Totally Spin-Polarized Currents in an Interferometer with Spin–Orbit Coupling and the Absence of Magnetic Field Effects
Abstract
1. Introduction
2. Interferometer Design and Model Description
3. Current and Conductance Calculation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SOC | Spin–Orbit Coupling |
QPC | Quantum Point Contact |
CISS | Chiral-Induced Spin Selective |
1DLSOC | One-Dimensional Lead with Spin–Orbit Coupling |
References
- Wolf, S.A.; Awschalom, D.D.; Buhrman, R.A.; Daughton, J.M.; von Molnár, S.; Roukes, M.L.; Chtchelkanova, A.Y.; Treger, D.M. Spintronics: A Spin-Based Electronics Vision for the Future. Science 2001, 294, 1488–1495. [Google Scholar] [CrossRef] [PubMed]
- Žutić, I.; Fabian, J.; Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 2004, 76, 323–410. [Google Scholar] [CrossRef]
- Chappert, C.; Fert, A.; Van Dau, F.N. The emergence of spin electronics in data storage. Nat. Mater. 2007, 6, 813–823. [Google Scholar] [CrossRef]
- Hirohata, A.; Takanashi, K. Future perspectives for spintronic devices. J. Phys. D Appl. Phys. 2014, 47, 193001. [Google Scholar] [CrossRef]
- Žutić, I.; Matos-Abiague, A.; Scharf, B.; Dery, H.; Belashchenko, K. Proximitized materials. Mater. Today 2019, 22, 85–107. [Google Scholar] [CrossRef]
- Burkard, G.; Loss, D.; DiVincenzo, D.P. Coupled quantum dots as quantum gates. Phys. Rev. B 1999, 59, 2070–2078. [Google Scholar] [CrossRef]
- Chiappe, G.; Anda, E.V.; Costa Ribeiro, L.; Louis, E. Kondo regimes in a three-dots quantum gate. Phys. Rev. B 2010, 81, 041310. [Google Scholar] [CrossRef]
- Ladd, T.D.; Jelezko, F.; Laflamme, R.; Nakamura, Y.; Monroe, C.; O’Brien, J.L. Quantum computers. Nature 2010, 464, 45–53. [Google Scholar] [CrossRef]
- Manchon, A.; Koo, H.C.; Nitta, J.; Frolov, S.M.; Duine, R.A. New perspectives for Rashba spin–orbit coupling. Nat. Mater. 2015, 14, 871–882. [Google Scholar] [CrossRef]
- Datta, S.; Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 1990, 56, 665–667. [Google Scholar] [CrossRef]
- Schliemann, J.; Egues, J.C.; Loss, D. Nonballistic Spin-Field-Effect Transistor. Phys. Rev. Lett. 2003, 90, 146801. [Google Scholar] [CrossRef]
- Cartoixà, X.; Ting, D.Z.Y.; Chang, Y.C. A resonant spin lifetime transistor. Appl. Phys. Lett. 2003, 83, 1462–1464. [Google Scholar] [CrossRef]
- Kunihashi, Y.; Kohda, M.; Sanada, H.; Gotoh, H.; Sogawa, T.; Nitta, J. Proposal of spin complementary field effect transistor. Appl. Phys. Lett. 2012, 100, 113502. [Google Scholar] [CrossRef]
- Kohda, M.; Salis, G. Physics and application of persistent spin helix state in semiconductor heterostructures. Semicond. Sci. Technol. 2017, 32, 073002. [Google Scholar] [CrossRef]
- Bernevig, B.A.; Orenstein, J.; Zhang, S.C. Exact SU(2) Symmetry and Persistent Spin Helix in a Spin-Orbit Coupled System. Phys. Rev. Lett. 2006, 97, 236601. [Google Scholar] [CrossRef]
- Bardarson, J.H. A proof of the Kramers degeneracy of transmission eigenvalues from antisymmetry of the scattering matrix. J. Phys. A Math. Theor. 2008, 41, 405203. [Google Scholar] [CrossRef]
