Effects of Typical Solvents on the Structural Integrity and Properties of Activated Kaolinite by Wet Ball Milling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Intercalation Process
2.3. Materials Characterization
2.4. Models and Simulation Details
3. Results
3.1. Mineralogy Analysis
3.2. FTIR Analysis
3.3. Thermal Analysis
3.4. Morphology Analysis
3.5. Nano Particle Properties
3.6. Molecular Dynamics Simulation
3.6.1. Radial Distribution Function (RDF)
3.6.2. Mean Square Displacement (MSD)
3.6.3. Elastic Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, H.C.; Eun, H.C.; Cho, Y.Z.; Lee, H.S. Mechanism and kinetics of lithium vapor capture in a high-temperature packed bed of kaolinite. Appl. Surf. Sci. 2010, 256, 5176–5181. [Google Scholar] [CrossRef]
- Wang, X.; Mu, B.; Zhang, Z.; Wang, A. Insights into halloysite or kaolin role of BiVO4 hybrid pigments for applications in polymer matrix and surface coating. Compos. Part B Eng. 2019, 174, 107035. [Google Scholar] [CrossRef]
- Hamzaoui, R.; Muslim, F.; Guessasma, S.; Bennabi, A.; Guillin, J. Structural and thermal behavior of proclay kaolinite using high energy ball milling process. Powder Technol. 2015, 271, 228–237. [Google Scholar] [CrossRef]
- Zhang, B.; Chang, Z.; Li, J.; Li, X.; Kan, Y.; Gao, Z. Effect of kaolin content on the performances of kaolin-hybridized soybean meal-based adhesives for wood composites. Compos. Part B Eng. 2019, 173, 106919. [Google Scholar] [CrossRef]
- Qiu, T.; Qiu, S.; Wu, H.; Yan, H.; Li, X.; Zhou, X. Adsorption of hydrated [Y(OH)2]+ on kaolinite (001) surface: Insight from DFT simulation. Powder Technol. 2021, 387, 80–87. [Google Scholar] [CrossRef]
- Krásný, I.; Lapčík, L.; Lapčíková, B.; Greenwood, R.W.; Šafářová, K.; Rowson, N.A. The effect of low temperature air plasma treatment on physico-chemical properties of kaolinite/polyethylene composites. Compos. Part B Eng. 2014, 59, 293–299. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Hu, J.; Yoza, B.A.; Wang, Q.; Zhang, X.; Li, Q.X.; Guo, S.; Chen, C. Kaolinite based catalysts for efficient ozonation of recalcitrant organic chemicals in water. Appl. Clay Sci. 2019, 175, 159–168. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Q.; Gao, F.; Teppen, B.J. Molecular dynamics simulation of basal spacing, energetics, and structure evolution of a kaolinite-formamide intercalation complex and their interfacial interaction. J. Phys. Chem. C 2018, 122, 3341–3349. [Google Scholar] [CrossRef]
- Zhang, N.; Chen, X.; Peng, Y. The interaction between kaolinite and saline water in affecting the microstructure, rheology and settling of coal flotation products. Powder Technol. 2020, 372, 76–83. [Google Scholar] [CrossRef]
- Ni, X.; Choi, P. Wetting behavior of nanoscale thin films of selected organic compounds and water on model basal surfaces of kaolinite. J. Phys. Chem. C 2012, 116, 26275–26283. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Q.; Yang, Y.; Wang, D.; He, J.; Sun, L. Preparation, morphology, and structure of kaolinites with various aspect ratios. Appl. Clay Sci. 2017, 147, 117–122. [Google Scholar] [CrossRef]
- Dawley, M.M.; Scott, A.M.; Hill, F.C.; Leszczynski, J.; Orlando, T.M. Adsorptionof formamide on kaolinite surfaces: A combined infrared experimental and theoretical study. J. Phys. Chem. C 2012, 116, 23981–23991. [Google Scholar] [CrossRef]
- Ptáček, P.; Frajkorová, F.; Šoukal, F.; Opravil, T. Kinetics and mechanism of three stages of thermal transformation of kaolinite to metakaolinite. Powder Technol. 2014, 264, 439–445. [Google Scholar] [CrossRef]
