. CuCo2S4 Nanosheets@N-Doped Carbon Nanofibers by Sulfurization at Room Temperature as Bifunctional Electrocatalysts in Flexible Quasi-Solid-State Zn-Air Batteries. Adv. Sci. 2019, 6, 1900628. [Google Scholar] [CrossRef] [Green Version]
- Ji, D.X.; Sun, J.G.; Tian, L.D.; Chinnappan, A.; Zhang, T.R.; Jayathilaka, W.A.D.M.; Gosh, R.; Baskar, C.; Zhang, Q.Y.; Ramakrishna, S. Engineering of the Heterointerface of Porous Carbon Nanofiber–Supported Nickel and Manganese Oxide Nanoparticle for Highly Efficient Bifunctional Oxygen Catalysis. Adv. Funct. Mater. 2020, 30, 1910568. [Google Scholar] [CrossRef]
- Tang, C.; Wang, H.F.; Zhang, Q. Multiscale Principles to Boost Reactivity in Gas-Involving Energy Electrocatalysis. Acc. Chem Res. 2018, 51, 881–889. [Google Scholar] [CrossRef]
- Yu, J.; Li, B.Q.; Zhao, C.X.; Liu, J.N.; Zhang, Q. Asymmetric Air Cathode Design for Enhanced Interfacial Electrocatalytic Reactions in High-Performance Zinc-Air Batteries. Adv. Mater. 2020, 32, 1908488. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.F.; Chen, Y.; Wang, S.; Gao, S.; Lou, X.W.D. Interfacing Manganese Oxide and Cobalt in Porous Graphitic Carbon Polyhedrons Boosts Oxygen Electrocatalysis for Zn-Air Batteries. Adv. Mater. 2019, 31, 1902339. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.W.; Sun, Y.H.; Du, X.C.; Zhang, Y.D.; Wu, C.Y.; Yan, C.Y.; Yan, Y.C.; Zou, G.F.; Wu, W.Q.; Lu, R.F.; et al. Cytomembrane Structure-Inspired Active Ni-N-O Interface for Enhanced Oxygen Evolution Reaction. Adv. Mater. 2018, 30, 1803367. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Li, Y.X.; Lv, F.; Lu, M.; Sun, K.; Wang, W.; Wang, L.; Cheng, F.Y.; Li, Y.F.; Xi, P.X.; et al. Oxygen Vacancies Dominated NiS2/CoS2 Interface Porous Nanowires for Portable Zn-Air Batteries Driven Water Splitting Devices. Adv. Mater. 2017, 29, 1704681. [Google Scholar] [CrossRef]
- Yin, J.; Li, Y.X.; Lv, F.; Fan, Q.H.; Zhao, Y.Q.; Zhang, Q.L.; Wang, W.; Cheng, F.Y.; Xi, P.X.; Guo, S.J. NiO/CoN Porous Nanowires as Efficient Bifunctional Catalysts for Zn-Air Batteries. ACS Nano 2017, 11, 2275–2283. [Google Scholar] [CrossRef]
- Gilroy, K.D.; Ruditskiy, A.; Peng, H.C.; Qin, D.; Xia, Y. Bimetallic Nanocrystals: Syntheses, Properties, and Applications. Chem. Rev. 2016, 116, 10414–10472. [Google Scholar] [CrossRef]
- Jia, Y.; Zhang, L.Z.; Gao, G.P.; Chen, H.; Wang, B.; Zhou, J.Z.; Soo, M.T.; Hong, M.; Yan, X.C.; Qian, G.R.; et al. A Heterostructure Coupling of Exfoliated Ni-Fe Hydroxide Nanosheet and Defective Graphene as a Bifunctional Electrocatalyst for Overall Water Splitting. Adv. Mater. 2017, 29, 17. [Google Scholar] [CrossRef]
- An, L.; Zhang, Z.Y.; Feng, J.R.; Lv, F.; Li, Y.X.; Wang, R.; Lu, M.; Gupta, R.B.; Xi, P.X.; Zhang, S. Heterostructure-Promoted Oxygen Electrocatalysis Enables Rechargeable Zinc-Air Battery with Neutral Aqueous Electrolyte. J. Am. Chem. Soc. 2018, 140, 17624–17631. [Google Scholar] [CrossRef]
