High-Reliability Perovskite Quantum Dots Using Atomic Layer Deposition Passivation for Novel Photonic Applications
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Surface Topography Analysis
3.2. Optical Characterization Analysis
3.3. Reliability
3.4. Visible-Light Communication (VLC)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, Z.; Lin, C.-H.; Hyun, B.-R.; Sher, C.-W.; Lv, Z.; Luo, B.; Jiang, F.; Wu, T.; Ho, C.-H.; Kuo, H.-C.; et al. Micro-Light-Emitting Diodes with Quantum Dots in Display Technology. Light Sci. Appl. 2020, 9, 83. [Google Scholar] [CrossRef] [PubMed]
- Shirasaki, Y.; Supran, G.J.; Bawendi, M.G.; Bulović, V. Emergence of Colloidal Quantum-Dot Light-Emitting Technologies. Nat. Photonics 2013, 7, 13–23. [Google Scholar] [CrossRef]
- Zhu, R.; Luo, Z.; Chen, H.; Dong, Y.; Wu, S.-T. Realizing Rec. 2020 color gamut with quantum dot displays. Opt. Express 2015, 23, 23680–23693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, S.; Song, Y.; Wang, J.; Wan, H.; Zhang, Y.; Ning, Y.; Yang, B. Photoluminescence mechanism in graphene quantum dots: Quantum confinement effect and surface/edge state. Nano Today 2017, 13, 10–14. [Google Scholar] [CrossRef]
- Lin, Y.; Fan, X.; Yang, X.; Zheng, X.; Huang, W.; Shangguan, Z.; Wang, Y.; Kuo, H.-C.; Wu, T.; Chen, Z. Remarkable Black-Phase Robustness of CsPbI3 Nanocrystals Sealed in Solid SiO2/AlOx Sub-Micron Particles. Small 2021, 17, 2103510. [Google Scholar] [CrossRef]
- Wu, T.-H.; Sharma, G.D.; Chen, F.-C. Surface-Passivated Single-Crystal Micro-Plates for Efficient Perovskite Solar Cells. Processes 2022, 10, 1477. [Google Scholar] [CrossRef]
- Kuo, C.-C.; Sharma, G.D.; Chen, F.-C. p-doping the interfacial layers with tetrakis (pentafluorophenyl) borate improves the power conversion efficiencies in single-crystal perovskite solar cells. Surf. Interfaces 2022, 30, 101858. [Google Scholar] [CrossRef]
- Li, H.; Li, Z.; Liu, S.; Li, M.; Wen, X.; Lee, J.; Lin, S.; Li, M.-Y.; Lu, H. High performance hybrid MXene nanosheet/CsPbBr3 quantum dot photodetectors with an excellent stability. J. Alloy. Compd. 2022, 895, 162570. [Google Scholar] [CrossRef]
- Zhan, W.; Meng, L.; Shao, C.; Wu, X.-g.; Shi, K.; Zhong, H. In Situ Patterning Perovskite Quantum Dots by Direct Laser Writing Fabrication. ACS Photonics 2021, 8, 765–770. [Google Scholar] [CrossRef]
- Shu, M.; Zhang, Z.; Dong, Z.; Xu, J. CsPbBr3 Perovskite Quantum Dots Anchored on Multiwalled Carbon Nanotube For Efficient CO2 Photoreduction. Carbon 2021, 182, 454–462. [Google Scholar] [CrossRef]
- Wang, A.; Muhammad, F.; Liu, Y.; Deng, Z. Lead-Free Mn-Doped Antimony Halide Perovskite Quantum Dots with Bright Deep-Red Emission. Chem. Commun. 2021, 57, 2677–2680. [Google Scholar] [CrossRef] [PubMed]
- Su, C.-Y.; Wu, Y.-C.; Cheng, C.-H.; Wang, W.-C.; Wang, H.-Y.; Chen, L.-Y.; Kuo, H.-C.; Lin, G.-R. Color-Converting Violet Laser Diode with an Ultrafast BEHP-PPV + MEH-PPV Polymer Blend for High-Speed White Lighting Data Link. ACS Appl. Electron. Mater. 2020, 2, 3017–3027. [Google Scholar] [CrossRef]
