Broadband Achromatic Metalens in the Visible Light Spectrum Based on Fresnel Zone Spatial Multiplexing
Abstract
:1. Introduction
2. Design Principle and Methods
2.1. Phase and Transmittance of the Unit Cell
2.2. Time-Bandwidth Product of the Phase Library
2.3. Fresnel Zone Spatial Multiplexing Metalens Design
3. Results and Discussion
3.1. Achromatic Focusing Analysis at 488 nm and 632.8 nm
3.2. Continuous Waveband Achromatic Focusing Analysis at 470–700 nm
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yoshikawa, H.; Yamaguchi, T. Computer-generated holograms for 3D display. Chin. Opt. Lett. 2009, 7, 1079–1082. [Google Scholar]
- Li, L.; Wang, Q.H. Zoom lens design using liquid lenses for achromatic and spherical aberration corrected target. Opt. Eng. 2012, 51, 043001. [Google Scholar] [CrossRef]
- Feng, B.; Shi, Z.; Zhao, Y. A wide-FoV athermalized infrared imaging system with a two-element lens. Infrared Phys. Technol. 2017, 87, 11–21. [Google Scholar] [CrossRef]
- Lin, D.; Fan, P.; Hasman, E.; Brongersma, M.L. Dielectric gradient metasurface optical elements. Science 2014, 345, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Overvig, A.C.; Shrestha, S.; Malek, S.C.; Lu, M.; Stein, A.; Zheng, C.; Yu, N. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase. Light Sci. Appl. 2019, 8, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, N.; Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 2014, 13, 139–150. [Google Scholar] [CrossRef]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.P.; Capasso, F.; Gaburro, Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Rui, G.; Gu, B.; Cui, Y. Trapping and manipulation of nanoparticles using multifocal optical vortex metalens. Sci. Rep. 2017, 7, 14611. [Google Scholar] [CrossRef] [Green Version]
- Aiet, F.; Genevet, P.; Kats, M.A.; Yu, N.; Blanchard, R.; Gaburro, Z.; Capasso, F. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 2012, 12, 4932–4936. [Google Scholar] [CrossRef]
- Song, Y.; Liu, W.; Wang, X.; Wang, F.; Wei, Z.; Meng, H.; Lin, N.; Zhang, H. Multifunctional metasurface lens with tunable focus based on phase transition material. Front. Phys. 2021, 9, 651898. [Google Scholar] [CrossRef]
- Khorasaninejad, M.; Capasso, F. Metalenses: Versatile multifunctional photonic components. Science 2017, 358, eaam8100. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Huang, L.; Muhlenbernd, H.; Li, G.; Bai, B.; Tan, Q.; Jin, G.; Qiu, C.; Zhang, S.; Zentgraf, T. Dual-polarity plasmonic metalens for visible light. Nat. Commun. 2012, 3, 1198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, M.; Peng, Y.; Yi, Y. Silicon-rich silicon nitride thin films for subwavelength grating metalens. Opt. Mater. Express 2019, 9, 348197. [Google Scholar] [CrossRef]
- Qin, S.; Huang, H.; Jie, K.; Zeng, S.; Chen, L.; Liu, H.; Guo, J.; Meng, H.; Wang, F.; Yang, X.; et al. Active modulating the Intensity of bifocal metalens with electrically tunable barium titanate (BTO) nanofins. Nanomaterials 2021, 11, 2023. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Hao, Y.; Jie, K.; Qin, S.; Huang, H.; Chen, L.; Liu, H.; Guo, J.; Meng, H.; Wang, F.; et al. Electrically-Driven Zoom Metalens Based on Dynamically Controlling the Phase of Barium Titanate (BTO) Column Antennas. Nanomaterials 2021, 11, 729. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Ma, R.; Pu, X.; Ge, S.; Cheng, J.; Li, X.; Wang, Q.; Zhou, S.; Liu, W. High-Efficiency Polarization Multiplexing Metalenses. Nanomaterials 2022, 12, 1500. [Google Scholar] [CrossRef]
