High-Power Quantum Cascade Lasers Emitting at 8 μm: Technology and Analysis
Abstract
:1. Introduction
2. Theoretical Estimation and Methods
3. Experimental Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kazarinov, R.F.; Suris, R.A. Possibility of amplification of electromagnetic waves in a semiconductor with superlattice. Sov. Phys. Semicond. 1971, 5, 707–709. [Google Scholar]
- Jumpertz, L.; Schires, K.; Carras, M.; Sciamanna, M.; Grillot, F. Chaotic light at mid-infrared wavelength. Light Sci. Appl. 2016, 5, e16088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Botez, D.; Kirch, J.D.; Boyle, C.; Oresick, K.M.; Sigler, C.; Kim, H.; Knipfer, B.B.; Ryu, J.H.; Lindberg, D.; Earles, T.; et al. High-efficiency, high-power mid-infrared quantum cascade lasers. Opt. Mater. Express 2018, 8, 1378–1398. [Google Scholar] [CrossRef]
- Figueiredo, P.; Suttinger, M.; Go, R.; Tsvid, E.; Patel, C.K.N.; Lyakh, A. Progress in high-power continuous-wave quantum cascade lasers. Appl. Opt. 2017, 56, H15–H23. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Lu, Q.Y.; Wu, D.H.; Slivken, S.; Razeghi, M. High-power, continuous-wave, phase-locked quantum cascade laser arrays emitting at 8 μm. Opt. Express 2019, 27, 15776–15785. [Google Scholar] [CrossRef] [PubMed]
- Lavery, M.P.J.; Peuntinger, C.; Günthner, K.; Banzer, P.; Elser, D.; Boyd, R.W.; Padgett, M.J.; Marquardt, C.; Leuchs, G. Free-space propagation of high-dimensional structured optical fields in an urban environment. Sci. Adv. 2017, 3, e1700552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierścińska, D. Thermoreflectance spectroscopy–Analysis of thermal processes in semiconductor lasers. J. Phys. D Appl. Phys. 2017, 51, 013001. [Google Scholar] [CrossRef]
- Wang, S.; Xu, C.; Duan, F.; Wen, B.; Rassel, S.M.S.; Tam, M.C.; Wasilewski, Z.; Wei, L.; Ban, D. Thermal dynamic imaging of mid-infrared quantum cascade lasers with high temporal-spatial resolution. J. Appl. Phys. 2022, 128, 083106. [Google Scholar] [CrossRef]
- Lee, H.K.; Chung, K.S.; Yu, J.S.; Razeghi, M. Thermal analysis of buried heterostructure quantum cascade lasers for long-wavelength infrared emission using 2D anisotropic heat-dissipation model. Phys. Status Solidi (A) 2009, 206, 356–362. [Google Scholar] [CrossRef]
- Wang, F.; Slivken, S.; Wu, D.H.; Lu, Q.Y.; Razeghi, M. Continuous wave quantum cascade lasers with 5.6 W output power at room temperature and 41% wall-plug efficiency in cryogenic operation. AIP Adv. 2020, 10, 055120. [Google Scholar] [CrossRef]
- Babichev, A.V.; Gladyshev, A.G.; Filimonov, A.V.; Nevedomskii, V.N.; Kurochkin, A.S.; Kolodeznyi, E.S.; Sokolovskii, G.S.; Bugrov, V.E.; Karachinsky, L.Y.; Novikov, I.I.; et al. Heterostructures for quantum-cascade lasers of the wavelength range of 7–8 μm. Tech. Phys. Lett. 2017, 43, 666–669. [Google Scholar] [CrossRef]
- Dudelev, V.V.; Losev, S.N.; Mylnikov, V.Y.; Babichev, A.V.; Kognovitskaya, E.A.; Slipchenko, S.O.; Lutetskii, A.V.; Pikhtin, N.A.; Gladyshev, A.G.; Karachinskii, L.Y.; et al. Dual-Frequency Generation in Quantum Cascade Lasers of the 8 μm Spectral Range. Opt. Spectrosc. 2018, 125, 402–404. [Google Scholar] [CrossRef]
- Jaffe, G.R.; Mei, S.; Boyle, C.; Kirch, J.D.; Savage, D.E.; Botez, D.; Mawst, L.J.; Knezevic, I.; Lagally, M.G.; Eriksson, M.A. Measurements of the Thermal Resistivity of InAlAs, InGaAs, and InAlAs/InGaAs Superlattices. ACS Appl. Mater. Interfaces 2019, 11, 11970–11975. [Google Scholar] [CrossRef] [PubMed]
