Acetylated Nanocelluloses Reinforced Shape Memory Epoxy with Enhanced Mechanical Properties and Outstanding Shape Memory Effect
Abstract
:1. Introduction
2. Experiments
2.1. Materials
2.2. Acetylation Modification on NCs
2.3. Preparation of SMEPs and SMEPNs
2.4. Characterizations
3. Results and Discussions
3.1. Constituents and Properties of ANCs
3.2. Mechanical Properties and SME of Different Constituted SMEPs
3.3. Mechanical Properties and SME of ANCs Incorporated SMEPNs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, L.; Zhang, F.; Liu, Y.; Leng, J. Shape Memory Polymer Fibers: Materials, Structures, and Applications. Adv. Fiber Mater. 2021, 4, 5–23. [Google Scholar] [CrossRef]
- Zhao, Q.; Qi, H.J.; Xie, T. Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci. 2015, 49–50, 79–120. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Zhu, Y.; Huang, H.; Lu, J. Recent advances in shape-memory polymers: Structure, mechanism, functionality, modeling and applications. Prog. Polym. Sci. 2012, 37, 1720–1763. [Google Scholar] [CrossRef]
- Pilate, F.; Toncheva, A.; Dubois, P.; Raquez, J.-M. Shape-memory polymers for multiple applications in the materials world. Eur. Polym. J. 2016, 80, 268–294. [Google Scholar] [CrossRef]
- Zhang, F.; Xia, Y.; Liu, Y.; Leng, J. Nano/microstructures of shape memory polymers: From materials to applications. Nanoscale Horiz. 2020, 5, 1155–1173. [Google Scholar] [CrossRef]
- Habault, D.; Zhang, H.; Zhao, Y. Light-triggered self-healing and shape-memory polymers. Chem. Soc. Rev. 2013, 42, 7244–7256. [Google Scholar] [CrossRef] [PubMed]
- Lendlein, A.; Behl, M.; Hiebl, B.; Wischke, C. Shape-memory polymers as a technology platform for biomedical applications. Expert Rev. Med. Devices 2010, 7, 357–379. [Google Scholar] [CrossRef] [Green Version]
- Mora, P.; Schäfer, H.; Jubsilp, C.; Rimdusit, S.; Koschek, K. Thermosetting Shape Memory Polymers and Composites Based on Polybenzoxazine Blends, Alloys and Copolymers. Chem.-Asian J. 2019, 14, 4129–4139. [Google Scholar] [CrossRef] [Green Version]
- Zheng, N.; Fang, G.; Cao, Z.; Zhao, Q.; Xie, T. High strain epoxy shape memory polymer. Polym. Chem. 2015, 6, 3046–3053. [Google Scholar] [CrossRef]
- Liu, Y.; Han, C.; Tan, H.; Du, X. Thermal, mechanical and shape memory properties of shape memory epoxy resin. Mater. Sci. Eng. A 2010, 527, 2510–2514. [Google Scholar] [CrossRef]
- Molaabasi, F.; Zare, Y.; Rhee, K.Y. Simple models for tensile modulus of shape memory polymer nanocomposites at ambient temperature. Nanotechnol. Rev. 2022, 11, 874–882. [Google Scholar] [CrossRef]
- Liu, Y.; Gall, K.; Dunn, M.L.; McCluskey, P. Thermomechanics of shape memory polymer nanocomposites. Mech. Mater. 2004, 36, 929–940. [Google Scholar] [CrossRef]
- Liu, Y.; Han, C.; Tan, H.; Du, X. Organic-montmorillonite modified shape memory epoxy composite. Polym. Adv. Technol. 2011, 22, 2017–2021. [Google Scholar] [CrossRef]
- Lu, H.; Gou, J.; Leng, J.; Du, S. Synergistic effect of carbon nanofiber and sub-micro filamentary nickel nanostrand on the shape memory polymer nanocomposite. Smart Mater. Struct. 2011, 20, 035017. [Google Scholar] [CrossRef]