- Shalaginov, M.Y.; An, S.; Zhang, Y.; Yang, F.; Su, P.; Liberman, V.; Chou, J.B.; Roberts, C.M.; Kang, M.; Rios, C.; et al. Reconfigurable all-dielectric metalens with diffraction-limited performance. Nat. Commun. 2021, 12, 1225. [Google Scholar] [CrossRef]
- Aieta, F.; Kats, M.A.; Genevet, P.; Capasso, F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 2015, 347, 1342–1345. [Google Scholar] [CrossRef] [PubMed]
- Avayu, O.; Almeida, E.; Prior, Y.; Ellenbogen, T. Composite functional metasurfaces for multispectral achromatic optics. Nat. Commun. 2017, 8, 14992. [Google Scholar] [CrossRef] [Green Version]
- Baek, S.; Park, J.Y.; Lee, J.L. Multiwavelength metalens by spatial multiplexing at visible wavelengths. J. Opt. 2021, 23, 075102. [Google Scholar] [CrossRef]
- Tang, F.; Ye, X.; Li, Q.; Wang, Y.; Yu, H.; Wu, W.; Li, B.; Zheng, W. Dielectric metalenses at long-wave infrared wavelengths: Multiplexing and spectroscope. Results Phys. 2020, 18, 10315. [Google Scholar] [CrossRef]
- Li, Y.; Liu, S.; Sun, D.; Luo, M.; Qi, X.; Zhao, S.; Ma, Z. Single-layer multitasking vortex-metalens for ultra-compact two photo excitation STED endomicroscopy imaging. Opt. Express 2021, 29, 3795–3807. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.T.; Zhu, A.Y.; Sisler, J.; Huang, Y.; Yousef, K.M.A.; Lee, E.; Qiu, C.; Capasso, F. Broadband achromatic metasurface-refractive optics. Nano Lett. 2018, 18, 7801–7808. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Chen, L.; Shen, F.; Guo, K.; Guo, Z. Broadband achromatic metalens in the midinfrared range. Phys. Rev. Appl. 2019, 11, 024066. [Google Scholar] [CrossRef]
- Ali, F.; Aksu, S. A hyrid broadband metalens operating at ultraviolet frequencies. Nat. Commun. 2022, 11, 2303. [Google Scholar]
- Khorasaninejad, M.; Chen, W.T.; Devlin, R.C.; Oh, J.; Zhu, A.Y.; Capasso, F. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 2016, 352, 1190–1194. [Google Scholar] [CrossRef] [Green Version]
- Ou, K.; Yu, F.; Li, G.; Wang, W.; Miroshnichenko, A.E.; Huang, L.; Wang, P.; Li, T.; Li, Z.; Chen, X.; et al. Mid-infrared polarization-controlled broadband achromatic metadevice. Sci. Adv. 2020, 6, 0711. [Google Scholar] [CrossRef]
- Lin, R.J.; Su, V.C.; Wang, S.; Chen, M.K.; Chung, T.L.; Chen, Y.H.; Kuo, H.Y.; Chen, J.W.; Chen, J.; Huang, Y.T.; et al. Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol. 2019, 14, 227–231. [Google Scholar] [CrossRef]
- Sherestha, S.; Overvig, A.C.; Lu, M.; Stein, A.; Yu, N. Broadband achromatic dielectric metalenses. Light Sci. Appl. 2018, 7, 85. [Google Scholar] [CrossRef] [Green Version]
- Fan, Z.; Qiu, H.; Zhang, H.; Pang, X.; Zhou, L.; Liu, L.; Ren, H.; Wang, Q.; Dong, J. A broadband achromatic metalens array for integral imaging in the visible. Light Sci. Appl. 2019, 8, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.T.; Zhu, A.Y.; Sanjeev, V.; Khorasaninejad, M.; Shi, Z.; Capasso, F. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 2018, 13, 220–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Lin, P.; Huang, Y.W.; Park, J.S.; Chen, W.T.; Shi, Z.; Qiu, C.; Cheng, J.; Capasso, F. Meta-optics achieves RGB-achromatic focusing for virtual reality. Sci. Adv. 2021, 7, eabe4458. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xiao, X.; Fang, B.; Gao, S.; Wang, Z.; Chen, C.; Zhao, Y.; Zhu, S.; Li, Y. Bandpass-filter-integrated multiwavelength achromatic metalens. Photonics Res. 2021, 9, 1384–1390. [Google Scholar] [CrossRef]