- Qiao, B.T.; Wang, A.Q.; Yang, X.F.; Allard, L.F.; Jiang, Z.; Cui, Y.T.; Liu, J.Y.; Li, J.; Zhang, T. Single-Atom Catalysis of CO Oxidation Using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641. [Google Scholar] [CrossRef]
- Ji, D.X.; Fan, L.; Li, L.L.; Peng, S.J.; Yu, D.S.; Song, J.N.; Ramakrishna, S.; Guo, S.J. Atomically Transition Metals on Self-Supported Porous Carbon Flake Arrays as Binder-Free Air Cathode for Wearable Zinc-Air Batteries. Adv. Mater. 2019, 31, 1808267. [Google Scholar] [CrossRef]
- Qiu, H.J.; Du, P.; Hu, K.L.; Gao, J.J.; Li, H.L.; Liu, P.; Ina, T.; Ohara, K.; Ito, Y.; Chen, M.W. Metal and Nonmetal Codoped 3D Nanoporous Graphene for Efficient Bifunctional Electrocatalysis and Rechargeable Zn-Air Batteries. Adv. Mater. 2019, 31, 1900843. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.T.; Pan, Z.H.; Wang, X.S.; Yang, J.; Qiu, Y.C.; Xu, S.Y.; Lu, Y.T.; Huang, Q.M.; Li, W.S. Hierarchical Co3O4 Nano-Micro Arrays Featuring Superior Activity as Cathode in a Flexible and Rechargeable Zinc-Air Battery. Adv Sci. 2019, 6, 1802243. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.Y.; Nam, G.; Jin, Y.; Wang, X.Y.; Ren, P.J.; Kim, M.G.; Liang, J.S.; Wen, X.D.; Jang, H.; Han, J.T.; et al. NiFe(Oxy) Hydroxides Derived from NiFe Disulfides as an Efficient Oxygen Evolution Catalyst for Rechargeable Zn-Air Batteries: The Effect of Surface S Residues. Adv. Mater. 2018, 30, 1800757. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.W.; Xu, W.S.; Tian, W.W.; Wang, H.Y.; Yuan, Z.Y. Activity Promotion of Core and Shell in Multifunctional Core–Shell Co2P@NC Electrocatalyst by. Secondary Metal Doping for Water Electrolysis and Zn-Air Batteries. Small 2021, 17, 2101856. [Google Scholar] [CrossRef]
- Liu, S.S.; Wang, M.F.; Sun, X.Y.; Xu, N.; Liu, J.; Wang, Y.Z.; Qian, T.; Yan, C.L. Facilitated Oxygen Chemisorption in Heteroatom-Doped Carbon for Improved Oxygen Reaction Activity in All-Solid -State Zinc-Air Batteries. Adv. Mater. 2018, 30, 1704898. [Google Scholar] [CrossRef]
- Wang, Y.H.; Le, J.B.; Li, W.Q.; Wei, J.; Radjenovic, P.M.; Zhang, H.; Zhou, X.S.; Cheng, J.; Tian, Z.Q.; Li, J.F. In Situ Spectroscopic Insight into the Origin of the Enhanced Performance of Bimetallic Nanocatalysts Towards the Oxygen Reduction Reaction (ORR). Angew. Chem. Int. Ed. 2019, 58, 16062–16066. [Google Scholar] [CrossRef]
- Burke, M.S.; Kast, M.G.; Trotochaud, L.; Smith, A.M.; Boettcher, S.W. Cobalt-iron(oxy) Hydroxide Oxygen Evolution Electrocatalysts: The Role of Structure and Composition on Activity, Stability, and Mechanism. J. Am. Chem. Soc. 2015, 137, 3638–3648. [Google Scholar] [CrossRef] [Green Version]
- Deb, A.; Bergmann, U.; Cramer, S.P.; Cairns, E.J. In Situ X-ray Absorption Spectroscopic Study of the Li [Ni1/3Co1/3Mn1/3] O2 Cathode Material. J. Appl. Phys. 2005, 97, 113523. [Google Scholar] [CrossRef]
- Jia, Q.Y.; Ramaswamy, N.; Hafiz, H.; Tylus, U.; Strickland, K.; Wu, G.; Barbiellini, B.; Bansil, A.; Holby, E.F.; Zelenay, P.; et al. Experimental Observation of Redox-Induced Fe-N Switching Behavior as a Determinant Role for Oxygen Reduction Activity. ACS Nano 2015, 9, 12496–12505. [Google Scholar] [CrossRef]