- Ding, J.; Zhu, Y.; Fu, Y. Preparation and properties of silanized vapor-grown carbon nanofibers/epoxy shape memory nanocomposites. Polym. Compos. 2014, 35, 412–417. [Google Scholar] [CrossRef]
- Yu, T.; Chen, Z.; Peng, X.; Yu, T.; Kim, Y.-H. Nonlinear modeling on stiffness properties of diatomite-incorporated BFRPs with experimental strength and toughness evaluations. Mater. Today Commun. 2022, 31, 103647. [Google Scholar] [CrossRef]
- Yu, T.; Chen, Z.; Park, S.-J.; Kim, Y.-H. Electrophoretic deposition of non-conductive halloysite nanotubes onto glass fabrics with improved interlaminar properties of glass/epoxy composites. Int. J. Mod. Phys. B 2021, 35, 2140033. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, T.; Kim, Y.-H.; Yang, Z.; Yu, T. Enhanced dynamic mechanical properties of different-structured nanoclays in-corporated BFRP based on “stick-slip” hypothesis. Mater. Des. 2021, 207, 109870. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, T.; Kim, Y.-H.; Yang, Z.; Li, Y.; Yu, T. Different-structured nanoclays incorporated composites: Computational and experimental analysis on mechanical properties. Compos. Sci. Technol. 2021, 203, 108612. [Google Scholar] [CrossRef]
- Dufresne, A. Nanocellulose: A new ageless bionanomaterial. Mater. Today 2013, 16, 220–227. [Google Scholar] [CrossRef]
- Phanthong, P.; Reubroycharoen, P.; Hao, X.; Xu, G.; Abudula, A.; Guan, G. Nanocellulose: Extraction and application. Carbon Resour. Convers. 2018, 1, 32–43. [Google Scholar] [CrossRef]
- Purkait, B.S.; Ray, D.; Sengupta, S.; Kar, T.; Mohanty, A.; Misra, M. Isolation of cellulose nanoparticles from sesame husk. -Dustrial Eng. Chem. Res. 2011, 50, 871–876. [Google Scholar] [CrossRef]
- Hamid, S.B.A.; Amin, M.; Ali, M.E. Zeolite supported ionic liquid catalyst for the synthesis of nano-cellulose from palm tree biomass. In Advanced Materials Research; Trans Tech Publications Ltd.: Zürich, Switzerland, 2014; pp. 52–56. [Google Scholar]
- Geng, S.; Yao, K.; Zhou, Q.; Oksman, K. High-Strength, High-Toughness Aligned Polymer-Based Nanocomposite Reinforced with Ultralow Weight Fraction of Functionalized Nanocellulose. Biomacromolecules 2018, 19, 4075–4083. [Google Scholar] [CrossRef] [Green Version]
- Auad, M.L.; Contos, V.S.; Nutt, S.; Aranguren, M.I.; Marcovich, N.E. Characterization of nanocellulose- reinforced shape memory polyurethanes. Polym. Int. 2008, 57, 651–659. [Google Scholar] [CrossRef]
- Song, L.; Li, Y.; Xiong, Z.; Pan, L.; Xu, X.; Lu, S. Water-Induced shape memory effect of nanocellulose papers from sisal cellu-lose nanofibers with graphene oxide. Carbohydr. Polym. 2018, 179, 110–117. [Google Scholar] [CrossRef]
- Gupta, A.; Mekonnen, T.H. Cellulose nanocrystals enabled sustainable polycaprolactone based shape memory polyurethane bionanocomposites. J. Colloid Interface Sci. 2021, 611, 726–738. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, L.; Hsu, S.; Lin, T.; Liao, Y.; Chiu, W.; Lin, H.; Wu, C.; Jeng, R.; Tung, S. Amphiphilic Thermoresponsive Poly(Hydroxyaminoethers) as Effective Emulsifiers for Preparation of Waterborne Epoxy Resins. Macromol. Mater. Eng. 2021, 307, 2100668. [Google Scholar] [CrossRef]