- Izadifar, M.; Thissen, P.; Steudel, A.; Kleeberg, R.; Kaufhold, S.; Kaltenbach, J.; Schuhmann, R.; Dehn, F.; Emmerich, K. Comprehensive examination of dihydroxylation of kaolinite, disordered kaolinite, and dickite: Experimental studies and density functional theory. Clays Clay Miner. 2020, 68, 319–333. [Google Scholar] [CrossRef]
- Hou, X.J.; Li, H.; Liu, Q.; Cheng, H.; He, P.; Li, S. Theoretical study for the interlamellar aminoalcohol functionalization of kaolinite. Appl. Surf. Sci. 2015, 347, 439–447. [Google Scholar] [CrossRef]
- Baniasadi, H.; Trifol, J.; Ranta, A.; Seppälä, J. Exfoliated clay nanocomposites of renewable long-chain aliphatic polyamide through in-situ polymerization. Compos. Part B Eng. 2021, 211, 108655. [Google Scholar] [CrossRef]
- Abou-El-Sherbini, K.S.; Elzahany, E.A.M.; Wahba, M.A.; Drweesh, S.A.; Youssef, N.S. Evaluation of some intercalation methods of dimethylsulphoxide onto HCl-treated and untreated Egyptian kaolinite. Appl. Clay Sci. 2017, 137, 33–42. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, Y.; Zhang, Z.; Ma, Y.; Wang, H. Recent progress of utilization of activated kaolinitic clay in cementitious construction materials. Compos. Part B Eng. 2021, 211, 108636. [Google Scholar] [CrossRef]
- Dedzo, G.K.; Detellier, C. Functional nanohybrid materials derived from kaolinite. Appl. Clay Sci. 2016, 130, 33–39. [Google Scholar] [CrossRef]
- Cheng, H.; Liu, Q.; Zhang, J.; Yang, J.; Frost, R.L. Delamination of kaolinite-potassium acetate intercalates by ball-milling. J. Colloid Interface Sci. 2010, 348, 355–359. [Google Scholar] [CrossRef]
- Izadifar, M.; Natzeck, C.; Emmerich, K.; Weidler, P.G.; Gohari, S.; Burvill, C.; Thissen, P. Unexpected chemical activity of a mineral surface: The role of crystal water in tobermorite. J. Phys. Chem. C 2022, 126, 12405–12412. [Google Scholar] [CrossRef]
- Han, Y.; Liu, W.; Zhou, J.; Chen, J. Interactions between kaolinite [Formula presented] surface and sodium hexametaphosphate. Appl. Surf. Sci. 2016, 387, 759–765. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Q.; Cheng, H.; Li, X.; Zeng, F.; Frost, R.L. Intercalation of dodecylamine into kaolinite and its layering structure investigated by molecular dynamics simulation. J. Colloid Interface Sci. 2014, 430, 345–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, Q.H.; Yu, A.B.; Lu, G.Q.; Standish, R.K. Molecular dynamics simulation of the structural and dynamic properties of dioctadecyldimethyl ammoniums in organoclays. J. Phys. Chem. B 2004, 108, 10025–10033. [Google Scholar] [CrossRef]
- Zeng, Q.H.; Yu, A.B.; Lu, G.Q.; Standish, R.K. Molecular dynamics simulation of organic-inorganic nanocomposites: Layering behavior and interlayer structure of organoclays. Chem. Mater. 2003, 15, 4732–4738. [Google Scholar] [CrossRef]
- Mbey, J.A.; Thomas, F.; Ngally Sabouang, C.J.; Liboum Njopwouo, D. An insight on the weakening of the interlayer bonds in a cameroonian kaolinite through DMSO intercalation. Appl. Clay Sci. 2013, 83–84, 327–335. [Google Scholar] [CrossRef]
- Sternik, D.; Galaburda, M.V.; Bogatyrov, V.M.; Oranska, O.I.; Charmas, B.; Gun’ko, V.M. Novel porous carbon/clay nanocomposites derived from kaolinite/resorcinol-formaldehyde polymer blends: Synthesis, structure and sorption properties. Appl. Surf. Sci. 2020, 525, 146361. [Google Scholar] [CrossRef]
- Cheng, H.; Zhang, S.; Liu, Q.; Li, X.; Frost, R.L. The molecular structure of kaolinite-potassium acetate intercalation complexes: A combined experimental and molecular dynamic simulation study. Appl. Clay Sci. 2015, 116–117, 273–280. [Google Scholar] [CrossRef]