- Liang, Y.; Xu, Y.; Yang, Z.; Xue, S.; Liao, J.; Pan, Y.; Wang, Y. Design and research of polarization-free achromatic metalens. Chin. Laser 2021, 48, 0303001. [Google Scholar] [CrossRef]
- Chen, M.K.; Liu, X.; Wu, Y.; Zhang, J.; Yuan, J.; Zhang, Z.; Tsai, D.P. A meta-device for intelligent depth perception. Adv. Mater. 2022, 1, 2107465. [Google Scholar] [CrossRef]
- Khorasaninejad, M.; Shi, Z.; Zhu, A.Y.; Chen, W.T.; Sanjeev, V.; Zaidi, A.; Capasso, F. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett. 2017, 17, 1819–1824. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Song, B.; Tang, J. Optical metalenses: Fundamentals, dispersion manipulation, and applications. Front. Optoelectron. 2022, 15, 24–54. [Google Scholar] [CrossRef]
- Shan, D.; Gao, J.; Xu, N.; Liu, H.; Song, N.; Sun, Q.; Zhao, Y.; Tang, Y.; Wang, Y.; Feng, X.; et al. Band pass filter Integrated metalens based on electromagnetically induced transparency. Nanomaterials 2022, 12, 2282. [Google Scholar] [CrossRef]
- Li, X.; Chen, L.; Li, Y.; Zhang, X.; Pu, M.; Zhao, Z.; Ma, X.; Wang, Y.; Hong, M.; Luo, X. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci. Adv. 2016, 2, 1601102. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.; Briere, G.; Fang, X.; Ni, P.; Sawant, R.; Heron, S.; Chenot, S.; Vezian, S.; Damilano, B.; Brandli, V.; et al. Metasurface orbital angular momentum holography. Nat. Commun. 2019, 10, 2986. [Google Scholar] [CrossRef] [Green Version]
- Deng, Z.; Jin, M.K.; Ye, X.; Wang, S.; Shi, T.; Deng, J.; Mao, N.; Cao, Y.; Guan, B.; Alu, A.; et al. Full-color complex-smplitude vectorial holograms based on multi-freedom metasurfaces. Adv. Funct. Mater. 2020, 30, 1910610. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Alu, A. Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates. Nano Lett. 2013, 13, 1086–1091. [Google Scholar] [CrossRef]
- Beli, D.; Arruda, J.R.F.; Ruzzene, M. Wave propagation in elastic metamaterial beams and plates with interconnected resonators. Int. J. Solids Struct. 2018, 139, 105–120. [Google Scholar] [CrossRef]
- Mehmood, M.Q.; Mei, S.; Hussain, S.; Huang, K.; Siew, S.Y.; Zhang, L.; Zhang, T.; Ling, X.; Liu, H.; Teng, J.; et al. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices. Adv. Mater. 2016, 28, 2533–2539. [Google Scholar] [CrossRef]
- Zhang, H.; Sha, X.; Chen, Q.; Cheng, J.; Ji, Z.; Song, Q.; Yu, S.; Xiao, S. All-Dielectric metasurface-enabled multiple vortex emissions. Adv. Mater. 2022, 34, 2109255. [Google Scholar] [CrossRef]
- Fan, Q.; Xu, W.; Hu, X.; Zhu, W.; Yue, T.; Zhang, C.; Yan, F.; Chen, L.; Lezec, H.J.; Lu, Y.; et al. Trilobite-inspired neural nanophotonic light-field camera with extreme depth-of-field. Nat. Commun. 2022, 13, 2130. [Google Scholar] [CrossRef]
- Hua, X.; Wang, Y.; Wang, S.; Zou, X.; Zhou, Y.; Li, L.; Yan, F.; Cao, X.; Xiao, S.; Tsai, D.P.; et al. Ultra-compact snapshot spectral light-field imaging. Nat. Commun. 2022, 13, 2732. [Google Scholar] [CrossRef]
- Zou, X.; Zhang, Y.; Lin, R.; Gong, G.; Wang, G.; Zhu, S.; Wang, Z. Pixel-level Bayer-type colour router based on metasurfaces. Nat. Commun. 2022, 13, 3288. [Google Scholar] [CrossRef]