- Shi, X.D.; Pu, Z.H.; Chi, B.; Liu, M.R.; Yu, S.Y.; Zheng, L.; Yang, L.J.; Shu, T.; Liao, S.J. Nitrogen and atomic Fe Dual-Doped Porous Carbon Nanocubes as Superior Electrocatalysts for Acidic H2-O2 PEMFC and Alkaline Zn-Air Battery. J. Energy Chem. 2021, 59, 388–395. [Google Scholar] [CrossRef]
- Seo, B.; Sa, Y.J.; Woo, J.; Kwon, K.; Park, J.; Shin, T.J.; Jeong, H.Y.; Joo, S.H. Size-Dependent Activity Trends Combined with in Situ X-ray Absorption Spectroscopy Reveal Insights into Cobalt Oxide/Carbon Nanotube-Catalyzed Bifunctional Oxygen Electrocatalysis. ACS Catal. 2016, 6, 4347–4355. [Google Scholar] [CrossRef]
- Yu, P.; Wang, L.; Sun, F.F.; Xie, Y.; Liu, X.; Ma, J.Y.; Wang, X.W.; Tian, C.G.; Li, J.H.; Fu, H.G. Co Nanoislands Rooted on Co-N-C Nanosheets as Efficient Oxygen Electrocatalyst for Zn-Air Batteries. Adv. Mater. 2019, 31, 1901666. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, L.; Yu, P.; Tian, C.G.; Sun, F.F.; Ma, J.Y.; Li, W.; Fu, H.G. A Stable Bifunctional Catalyst for Rechargeable Zinc-Air Batteries: Iron-Cobalt Nanoparticles Embedded in a Nitrogen-Doped 3D Carbon Matrix. Angew. Chem. Int. Ed. 2018, 57, 16166–16170. [Google Scholar] [CrossRef]
- Deng, Y.P.; Jiang, Y.; Liang, R.L.; Zhang, S.J.; Luo, D.; Hu, Y.F.; Wang, X.; Li, J.T.; Yu, A.P.; Chen, Z.W. Dynamic Electrocatalyst with Current-Driven Oxyhydroxide Shell for Rechargeable Zinc-Air Battery. Nat. Commun. 2020, 11, 1952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nam, G.; Son, Y.; Park, S.O.; Jeon, W.C.; Jang, H.; Park, J.; Chae, S.; Yoo, Y.; Ryu, J.; Kim, M.G.; et al. A Ternary Ni46Co40Fe14 Nanoalloy-Based Oxygen Electrocatalyst for Highly Efficient Rechargeable Zinc-Air Batteries. Adv. Mater. 2018, 30, 1803372. [Google Scholar] [CrossRef] [PubMed]
- Bates, M.K.; Jia, Q.Y.; Doan, H.; Liang, W.T.; Mukerjee, S. Charge-Transfer Effects in Ni–Fe and Ni–Fe–Co Mixed-Metal Oxides for the Alkaline Oxygen Evolution Reaction. ACS Catal. 2015, 6, 155–161. [Google Scholar] [CrossRef]
- Friebel, D.; Louie, M.W.; Bajdich, M.; Sanwald, K.E.; Cai, Y.; Wise, A.M.; Cheng, M.J.; Sokaras, D.; Weng, T.C.; Alonso-Mori, R.; et al. Identification of Highly Active Fe Sites in (Ni,Fe) OOH for Electrocatalytic Water Splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Banjac, K.; Lingenfelder, M.; Hu, X. Oxygen Isotope Labeling Experiments Reveal Different Reaction Sites for the Oxygen Evolution Reaction on Nickel and Nickel Iron Oxides. Angew. Chem. Int. Ed. 2019, 131, 10401–10405. [Google Scholar] [CrossRef]
- Lee, S.; Bai, L.; Hu, X.L. Deciphering Iron-Dependent Activity in Oxygen Evolution Catalyzed by Nickel-Iron Layered Double Hydroxide. Angew. Chem. Int. Ed. 2020, 59, 8072–8077. [Google Scholar] [CrossRef]
- Lee, D.U.; Fu, J.; Park, M.G.; Liu, H.; Ghorbani Kashkooli, A.; Chen, Z.W. Self-Assembled NiO/Ni(OH)2 Nanoflakes as Active Material for High-Power and High-Energy Hybrid Rechargeable Battery. Nano Lett. 2016, 16, 1794–1802. [Google Scholar] [CrossRef]