- Wu, T.; Lin, Y.; Huang, Y.-M.; Liu, M.; Singh, K.J.; Lin, W.; Lu, T.; Zheng, X.; Zhou, J.; Kuo, H.-C.; et al. Highly Stable Full-Color Display Device with VLC Application Potential Using Semipolar μLEDs and All-Inorganic Encapsulated Perovskite Nanocrystal. Photonics Res. 2021, 9, 2132–2143. [Google Scholar] [CrossRef]
- Singh, K.J.; Fan, X.; Sadhu, A.S.; Lin, C.-H.; Liou, F.-J.; Wu, T.; Lu, Y.-J.; He, J.-H.; Chen, Z.; Wu, T.; et al. CsPbBr3 perovskite quantum-dot paper exhibiting a highest 3 dB bandwidth and realizing a flexible white-light system for visible-light communication. Photonics Res. 2021, 9, 2341–2350. [Google Scholar] [CrossRef]
- Ning, Z.; Gong, X.; Comin, R.; Walters, G.; Fan, F.; Voznyy, O.; Yassitepe, E.; Buin, A.; Hoogland, S.; Sargent, E.H. Quantum-Dot-In-Perovskite Solids. Nature 2015, 523, 324–328. [Google Scholar] [CrossRef]
- Chouhan, L. An Investigation of Single-Particle Photoluminescence Blinking in Halide Perovskite Nanocrystals and Quantum Dots. Ph.D. Thesis, Hokkaido University, Sapporo, Japan, 2021. [Google Scholar]
- Bi, C.; Kershaw, S.V.; Rogach, A.L.; Tian, J. Improved stability and photodetector performance of CsPbI3 perovskite quantum dots by ligand exchange with aminoethanethiol. Adv. Funct. Mater. 2019, 29, 1902446. [Google Scholar] [CrossRef]
- Zhou, S. Rapid separation and purification of lead halide perovskite quantum dots through differential centrifugation in nonpolar solvent. RSC Adv. 2021, 11, 28410–28419. [Google Scholar] [CrossRef]
- Liu, Z.; Hyun, B.-R.; Sheng, Y.; Lin, C.-J.; Changhu, M.; Lin, Y.; Ho, C.-H.; He, J.-H.; Kuo, H.-C. Micro-Light-Emitting Diodes Based on InGaN Materials with Quantum Dots. Adv. Mater. Technol. 2022, 7, 2101189. [Google Scholar] [CrossRef]
- Wen, Z.; Xie, F.; Choy, W.C. Stability of Electroluminescent Perovskite Quantum Dots Light-Emitting Diode. Nano Sel. 2022, 3, 505–530. [Google Scholar] [CrossRef]
- Xu, J.; Ma, J.; Gu, Y.; Li, Y.; Li, Y.; Shen, H.; Zhang, Z.; Ma, Y. Progress of Metal Halide Perovskite Crystals From a Crystal Growth Point of View. Cryst. Res. Technol. 2022, 2200128. [Google Scholar] [CrossRef]
- Bhosale, S.S.; Jokar, E.; Chiang, Y.-T.; Kuan, C.-H.; Khodakarami, K.; Hosseini, Z.; Chen, F.-C.; Diau, E.W.-G. Mn-Doped Organic–Inorganic Perovskite Nanocrystals for a Flexible Luminescent Solar Concentrator. ACS Appl. Energy Mater. 2021, 4, 10565–10573. [Google Scholar] [CrossRef]
- Huang, S.-K.; Weng, S.-Y.; Lee, G.-Y.; Huang, Y.-M.; Kuo, H.-C.; Lin, C.-C. An Investigation on High-Resolution Color Conversion Layer Based on Colloidal Quantum Dots. In Proceedings of the CLEO: Applications and Technology, San Jose, CA, USA, 15–20 May 2022; p. JW3B.182. [Google Scholar]
- Hyun, B.-R.; Sher, C.-W.; Chang, Y.-W.; Lin, Y.; Liu, Z.; Kuo, H.-C. Dual Role of Quantum Dots as Color Conversion Layer and Suppression of Input Light for Full-Color Micro-LED Displays. J. Phys. Chem. Lett. 2021, 12, 6946–6954. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-C.; Chu, K.-H.; Sher, C.-W.; Lin, C.-L.; Su, Y.-K.; Sun, C.-W.; Kuo, H.-C. High Stability of Liquid-Typed White Light-Emitting Diode with Zn0.8Cd0.2S White Quantum Dots. Coatings 2021, 11, 415. [Google Scholar] [CrossRef]
- Lee, T.-Y.; Chung, S.-R. High Stability of Perovskite CsPbBr3 Quantum Dots-Based White Light-Emitting Diodes. In Proceedings of the Physical Chemistry of Semiconductor Materials and Interfaces XIX, Online, 24 August–4 September 2020; pp. 8–17. [Google Scholar]