- Zheng, R.; Pan, R.; Geng, G.; Jiang, Q.; Du, S.; Huang, L.; Gu, C.; Li, J. Active multiband varifocal metalenses based on orbital angular momentum division multiplexing. Nat. Commun. 2022, 13, 4292. [Google Scholar] [CrossRef]
- Ren, H.; Jang, J.; Li, C.; Aigner, A.; Plidschun, M.; Kim, J.; Rho, J.; Schmidt, M.A.; Maier, S.A. An achromatic metafiber for focusing and imaging across the entire telecommunication range. Nat. Commun. 2022, 13, 4183. [Google Scholar] [CrossRef]
- Fan, S.; Joannopoulos, J.D. Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B Condens. Matter 2002, 65, 235112. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.S.; Magnusson, R. Theory and applications of guided-mode resonance filters. Appl. Opt. 1993, 32, 2606–2613. [Google Scholar] [CrossRef]
- Nayeri, P.; Haupt, R. Time-delay compensation in array lens antennas. In Proceedings of the 2017 11th European Conference on Antennas and Propagation, Paris, France, 19–24 March 2005; pp. 2841–2842. [Google Scholar]
- Liu, M.; Xu, N.; Wang, B.; Qian, W.; Xuan, B.; Cao, J. Polarization independent and broadband achromatic metalens in ultraviolet spectrum. Opt. Commun. 2021, 497, 127182. [Google Scholar] [CrossRef]
- Barakat, R. Rayleigh wavefront criterion. J. Opt. Soc. Am. 1965, 55, 572–573. [Google Scholar] [CrossRef]
Wavelength | 470 nm | 488 nm | 500 nm | 520 nm | 540 nm | 560 nm | 580 nm | 600 nm | 632.8 nm | 650 nm | 680 nm | 700 nm |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Focal length (μm) | 19.38 | 20.28 | 20.28 | 19.92 | 19.56 | 19.38 | 19.76 | 19.56 | 20.82 | 20.46 | 19.92 | 19.56 |
Focusing efficiency | 30.04% | 30.61% | 31.74% | 29.67% | 27.44% | 27.17% | 28.27% | 31.97% | 39.72% | 42.07% | 45.35% | 47.13% |
f (μm) | d (μm) | ∆λ (nm) | Average Focusing Efficiency | (T∆ω)library | (T∆ω)lens | DOF (μm) |
---|---|---|---|---|---|---|
20 | 14 | 470–700 | 31.71% | 17.63 | 5.22 | 4.35–6.43 |
Refs | NA | ∆λ (nm) | Focusing Efficiency | Notes |
---|---|---|---|---|
This study | 0.33 | 470–700 | Average: 31.71% | Polarization-insensitive |
Ref. [23] | 0.075 | 460–700 | Maximum: 35% | Polarization-sensitive |
Ref. [31] | 0.2 | 470–670 | 500 nm: 20% | Polarization-sensitive |
Ref. [33] | 0.013 | 500–550 | - | Polarization-insensitive |
Ref. [35] | 0.215717 | 400–660 | Average: 33.6% | Polarization-insensitive |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, R.; Hu, S.; Sun, C.; Wang, B.; Cai, Q. Broadband Achromatic Metalens in the Visible Light Spectrum Based on Fresnel Zone Spatial Multiplexing. Nanomaterials 2022, 12, 4298. https://doi.org/10.3390/nano12234298
Shi R, Hu S, Sun C, Wang B, Cai Q. Broadband Achromatic Metalens in the Visible Light Spectrum Based on Fresnel Zone Spatial Multiplexing. Nanomaterials. 2022; 12(23):4298. https://doi.org/10.3390/nano12234298
Chicago/Turabian StyleShi, Ruixue, Shuling Hu, Chuanqi Sun, Bin Wang, and Qingzhong Cai. 2022. "Broadband Achromatic Metalens in the Visible Light Spectrum Based on Fresnel Zone Spatial Multiplexing" Nanomaterials 12, no. 23: 4298. https://doi.org/10.3390/nano12234298
APA StyleShi, R., Hu, S., Sun, C., Wang, B., & Cai, Q. (2022). Broadband Achromatic Metalens in the Visible Light Spectrum Based on Fresnel Zone Spatial Multiplexing. Nanomaterials, 12(23), 4298. https://doi.org/10.3390/nano12234298