- Luo, J.J.; Daniel, I.M. Characterization and modeling of mechanical behavior of polymer/clay nanocomposites. Compos. Sci. Technol. 2003, 63, 1607–1616. [Google Scholar] [CrossRef]
- Parvinzadeh Gashti, M.; Elahi, A.; Parvinzadeh Gashti, M. UV radiation inducing succinic acid/silica-kaolinite network on cellulose fiber to improve the functionality. Compos. Part B Eng. 2013, 48, 158–166. [Google Scholar] [CrossRef]
- Elbokl, T.A.; Detellier, C. Intercalation of cyclic imides in kaolinite. J. Colloid Interface Sci. 2008, 323, 338–348. [Google Scholar] [CrossRef] [PubMed]
- Frost, R.L.; Makó, É.; Kristóf, J.; Horváth, E.; Kloprogge, J.T. Mechanochemical treatment of kaolinite. J. Colloid Interface Sci. 2001, 239, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Zbik, M.S.; Song, Y.F.; Frost, R.L. Kaolinite flocculation induced by smectite addition-A transmission X-ray microscopic study. J. Colloid Interface Sci. 2010, 349, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Addai-Mensah, J.; Ralston, J. Investigation of the role of interfacial chemistry on particle interactions, sedimentation and electroosmotic dewatering of model kaolinite dispersions. Powder Technol. 2005, 160, 35–39. [Google Scholar] [CrossRef]
- Hou, X.J.; Li, H.; Li, S.; He, P. Theoretical study of the intercalation behavior of ethylene glycol on kaolinite. J. Phys. Chem. C 2014, 118, 26017–26026. [Google Scholar] [CrossRef]
- Pavlidou, S.; Papaspyrides, C.D. A review on polymer-layered silicate nanocomposites. Prog. Polym. Sci. 2008, 33, 1119–1198. [Google Scholar] [CrossRef]
- Chen, J.; Min, F.F.; Liu, L.Y.; Liu, C.F. Mechanism research on surface hydration of kaolinite, insights from DFT and MD simulations. Appl. Surf. Sci. 2019, 476, 6–15. [Google Scholar] [CrossRef]
SiO2 | Al2O3 | Fe2O3 | K2O | TiO2 | SO3 | P2O5 | CaO | CuO |
---|---|---|---|---|---|---|---|---|
52.19 | 42.92 | 0.73 | 1.95 | 0.37 | 0.24 | 0.14 | 0.93 | 0.02 |
SiO2 | Al2O3 | Fe2O3 | K2O | TiO2 | SO3 | P2O5 | CaO | CuO | |
---|---|---|---|---|---|---|---|---|---|
Original kaolinite | 52.19 | 42.92 | 0.73 | 1.95 | 0.37 | 0.24 | 0.14 | 0.93 | 0.02 |
Acidified kaolinite | 60.72 | 34.85 | 0.28 | 0.32 | 0.49 | 0.11 | 0.06 | 0.05 | 0.01 |
Intercalated Complex | Bulk Modulus (GPa) | Shear Modulus (GPa) | Compressibility (1/TPa) |
---|---|---|---|
DMSO–kaolinite | 30.6981 | 7.1807 | 32.5753 |
FA–kaolinite | 34.7496 | 8.0201 | 28.7773 |
KAc–kaolinite | 38.9959 | 8.0214 | 25.6437 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, S.; Chen, Y.; Xu, W.; Wei, J.; Li, Z.; Huang, S.; Huang, H.; Zhang, J.; Yu, Q. Effects of Typical Solvents on the Structural Integrity and Properties of Activated Kaolinite by Wet Ball Milling. Nanomaterials 2022, 12, 4255. https://doi.org/10.3390/nano12234255
Luo S, Chen Y, Xu W, Wei J, Li Z, Huang S, Huang H, Zhang J, Yu Q. Effects of Typical Solvents on the Structural Integrity and Properties of Activated Kaolinite by Wet Ball Milling. Nanomaterials. 2022; 12(23):4255. https://doi.org/10.3390/nano12234255
Chicago/Turabian StyleLuo, Shunjie, Yang Chen, Weiting Xu, Jiangxiong Wei, Zhaoheng Li, Shiqing Huang, Haoliang Huang, Junlu Zhang, and Qijun Yu. 2022. "Effects of Typical Solvents on the Structural Integrity and Properties of Activated Kaolinite by Wet Ball Milling" Nanomaterials 12, no. 23: 4255. https://doi.org/10.3390/nano12234255
APA StyleLuo, S., Chen, Y., Xu, W., Wei, J., Li, Z., Huang, S., Huang, H., Zhang, J., & Yu, Q. (2022). Effects of Typical Solvents on the Structural Integrity and Properties of Activated Kaolinite by Wet Ball Milling. Nanomaterials, 12(23), 4255. https://doi.org/10.3390/nano12234255