- Lin, C.-H.; Kang, C.-Y.; Verma, A.; Wu, T.; Pai, Y.-M.; Chen, T.-Y.; Tsai, C.-L.; Yang, Y.-Z.; Sharma, S.; Sher, C.-W.; et al. Ultrawide Color Gamut Perovskite and CdSe/ZnS Quantum-Dots-Based White Light-Emitting Diode with High Luminous Efficiency. Nanomaterials 2019, 9, 1314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.-H.; Verma, A.; Kang, C.-Y.; Pai, Y.-M.; Chen, T.-Y.; Yang, J.-J.; Sher, C.-W.; Yang, Y.-Z.; Lee, P.-T.; Lin, C.-C.; et al. Hybrid-Type White LEDs Based on Inorganic Halide Perovskite QDs: Candidates for Wide Color Gamut Display Backlights. Photonics Res. 2019, 7, 579–585. [Google Scholar] [CrossRef]
- Hsu, S.-C.; Huang, Y.-M.; Huang, C.-P.; Lee, T.-Y.; Cho, Y.-Y.; Liu, Y.-H.; Manikandan, A.; Chueh, Y.-L.; Chen, T.-M.; Kuo, H.-C.; et al. Improved Long-Term Reliability of a Silica-Encapsulated Perovskite Quantum-Dot Light-Emitting Device with an Optically Pumped Remote Film Package. ACS Omega 2021, 6, 2836–2845. [Google Scholar] [CrossRef]
- Tang, X.; Chen, W.; Liu, Z.; Du, J.; Yao, Z.; Huang, Y.; Chen, C.; Yang, Z.; Shi, T.; Hu, W.; et al. Ultrathin, Core–Shell Structured SiO2 Coated Mn2+-Doped Perovskite Quantum Dots for Bright White Light-Emitting Diodes. Small 2019, 15, 1900484. [Google Scholar] [CrossRef]
- Park, D.H.; Han, J.S.; Kim, W.; Jang, H.S. Facile synthesis of thermally stable CsPbBr3 perovskite quantum dot-inorganic SiO2 composites and their application to white light-emitting diodes with wide color gamut. Dye. Pigment. 2018, 149, 246–252. [Google Scholar] [CrossRef]
- Xuan, T.; Huang, J.; Liu, H.; Lou, S.; Cao, L.; Gan, W.; Liu, R.-S.; Wang, J. Super-hydrophobic cesium lead halide perovskite quantum dot-polymer composites with high stability and luminescent efficiency for wide color gamut white light-emitting diodes. Chem. Mater. 2019, 31, 1042–1047. [Google Scholar] [CrossRef]
- Geng, S.; Wen, Y.; Zhou, B.; Wang, Z.; Wang, Z.; Wang, P.; Jing, Y.; Cao, K.; Wang, K.; Chen, R. High Luminance and Stability of Perovskite Quantum Dot Light-Emitting Diodes via ZnBr2 Passivation and an Ultrathin Al2O3 Barrier with Improved Carrier Balance and Ion Diffusive Inhibition. ACS Appl. Electron. Mater. 2021, 3, 2362–2371. [Google Scholar] [CrossRef]
- Yun, H.-S.; Noh, K.; Kim, J.; Noh, S.H.; Kim, G.-H.; Lee, W.; Na, H.B.; Yoon, T.-S.; Jang, J.; Kim, Y.; et al. CsPbBr3 Perovskite Quantum Dot Light-Emitting Diodes Using Atomic Layer Deposited Al2O3 and ZnO Interlayers. Phys. Status Solidi (RRL)–Rapid Res. Lett. 2020, 14, 1900573. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, Y.; Ai, Q.; Gao, G.; Yuan, L.; Fang, Q.; Tian, X.; Zhang, X.; Egap, E.; Ajayan, P.M.; et al. In Situ Synthesis of Lead-Free Halide Perovskite–COF Nanocomposites as Photocatalysts for Photoinduced Polymerization in Both Organic and Aqueous Phases. ACS Mater. Lett. 2022, 4, 464–471. [Google Scholar] [CrossRef]
- Cha, J.-H.; Noh, K.; Yin, W.; Lee, Y.; Park, Y.; Ahn, T.K.; Mayoral, A.; Kim, J.; Jung, D.-Y.; Terasaki, O. Formation and Encapsulation of All-Inorganic Lead Halide Perovskites at Room Temperature in Metal–Organic Frameworks. J. Phys. Chem. Lett. 2019, 10, 2270–2277. [Google Scholar] [CrossRef]