- Aronov, A.G.; Lyanda-Geller, Y.B. Spin-orbit Berry phase in conducting rings. Phys. Rev. Lett. 1993, 70, 343–346. [Google Scholar] [CrossRef]
- Larsen, M.H.; Lunde, A.M.; Flensberg, K. Conductance of Rashba spin-split systems with ferromagnetic contacts. Phys. Rev. B 2002, 66, 033304. [Google Scholar] [CrossRef]
- Sugahara, S.; Tanaka, M. A spin metal–oxide–semiconductor field-effect transistor using half-metallic-ferromagnet contacts for the source and drain. Appl. Phys. Lett. 2004, 84, 2307–2309. [Google Scholar] [CrossRef]
- Aharony, A.; Tokura, Y.; Cohen, G.Z.; Entin-Wohlman, O.; Katsumoto, S. Filtering and analyzing mobile qubit information via Rashba–Dresselhaus–Aharonov–Bohm interferometers. Phys. Rev. B 2011, 84, 035323. [Google Scholar] [CrossRef]
- Shmakov, P.M.; Dmitriev, A.P.; Kachorovskii, V.Y. High-temperature Aharonov-Bohm-Casher interferometer. Phys. Rev. B 2012, 85, 075422. [Google Scholar] [CrossRef]
- Shmakov, P.M.; Dmitriev, A.P.; Kachorovskii, V.Y. Aharonov-Bohm conductance of a disordered single-channel quantum ring. Phys. Rev. B 2013, 87, 235417. [Google Scholar] [CrossRef]
- Nagasawa, F.; Takagi, J.; Kunihashi, Y.; Kohda, M.; Nitta, J. Experimental Demonstration of Spin Geometric Phase: Radius Dependence of Time-Reversal Aharonov-Casher Oscillations. Phys. Rev. Lett. 2012, 108, 086801. [Google Scholar] [CrossRef] [PubMed]
- Saarikoski, H.; Reynoso, A.A.; Baltanás, J.P.; Frustaglia, D.; Nitta, J. Spin interferometry in anisotropic spin-orbit fields. Phys. Rev. B 2018, 97, 125423. [Google Scholar] [CrossRef]
- Nagasawa, F.; Reynoso, A.A.; Baltanás, J.P.; Frustaglia, D.; Saarikoski, H.; Nitta, J. Gate-controlled anisotropy in Aharonov-Casher spin interference: Signatures of Dresselhaus spin-orbit inversion and spin phases. Phys. Rev. B 2018, 98, 245301. [Google Scholar] [CrossRef]
- Ringer, S.; Rosenauer, M.; Völkl, T.; Kadur, M.; Hopperdietzel, F.; Weiss, D.; Eroms, J. Spin field-effect transistor action via tunable polarization of the spin injection in a Co/MgO/graphene contact. Appl. Phys. Lett. 2018, 113, 132403. [Google Scholar] [CrossRef]
- Lopes, V.; Anda, E.V. Spin polarized current in a quantum dot connected to a spin-orbit interacting Fermi sea. J. Phys. Chem. Solids 2019, 128, 188–195. [Google Scholar] [CrossRef]
- Jonson, M.; Shekhter, R.I.; Entin-Wohlman, O.; Aharony, A.; Park, H.C.; Radić, D. DC spin generation by junctions with AC driven spin-orbit interaction. Phys. Rev. B 2019, 100, 115406. [Google Scholar] [CrossRef]
- Debray, P.; Rahman, S.M.S.; Wan, J.; Newrock, R.S.; Cahay, M.; Ngo, A.T.; Ulloa, S.E.; Herbert, S.T.; Muhammad, M.; Johnson, M. All-electric quantum point contact spin-polarizer. Nat. Nanotechnol. 2009, 4, 759–764. [Google Scholar] [CrossRef]
- Das, P.P.; Cahay, M.; Kalita, S.; Mal, S.S.; Jha, A.K. Width dependence of the 0.5×(2e2/h) conductance plateau in InAs quantum point contacts in presence of lateral spin-orbit coupling. Sci. Rep. 2019, 9, 12172. [Google Scholar] [CrossRef]