- Kim, J.; Montero, G.; Habibi, Y.; Hinestroza, J.P.; Genzer, J.; Argyropoulos, D.S.; Rojas, O.J. Dispersion of cellulose crystallites by nonionic surfactants in a hydrophobic polymer matrix. Polym. Eng. Sci. 2009, 49, 2054–2061. [Google Scholar] [CrossRef]
- Huang, L.; Wu, Q.; Wang, Q.; Wolcott, M. One-Step Activation and Surface Fatty Acylation of Cellulose Fibers in a Solvent-Free Condition. ACS Sustain. Chem. Eng. 2019, 7, 15920–15927. [Google Scholar] [CrossRef]
- Barbash, V.; Yashchenko, O.; Gondovska, A.; Deykun, I. Preparation and characterization of nanocellulose obtained by TEM-PO-mediated oxidation of organosolv pulp from reed stalks. Appl. Nanosci. 2021, 12, 835–848. [Google Scholar] [CrossRef]
- Jo, J.; Kim, H.; Jeong, S.-Y.; Park, C.; Hwang, H.; Koo, B. Changes in Mechanical Properties of Polyhydroxyalkanoate with Double Silanized Cellulose Nanocrystals Using Different Organosiloxanes. Nanomaterials 2021, 11, 1542. [Google Scholar] [CrossRef]
- Shen, X.; Huang, H.; Qian, H.; Tang, L.; Zhang, Y.; Xu, M.; Wang, H.; Wang, Z. Super Chirality Promotion of Helical Poly (Phe-nyl Isocyanide) s by Grafting onto Ethyl Cellulose. Macromol. Chem. Phys. 2021, 222, 2100103. [Google Scholar] [CrossRef]
- Li, W.; Cai, G.; Zhang, P. A simple and rapid Fourier transform infrared method for the determination of the degree of acetyl substitution of cellulose nanocrystals. J. Mater. Sci. 2019, 54, 8047–8056. [Google Scholar] [CrossRef]
- Abu-Thabit, N.Y.; Judeh, A.A.; Hakeem, A.S.; Ul-Hamid, A.; Umar, Y.; Ahmad, A. Isolation and characterization of microcrys-talline cellulose from date seeds (Phoenix dactylifera L.). Int. J. Biol. Macromol. 2020, 155, 730–739. [Google Scholar] [CrossRef] [PubMed]
- Heiner, A.P.; Teleman, O. Interface between monoclinic crystalline cellulose and water: Breakdown of the odd/even duplic-ity. Langmuir 1997, 13, 511–518. [Google Scholar] [CrossRef]
- Caballero, B.; Trugo, L.; Finglas, P. Encyclopedia of Food Sciences and Nutrition: Volumes 1–10, 2nd ed.; Academic Press Ltd.: Cambridge, MA, USA, 2003. [Google Scholar]
- Hwang, J.; Lee, S.G.; Kim, S.; Kim, J.S.; Kim, D.H.; Lee, W.H. Unveiling Viscoelastic Response of Capacitive-type Pressure Sensor by Controlling Cross-Linking Density and Surface Structure of Elastomer. ACS Appl. Polym. Mater. 2020, 2, 2190–2198. [Google Scholar] [CrossRef]
- Stutz, H.; Illers, K.-H.; Mertes, J. A generalized theory for the glass transition temperature of crosslinked and uncrosslinked polymers. J. Polym. Sci. Part B Polym. Phys. 1990, 28, 1483–1498. [Google Scholar] [CrossRef]
- Hale, A.; Macosko, C.W.; Bair, H.E. Glass transition temperature as a function of conversion in thermosetting polymers. Macromolecules 1991, 24, 2610–2621. [Google Scholar] [CrossRef]
- Abdullah, S.A.; Jumahat, A.; Abdullah, N.R.; Frormann, L. Determination of Shape Fixity and Shape Recovery Rate of Carbon Nanotube-filled Shape Memory Polymer Nanocomposites. Procedia Eng. 2012, 41, 1641–1646. [Google Scholar] [CrossRef] [Green Version]