- Ma, L.T.; Chen, S.M.; Pei, Z.X.; Li, H.F.; Wang, Z.F.; Liu, Z.X.; Tang, Z.J.; Zapien, J.A.; Zhi, C.Y. Flexible Waterproof Rechargeable Hybrid Zinc Batteries Initiated by Multifunctional Oxygen Vacancies- Rich Cobalt Oxide. ACS Nano 2018, 12, 8597–8605. [Google Scholar] [CrossRef] [PubMed]
- Qaseem, A.; Chen, F.Y.; Qiu, C.Z.; Mahmoudi, A.; Wu, X.Q.; Wang, X.L.; Johnston, R.L. Reduced Graphene Oxide decorated with Manganese Cobalt Oxide as Multifunctional Material for Mechanically Rechargeable and Hybrid Zinc-Air Batteries. Part. Part. Syst. Charact. 2017, 34, 1700097. [Google Scholar] [CrossRef]
- Li, B.; Quan, J.Y.; Loh, A.; Chai, J.W.; Chen, Y.; Tan, C.L.; Ge, X.M.; Hor, T.S.A.; Liu, Z.L.; Zhang, H.; et al. A Robust Hybrid Zn-Battery with Ultralong Cycle Life. Nano Lett. 2017, 17, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.Q.; Abbas, S.C.; Huang, Y.Y.; Liu, Q.; Wu, M.X.; Wang, Y.B.; Dai, L.M. A photo-Responsive Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions. Nano Energy. 2018, 43, 130. [Google Scholar] [CrossRef]
- Liu, S.Z.; Han, W.; Cui, B.C.; Liu, X.J.; Sun, H.P.; Zhang, J.H.; Lefler, M.; Licht, S. Rechargeable Zinc Air Batteries and Highly Improve Performance through Potassium Hydroxide Addition to the Molten Carbonate Eutectic Electrolyte. J. Electrochem. Soc. 2018, 165, A149–A154. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.Y.; Zhu, J.W.; Zhu, S.J.; Lu, L.J.; Zhu, P.; Zhao, X.S.; Liu, S. Peach Gum-Derived S,N Co-Doped Nanoporous Carbon Coupled with Layered Double (Ni, Fe) Hydroxide for Efficient Bifunctional Oxygen Electrocatalysis in Zn-Air Batteries. ChemNanoMat 2022, 8, e202200242. [Google Scholar] [CrossRef]
- Yan, L.; Xu, Z.; Liu, X.; Mahmood, S.; Shen, J.; Ning, J.; Li, S.; Zhong, Y.; Hu, Y. Integrating Trifunctional Co@NC- CNTs@NiFe-LDH Electrocatalysts with Arrays of Porous Triangle Carbon Plates for High-Power-Density Rechargeable Zn-air Batteries and Self-powered Water Splitting. Chem. Eng. J. 2022, 446, 137049. [Google Scholar] [CrossRef]
- Wan, L.; Xu, Z.; Cao, Q.; Liao, Y.; Wang, B.; Liu, K. Nanoemulsion-Coated Ni-Fe Hydroxide Self-Supported Electrode as an Air-Breathing Cathode for High-Performance Zinc-Air Batteries. Nano Lett. 2022, 22, 4535–4543. [Google Scholar] [CrossRef]
- Seo, H.M.; Park, M.G.; Lee, D.U.; Wang, X.L.; Ahn, W.; Noh, S.H.; Choi, S.M.; Cano, Z.P.; Han, B.; Chen, Z.B. Bifunctionally Active and Durable Hierarchically Porous Transition Metal-based Hybrid Electrocatalyst for sodium-ion storage and hydrogen evolution. Appl. Catal. B Environ. 2018, 239, 677–687. [Google Scholar] [CrossRef]
- Wu, M.J.; Zhang, G.X.; Chen, N.; Chen, W.F.; Qiao, J.L.; Sun, S.H. A Self-supported Electrode as a High-performance Binder-and Carbon-free Cathode for Rechargeable Hybrid Zinc Batteries. Energy Storage Mater. 2020, 24, 272–280. [Google Scholar] [CrossRef]