- Qin, Z.; Qin, G.; Shao, B.; Zuo, X. Rashba spin splitting and perpendicular magnetic anisotropy of Gd-adsorbed zigzag graphene nanoribbon modulated by edge states under external electric fields. Phys. Rev. B 2020, 101, 014451. [Google Scholar] [CrossRef]
- Chico, L.; Latgé, A.; Brey, L. Symmetries of quantum transport with Rashba spin–orbit: Graphene spintronics. Phys. Chem. Chem. Phys. 2015, 17, 16469–16475. [Google Scholar] [CrossRef]
- Farghadan, R.; Saffarzadeh, A. Generation of fully spin-polarized currents in three-terminal graphene-based transistors. RSC Adv. 2015, 5, 87411–87415. [Google Scholar] [CrossRef][Green Version]
- Santos, H.; Latgé, A.; Brey, L.; Chico, L. Spin-polarized currents in corrugated graphene nanoribbons. Carbon 2020, 168, 1–11. [Google Scholar] [CrossRef]
- Sarkar, K.; Aharony, A.; Entin-Wohlman, O.; Jonson, M.; Shekhter, R.I. Effects of magnetic fields on the Datta-Das spin field-effect transistor. Phys. Rev. B 2020, 102, 115436. [Google Scholar] [CrossRef]
- Ngo, A.T.; Debray, P.; Ulloa, S.E. Lateral spin-orbit interaction and spin polarization in quantum point contacts. Phys. Rev. B 2010, 81, 115328. [Google Scholar] [CrossRef]
- Wan, J.; Cahay, M.; Debray, P.; Newrock, R. Possible origin of the 0.5 plateau in the ballistic conductance of quantum point contacts. Phys. Rev. B 2009, 80, 155440. [Google Scholar] [CrossRef]
- Eto, M.; Hayashi, T.; Kurotani, Y. Spin Polarization at Semiconductor Point Contacts in Absence of Magnetic Field. J. Phys. Soc. Jpn. 2005, 74, 1934–1937. [Google Scholar] [CrossRef][Green Version]
- Liu, Y.; Xiao, J.; Koo, J.; Yan, B. Chirality-driven topological electronic structure of DNA-like materials. Nat. Mater. 2021, 20, 638–644. [Google Scholar] [CrossRef]
- Reynoso, A.; Usaj, G.; Balseiro, C.A. Detection of spin polarized currents in quantum point contacts via transverse electron focusing. Phys. Rev. B 2007, 75, 085321. [Google Scholar] [CrossRef]
- Aharonov, Y.; Bohm, D. Significance of Electromagnetic Potentials in the Quantum Theory. Phys. Rev. 1959, 115, 485–491. [Google Scholar] [CrossRef]
- Nitta, J.; Meijer, F.E.; Takayanagi, H. Spin-interference device. Appl. Phys. Lett. 1999, 75, 695–697. [Google Scholar] [CrossRef]
- Meijer, F.E.; Morpurgo, A.F.; Klapwijk, T.M. One-dimensional ring in the presence of Rashba spin-orbit interaction: Derivation of the correct Hamiltonian. Phys. Rev. B 2002, 66, 033107. [Google Scholar] [CrossRef]
- Splettstoesser, J.; Governale, M.; Zülicke, U. Persistent current in ballistic mesoscopic rings with Rashba spin-orbit coupling. Phys. Rev. B 2003, 68, 165341. [Google Scholar] [CrossRef]
- Sheng, J.S.; Chang, K. Spin states and persistent currents in mesoscopic rings: Spin-orbit interactions. Phys. Rev. B 2006, 74, 235315. [Google Scholar] [CrossRef]
- Sheng, J.S.; Chang, K. Spin states and persistent currents in a quantum ring with an embedded magnetic impurity. J. Phys. Condens. Matter 2007, 20, 025222. [Google Scholar] [CrossRef]
- Berche, B.; Chatelain, C.; Medina, E. Mesoscopic rings with spin-orbit interactions. Eur. J. Phys. 2010, 31, 1267–1286. [Google Scholar] [CrossRef]