- Dudelev, V.V.; Mikhailov, D.A.; Babichev, A.V.; Mylnikov, V.Y.; Gladyshev, A.G.; Losev, S.N.; Novikov, I.I.; Lyutetskiy, A.V.; Slipchenko, S.O.; Pikhtin, N.A.; et al. The Technique for QCLs Heating Dynamics Measurements. In Proceedings of the 2020 International Conference Laser Optics (ICLO), St. Petersburg, Russia, 2–6 November 2020; p. 1. [Google Scholar] [CrossRef]
- Kirch, J.D.; Chang, C.C.; Boyle, C.; Mawst, L.J.; Lindberg, D.; Earles, T.; Botez, D. Highly temperature insensitive, low threshold-current density (λ = 8.7–8.8 μm) quantum cascade lasers. Appl. Phys. Lett. 2015, 106, 151106. [Google Scholar] [CrossRef]
- Yu, J.S.; Slivken, S.; Evans, A.; David, J.; Razeghi, M. Very high average power at room temperature from λ≈5.9 μm quantum-cascade lasers. Appl. Phys. Lett. 2003, 82, 3397–3399. [Google Scholar] [CrossRef]
- Beck, M.; Hofstetter, D.; Aellen, T.; Faist, J.; Oesterle, U.; Ilegems, M.; Gini, E.; Melchior, H. Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature. Science 2002, 295, 301–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gmachl, C.; Sergent, A.; Tredicucci, A.; Capasso, F.; Hutchinson, A.; Sivco, D.; Baillargeon, J.; Chu, S.; Cho, A. Improved CW operation of quantum cascade lasers with epitaxial-side heat-sinking. IEEE Photonics Technol. Lett. 1999, 11, 1369–1371. [Google Scholar] [CrossRef]
Composition | Thickness, nm | Doping, cm | |
---|---|---|---|
Type A | |||
Contact Layer | InP | 20 | 1 × 10 |
Upper Cladding | InP | 4000 | 1 × 10 |
Type B | |||
Contact Layer | InGaAs | 20 | 1 × 10 |
Upper Cladding (2) | InP | 2000 | gradient 1 × 10–1 × 10 |
Upper Cladding (1) | InP | 2000 | 1 × 10 |
Type C | |||
Contact Layer | InGaAs | 20 | 1 × 10 |
Upper Cladding | InP | 4000 | 1 × 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cherotchenko, E.; Dudelev, V.; Mikhailov, D.; Savchenko, G.; Chistyakov, D.; Losev, S.; Babichev, A.; Gladyshev, A.; Novikov, I.; Lutetskiy, A.; et al. High-Power Quantum Cascade Lasers Emitting at 8 μm: Technology and Analysis. Nanomaterials 2022, 12, 3971. https://doi.org/10.3390/nano12223971
Cherotchenko E, Dudelev V, Mikhailov D, Savchenko G, Chistyakov D, Losev S, Babichev A, Gladyshev A, Novikov I, Lutetskiy A, et al. High-Power Quantum Cascade Lasers Emitting at 8 μm: Technology and Analysis. Nanomaterials. 2022; 12(22):3971. https://doi.org/10.3390/nano12223971
Chicago/Turabian StyleCherotchenko, Evgeniia, Vladislav Dudelev, Dmitry Mikhailov, Grigorii Savchenko, Dmitriy Chistyakov, Sergey Losev, Andrey Babichev, Andrey Gladyshev, Innokentiy Novikov, Andrey Lutetskiy, and et al. 2022. "High-Power Quantum Cascade Lasers Emitting at 8 μm: Technology and Analysis" Nanomaterials 12, no. 22: 3971. https://doi.org/10.3390/nano12223971
APA StyleCherotchenko, E., Dudelev, V., Mikhailov, D., Savchenko, G., Chistyakov, D., Losev, S., Babichev, A., Gladyshev, A., Novikov, I., Lutetskiy, A., Veselov, D., Slipchenko, S., Denisov, D., Andreev, A., Yarotskaya, I., Podgaetskiy, K., Ladugin, M., Marmalyuk, A., Pikhtin, N., ... Sokolovskii, G. (2022). High-Power Quantum Cascade Lasers Emitting at 8 μm: Technology and Analysis. Nanomaterials, 12(22), 3971. https://doi.org/10.3390/nano12223971