- Zhong, Y.J.; Xu, X.M.; Liu, P.Y.; Ran, R.; Jiang, S.P.; Wu, H.W.; Shao, Z.P.A. Function-Separated Design of Electrode for Realizing High-Performance Hybrid Zinc Battery. Adv. Energy Mater. 2020, 10, 2002992. [Google Scholar] [CrossRef]
- Wang, X.X.; Xu, X.X.; Chen, J.; Wang, Q. Combination of Zn-NiCo2S4 and Zn-Air Batteries at the Cell Level: A Hybrid Battery Makes the Best of Both Worlds. ACS Sustain Chem. Eng. 2019, 7, 12331–12339. [Google Scholar] [CrossRef]
- Tan, P.; Chen, B.; Xu, H.R.; Cai, W.Z.; He, W.; Liu, M.L.; Shao, Z.P.; Ni, M. Co3O4 Nanosheets as Active Material for Hybrid Zn Batteries. Small 2018, 14, 1800225. [Google Scholar] [CrossRef] [PubMed]
- Tan, P.; Chen, B.; Xu, H.R.; Cai, W.Z.; He, W.; Ni, M. In-situ Growth of Co3O4 Nanowire-Assembled Clusters on Nickel Foam for Aqueous Rechargeable Zn-Co3O4 and Zn-Air Batteries. Appl. Catal. B Environ. 2019, 241, 104–112. [Google Scholar] [CrossRef]
- Xu, D.D.; Wu, S.J.; Xu, X.X.; Wang, Q. Hybrid Zn Battery with Coordination-Polymer-Derived, Oxygen -Vacancy-Rich Co3O4 as a Cathode Material. ACS Sustain. Chem. Eng. 2020, 8, 4384–4391. [Google Scholar] [CrossRef]
- Liu, N.; Hu, H.; Xu, X.X.; Wang, Q. Hybrid Battery Integrated by Zn-Air and Zn-Co3O4 Batteries at Cell Level. J. Energy Chem. 2020, 49, 375–383. [Google Scholar] [CrossRef]
Catalysts | Current Density (mA·cm−2) | Final Charge/Discharge Voltage Gap (V) | Cycling Time (h) | Round-Trip Efficiency (%) | η (mV) at 10 mA cm−2 | Tafel Slope (mV dec−1) | References |
---|---|---|---|---|---|---|---|
NiO/Ni(OH)2 spheres | 1 | ≈0.60 | <88 | — | — | — | [140] |
Co3O4−x | 5 | ≈0.75 | 440 | — | 330 | 58 | [141] |
MnCo2O4/NGr | 1 | ≈0.66 | 75 | 86% | — | — | [142] |
NiCo2O4/NiF@C | 5 | 1.0 | 2600 | — | — | — | [143] |
NS@Co3−xNixO4/Co3O4 | 20 | 0.904 | 90 | 60.4% | 310 | — | [150] |
MnS-NixCo1−xS2 | 5 | 0.67 | 200 | 69% | 687 | — | [151] |
NiCo2S4/3DNCC | 1 | 0.75 | 400 | — | 338 | 79 | [152] |
Co3O4/carbon cloth | 1 | 0.83 | 100 | 70% | — | 88.3 | [153] |
Co3O4/Ni foam | 10 | 1.25 | 333 | 70% | — | — | [154] |
O-Co3O4/MCN | 1 | =1.0 | 300 | — | 347 | 79.4 | [155] |
O-Co3O4@MCN | 1 | 0.84 | 300 | — | 330 | 107.7 | [156] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, H.; Cong, S.; Wang, L.; Wang, C. Research Progress of Bifunctional Oxygen Reactive Electrocatalysts for Zinc–Air Batteries. Nanomaterials 2022, 12, 3834. https://doi.org/10.3390/nano12213834
Chang H, Cong S, Wang L, Wang C. Research Progress of Bifunctional Oxygen Reactive Electrocatalysts for Zinc–Air Batteries. Nanomaterials. 2022; 12(21):3834. https://doi.org/10.3390/nano12213834
Chicago/Turabian StyleChang, Haiyang, Shanshan Cong, Lei Wang, and Cheng Wang. 2022. "Research Progress of Bifunctional Oxygen Reactive Electrocatalysts for Zinc–Air Batteries" Nanomaterials 12, no. 21: 3834. https://doi.org/10.3390/nano12213834
APA StyleChang, H., Cong, S., Wang, L., & Wang, C. (2022). Research Progress of Bifunctional Oxygen Reactive Electrocatalysts for Zinc–Air Batteries. Nanomaterials, 12(21), 3834. https://doi.org/10.3390/nano12213834