- Frustaglia, D.; Nitta, J. Geometric spin phases in Aharonov-Casher interference. Solid State Commun. 2020, 311, 113864. [Google Scholar] [CrossRef]
- Zainagutdinov, A.; Telezhnikov, A.; Maksimova, G. Aharonov-Bohm nanoring with periodically modulated Rashba interaction: Energy spectrum and persistent currents. Phys. Lett. A 2022, 430, 127972. [Google Scholar] [CrossRef]
- Kenmoe, M.B.; Kayanuma, Y. Transmission of a single electron through a Berry ring. Phys. Rev. B 2022, 105, 155117. [Google Scholar] [CrossRef]
- Kozin, V.K.; Iorsh, I.V.; Kibis, O.V.; Shelykh, I.A. Quantum ring with the Rashba spin-orbit interaction in the regime of strong light-matter coupling. Phys. Rev. B 2018, 97, 155434. [Google Scholar] [CrossRef]
- Tong, J.; Luo, F.; Ruan, L.; Qin, G.; Zhou, L.; Tian, F.; Zhang, X. High and reversible spin polarization in a collinear antiferromagnet. Appl. Phys. Rev. 2020, 7, 031405. [Google Scholar] [CrossRef]
- Lopes, V.; Martins, G.B.; Manya, M.A.; Anda, E.V. Kondo effect under the influence of spin–orbit coupling in a quantum wire. J. Phys. Condens. Matter 2020, 32, 435604. [Google Scholar] [CrossRef]
- Okuda, T.; Miyamoto, K.; Takeichi, Y.; Miyahara, H.; Ogawa, M.; Harasawa, A.; Kimura, A.; Matsuda, I.; Kakizaki, A.; Shishidou, T.; et al. Large out-of-plane spin polarization in a spin-splitting one-dimensional metallic surface state on Si(557)-Au. Phys. Rev. B 2010, 82, 161410. [Google Scholar] [CrossRef]
- Park, J.; Jung, S.W.; Jung, M.C.; Yamane, H.; Kosugi, N.; Yeom, H.W. Self-Assembled Nanowires with Giant Rashba Split Bands. Phys. Rev. Lett. 2013, 110, 036801. [Google Scholar] [CrossRef]
- Takayama, A.; Sato, T.; Souma, S.; Oguchi, T.; Takahashi, T. One-Dimensional Edge States with Giant Spin Splitting in a Bismuth Thin Film. Phys. Rev. Lett. 2015, 114, 066402. [Google Scholar] [CrossRef]
- Brand, C.; Pfnür, H.; Landolt, G.; Muff, S.; Dil, J.H.; Das, T.; Tegenkamp, C. Observation of correlated spin–orbit order in a strongly anisotropic quantum wire system. Nat. Commun. 2015, 6, 8118. [Google Scholar] [CrossRef]
- Tanaka, T.; Gohda, Y. First-principles prediction of one-dimensional giant Rashba splittings in Bi-adsorbed In atomic chains. Phys. Rev. B 2018, 98, 241409. [Google Scholar] [CrossRef]
- Kopciuszynski, M.; Stepniak-Dybala, A.; Dachniewicz, M.; Zurawek, L.; Krawiec, M.; Zdyb, R. Hut-shaped lead nanowires with one-dimensional electronic properties. Phys. Rev. B 2020, 102, 125415. [Google Scholar] [CrossRef]
- Mihalyuk, A.N.; Chou, J.P.; Eremeev, S.V.; Zotov, A.V.; Saranin, A.A. One-dimensional Rashba states in Pb atomic chains on a semiconductor surface. Phys. Rev. B 2020, 102, 035442. [Google Scholar] [CrossRef]
- Han, J.; Zhang, A.; Chen, M.; Gao, W.; Jiang, Q. Giant Rashba splitting in one-dimensional atomic tellurium chains. Nanoscale 2020, 12, 10277–10283. [Google Scholar] [CrossRef] [PubMed]
- Żurawek, L.; Kopciuszyński, M.; Dachniewicz, M.; Stróżak, M.; Krawiec, M.; Jałochowski, M.; Zdyb, R. Partially embedded Pb chains on a vicinal Si(113) surface. Phys. Rev. B 2020, 101, 195434. [Google Scholar] [CrossRef]