- Pathiraja Mudalige Dona, S.T. Optimisation of Alumina Coating by Atomic Layer Deposition (ALD) Process as a Protective Scheme for CsPbBr3 Perovskite Quantum Dots. Master’s Thesis, Lappeenranta University of Technology, Lappeenranta, Finland, 2018. [Google Scholar]
- Lei, L.; Huang, D.; Chen, S.; Zhang, C.; Chen, Y.; Deng, R. Metal Chalcogenide/Oxide-Based Quantum Dots Decorated Functional Materials for Energy-Related Applications: Synthesis and Preservation. Coord. Chem. Rev. 2021, 429, 213715. [Google Scholar] [CrossRef]
- Huang, Y.-M.; Ahmed, T.; Liu, A.-C.; Chen, S.-W.H.; Liang, K.-L.; Liou, Y.-H.; Ting, C.-C.; Kuo, W.-H.; Fang, Y.-H.; Lin, C.-C.; et al. High-Stability Quantum Dot-Converted 3-in-1 Full-Color Mini-Light-Emitting Diodes Passivated with Low-Temperature Atomic Layer Deposition. IEEE Trans. Electron Devices 2021, 68, 597–601. [Google Scholar] [CrossRef]
- Sung, C.-H.; Huang, S.-D.; Kumar, G.; Lin, W.-C.; Lin, C.-C.; Kuo, H.-C.; Chen, F.-C. Highly Luminescent Perovskite Quantum Dots for Light-Emitting Devices: Photopatternable Perovskite Quantum Dot–Polymer Nanocomposites. J. Mater. Chem. C 2022, 10, 15941–15947. [Google Scholar] [CrossRef]
- Zu, Y.; Xi, J.; Li, L.; Dai, J.; Wang, S.; Yun, F.; Jiao, B.; Dong, H.; Hou, X.; Wu, Z. High-Brightness and Color-Tunable FAPbBr3 Perovskite Nanocrystals 2.0 Enable Ultrapure Green Luminescence for Achieving Recommendation 2020 Displays. ACS Appl. Mater. Interfaces 2019, 12, 2835–2841. [Google Scholar] [CrossRef]
- Di Stasio, F.; Ramiro, I.; Bi, Y.; Christodoulou, S.; Stavrinadis, A.; Konstantatos, G. High-Efficiency Light-Emitting Diodes Based on Formamidinium Lead Bromide Nanocrystals and Solution Processed Transport Layers. Chem. Mater. 2018, 30, 6231–6235. [Google Scholar] [CrossRef] [Green Version]
- Di Stasio, F.; Christodoulou, S.; Huo, N.; Konstantatos, G. Near-Unity Photoluminescence Quantum Yield in CsPbBr3 Nanocrystal Solid-State Films via Postsynthesis Treatment with Lead Bromide. Chem. Mater. 2017, 29, 7663–7667. [Google Scholar] [CrossRef]
- Loiudice, A.; Saris, S.; Oveisi, E.; Alexander, D.T.; Buonsanti, R. CsPbBr3 QD/AlOx inorganic nanocomposites with exceptional stability in water, light, and heat. Angew. Chem. Int. Ed. 2017, 56, 10696–10701. [Google Scholar] [CrossRef]
- Crisp, R.W.; Hashemi, F.S.M.; Alkemade, J.; Kirkwood, N.; Grimaldi, G.; Kinge, S.; Siebbeles, L.D.A.; van Ommen, J.R.; Houtepen, A.J. Atomic layer deposition of ZnO on InP quantum dot films for charge separation, stabilization, and solar cell formation. Adv. Mater. Interfaces 2020, 7, 1901600. [Google Scholar] [CrossRef] [Green Version]
- Brennan, T.P.; Ardalan, P.; Lee, H.-B.-R.; Bakke, J.R.; Ding, I.-K.; McGehee, M.D.; Bent, S.F. Atomic Layer Deposition of CdS Quantum Dots for Solid-State Quantum Dot Sensitized Solar Cells. Adv. Energy Mater. 2011, 1, 1169–1175. [Google Scholar] [CrossRef]
- Park, S.; Kim, B.J.; Kim, T.Y.; Jung, E.Y.; Lee, K.-M.; Hong, J.-A.; Jeon, W.; Park, Y.; Kang, S.J. Improving the Photodetection and Stability of a Visible-Light QDs/ZnO Phototransistor via an Al2O3 Additional Layer. J. Mater. Chem. C 2021, 9, 2550–2560. [Google Scholar] [CrossRef]