- Saba, N.; Safwan, A.; Sanyang, M.; Mohammad, F.; Pervaiz, M.; Jawaid, M.; Alothman, O.; Sain, M. Thermal and dynamic me-chanical properties of cellulose nanofibers reinforced epoxy composites. Int. J. Biol. Macromole-Cules 2017, 102, 822–828. [Google Scholar] [CrossRef]
- Nassar, A.; Nassar, E. Thermo and Mechanical Properties of Fine Silicon Carbide/Chopped Carbon Fiber Reinforced Epoxy Composites. Univers. J. Mech. Eng. 2014, 2, 287–292. [Google Scholar] [CrossRef]
- Liu, S.; Fan, X.; He, C. Improving the fracture toughness of epoxy with nanosilica-rubber core-shell nanoparticles. Compos. Sci. Technol. 2016, 125, 132–140. [Google Scholar] [CrossRef]
- Littunen, K.; Hippi, U.; Saarinen, T.; Seppälä, J. Network formation of nanofibrillated cellulose in solution blended poly (methyl methacrylate) composites. Carbohydr. Polym. 2013, 91, 183–190. [Google Scholar] [CrossRef] [PubMed]
Abbreviation | EP1 | EP2 | EP3 | EP4 | EP5 |
---|---|---|---|---|---|
Mole ratio of D230 to EPON 826 () | 1.00 | 1.25 | 1.50 | 1.75 | 2.00 |
EPON 826 (g) | 50 | 50 | 50 | 50 | 50 |
D230 (g) | 31.58 | 25.27 | 21.05 | 18.05 | 15.79 |
Abbreviation | ANCs (wt.%) | ANCs (g) | EPON826 (g) | D230 (g) |
---|---|---|---|---|
EP4 | 0.00 | 0.00 | 50 | 18.05 |
EP4a | 0.02 | 0.01 | 50 | 18.05 |
EP4b | 0.06 | 0.03 | 50 | 18.05 |
EP4c | 0.20 | 0.10 | 50 | 18.05 |
EP4d | 0.40 | 0.20 | 50 | 18.05 |
EP4e | 0.60 | 0.30 | 50 | 18.05 |
(°C) | (MPa) | (10−3 mol/cm3) | (%) | (%) | |
---|---|---|---|---|---|
EP1 | 56 | 1.6 | 0.20 | 99.6 | 99.2 |
EP2 | 57 | 7.1 | 0.86 | 99.0 | 100 |
EP3 | 68.5 | 12.6 | 1.48 | 98.6 | 99.8 |
EP4 | 82 | 16.4 | 1.85 | 98.0 | 99.9 |
EP5 | 83 | 16.5 | 1.86 | 98.0 | 100 |
(°C) | (MPa) | (MPa) | (%) | (%) | |
---|---|---|---|---|---|
EP4 | 82.1 | 2883.6 | 15.3 | 98.0 | 99.9 |
EP4a | 75.0 | 3504.3 | 16.0 | 98.3 | 99.3 |
EP4b | 80.8 | 3998.5 | 16.0 | 98.2 | 99.9 |
EP4c | 78.8 | 3125.1 | 16.3 | 98.3 | 100.0 |
EP4d | 80.8 | 3208.2 | 16.3 | 98.2 | 100.0 |
EP4e | 82.8 | 3268.0 | 16.5 | 98.0 | 100.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, T.; Zhu, F.; Peng, X.; Chen, Z. Acetylated Nanocelluloses Reinforced Shape Memory Epoxy with Enhanced Mechanical Properties and Outstanding Shape Memory Effect. Nanomaterials 2022, 12, 4129. https://doi.org/10.3390/nano12234129
Yu T, Zhu F, Peng X, Chen Z. Acetylated Nanocelluloses Reinforced Shape Memory Epoxy with Enhanced Mechanical Properties and Outstanding Shape Memory Effect. Nanomaterials. 2022; 12(23):4129. https://doi.org/10.3390/nano12234129
Chicago/Turabian StyleYu, Tianyu, Feilong Zhu, Xiongqi Peng, and Zixuan Chen. 2022. "Acetylated Nanocelluloses Reinforced Shape Memory Epoxy with Enhanced Mechanical Properties and Outstanding Shape Memory Effect" Nanomaterials 12, no. 23: 4129. https://doi.org/10.3390/nano12234129
APA StyleYu, T., Zhu, F., Peng, X., & Chen, Z. (2022). Acetylated Nanocelluloses Reinforced Shape Memory Epoxy with Enhanced Mechanical Properties and Outstanding Shape Memory Effect. Nanomaterials, 12(23), 4129. https://doi.org/10.3390/nano12234129