- Gerstmann, U.; Vollmers, N.J.; Lücke, A.; Babilon, M.; Schmidt, W.G. Rashba splitting and relativistic energy shifts in In/Si(111) nanowires. Phys. Rev. B 2014, 89, 165431. [Google Scholar] [CrossRef]
- Nakamura, T.; Ohtsubo, Y.; Tokumasu, N.; Le Fèvre, P.; Bertran, F.; Ideta, S.I.; Tanaka, K.; Kuroda, K.; Yaji, K.; Harasawa, A.; et al. Giant Rashba system on a semiconductor substrate with tunable Fermi level: Bi/GaSb(110)--(2×1). Phys. Rev. Mater. 2019, 3, 126001. [Google Scholar] [CrossRef]
- Ohtsubo, Y.; Tokumasu, N.; Watanabe, H.; Nakamura, T.; Le Fevre, P.; Bertran, F.; Imamura, M.; Yamamoto, I.; Azuma, J.; Takahashi, K.; et al. One-dimensionality of the spin-polarized surface conduction and valence bands of quasi-one-dimensional Bi chains on GaSb(110)-(2×1). Phys. Rev. B 2020, 101, 235306. [Google Scholar] [CrossRef]
- Nakamura, T.; Ohtsubo, Y.; Yamashita, Y.; Ideta, S.i.; Tanaka, K.; Yaji, K.; Harasawa, A.; Shin, S.; Komori, F.; Yukawa, R.; et al. Giant Rashba splitting of quasi-one-dimensional surface states on Bi/InAs(110)-(2×1). Phys. Rev. B 2018, 98, 075431. [Google Scholar] [CrossRef]
- Quay, C.H.L.; Hughes, T.L.; Sulpizio, J.A.; Pfeiffer, L.N.; Baldwin, K.W.; West, K.W.; Goldhaber-Gordon, D.; de Picciotto, R. Observation of a one-dimensional spin–orbit gap in a quantum wire. Nat. Phys. 2010, 6, 336–339. [Google Scholar] [CrossRef]
- Heedt, S.; Traverso Ziani, N.; Crépin, F.; Prost, W.; Trellenkamp, S.; Schubert, J.; Grützmacher, D.; Trauzettel, B.; Schäpers, T. Signatures of interaction-induced helical gaps in nanowire quantum point contacts. Nat. Phys. 2017, 13, 563–567. [Google Scholar] [CrossRef]
- Zubarev, D.N. Double-time green functions in statistical physics. Sov. Phys. Uspekhi 1960, 3, 320–345. [Google Scholar] [CrossRef]
- Keldysh, L.V. Diagram technique for nonequilibrium processes. Sov. Phys. JETP 1965, 20, 1018–1026. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes, V.; Chiappe, G.; Ribeiro, L.C.; Anda, E.V. Totally Spin-Polarized Currents in an Interferometer with Spin–Orbit Coupling and the Absence of Magnetic Field Effects. Nanomaterials 2022, 12, 4082. https://doi.org/10.3390/nano12224082
Lopes V, Chiappe G, Ribeiro LC, Anda EV. Totally Spin-Polarized Currents in an Interferometer with Spin–Orbit Coupling and the Absence of Magnetic Field Effects. Nanomaterials. 2022; 12(22):4082. https://doi.org/10.3390/nano12224082
Chicago/Turabian StyleLopes, Victor, Guillermo Chiappe, Laercio C. Ribeiro, and Enrique V. Anda. 2022. "Totally Spin-Polarized Currents in an Interferometer with Spin–Orbit Coupling and the Absence of Magnetic Field Effects" Nanomaterials 12, no. 22: 4082. https://doi.org/10.3390/nano12224082
APA StyleLopes, V., Chiappe, G., Ribeiro, L. C., & Anda, E. V. (2022). Totally Spin-Polarized Currents in an Interferometer with Spin–Orbit Coupling and the Absence of Magnetic Field Effects. Nanomaterials, 12(22), 4082. https://doi.org/10.3390/nano12224082