- Chen, Y.; Cai, J.; Lin, J.; Hu, X.; Wang, C.; Chen, E.; Sun, J.; Yan, Q.; Guo, T. Quantum-Dot Array with a Random Rough Interface Encapsulated by Atomic Layer Deposition. Opt. Lett. 2022, 47, 166–169. [Google Scholar] [CrossRef]
- Wang, H.-C.; Bao, Z.; Tsai, H.-Y.; Tang, A.-C.; Liu, R.-S. Perovskite Quantum Dots and Their Application in Light-Emitting Diodes. Small 2018, 14, 1702433. [Google Scholar] [CrossRef]
- Wang, Z.; Fu, R.; Li, F.; Xie, H.; He, P.; Sha, Q.; Tang, Z.; Wang, N.; Zhong, H. One-Step Polymeric Melt Encapsulation Method to Prepare CsPbBr3 Perovskite Quantum Dots/Polymethyl Methacrylate Composite with High Performance. Adv. Funct. Mater. 2021, 31, 2010009. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiu, W.; Sun, Y.; Zhu, D.; Zhang, Q.; Yuwen, L.; Weng, L.; Teng, Z.; Wang, L. RGD-QD-MoS2 nanosheets for targeted fluorescent imaging and photothermal therapy of cancer. Nanoscale 2017, 9, 15835–15845. [Google Scholar] [CrossRef]
- Shim, J.-I.; Shin, D.-S.; Oh, C.-H.; Jung, H. Active Efficiency as a Key Parameter for Understanding the Efficiency Droop in InGaN-Based Light-Emitting Diodes. ECS J. Solid State Sci. Technol. 2019, 9, 015013. [Google Scholar] [CrossRef]
- Zeferino, R.S.; Flores, M.B.; Pal, U. Photoluminescence and Raman scattering in Ag-doped ZnO nanoparticles. J. Appl. Phys. 2011, 109, 014308. [Google Scholar] [CrossRef]
- Li, J.-S.; Tang, Y.; Li, Z.-T.; Li, J.-X.; Ding, X.-R.; Yu, B.-H.; Yu, S.-D.; Ou, J.-Z.; Kuo, H.-C. Toward 200 lumens per watt of quantum-dot white-light-emitting diodes by reducing reabsorption loss. ACS Nano 2020, 15, 550–562. [Google Scholar] [CrossRef]
- Mei, S.; Liu, X.; Zhang, W.; Liu, R.; Zheng, L.; Guo, R.; Tian, P. High-Bandwidth White-Light System Combining a Micro-LED with Perovskite Quantum Dots for Visible Light Communication. ACS Appl. Mater. Interfaces 2018, 10, 5641–5648. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, T.-Y.; Hsieh, T.-H.; Miao, W.-C.; James Singh, K.; Li, Y.; Tu, C.-C.; Chen, F.-C.; Lu, W.-C.; Kuo, H.-C. High-Reliability Perovskite Quantum Dots Using Atomic Layer Deposition Passivation for Novel Photonic Applications. Nanomaterials 2022, 12, 4140. https://doi.org/10.3390/nano12234140
Lee T-Y, Hsieh T-H, Miao W-C, James Singh K, Li Y, Tu C-C, Chen F-C, Lu W-C, Kuo H-C. High-Reliability Perovskite Quantum Dots Using Atomic Layer Deposition Passivation for Novel Photonic Applications. Nanomaterials. 2022; 12(23):4140. https://doi.org/10.3390/nano12234140
Chicago/Turabian StyleLee, Tzu-Yi, Tsau-Hua Hsieh, Wen-Chien Miao, Konthoujam James Singh, Yiming Li, Chang-Ching Tu, Fang-Chung Chen, Wen-Chung Lu, and Hao-Chung Kuo. 2022. "High-Reliability Perovskite Quantum Dots Using Atomic Layer Deposition Passivation for Novel Photonic Applications" Nanomaterials 12, no. 23: 4140. https://doi.org/10.3390/nano12234140
APA StyleLee, T. -Y., Hsieh, T. -H., Miao, W. -C., James Singh, K., Li, Y., Tu, C. -C., Chen, F. -C., Lu, W. -C., & Kuo, H. -C. (2022). High-Reliability Perovskite Quantum Dots Using Atomic Layer Deposition Passivation for Novel Photonic Applications. Nanomaterials, 12(23), 4140. https://doi.org/10.3390/nano12234140