Mechanism of Random Telegraph Noise in 22-nm FDSOI-Based MOSFET at Cryogenic Temperatures
Abstract
:1. Introduction
2. Experimental Configurations
3. Measurement Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Higashi, Y.; Momo, N.; Sasaki, H.; Momose, H.S.; Ohguro, T.; Mitani, Y.; Ishihara, T.; Matsuzawa, K. Unified transient and frequency domain noise simulation for random telegraph noise and flicker noise using a physics-based model. IEEE Trans. Electron. Dev. 2014, 61, 4197–4203. [Google Scholar] [CrossRef]
- Simicic, M.; Weckx, P.; Parvais, B.; Roussel, P.; Kaczer, B.; Gielen, G. Understanding the impact of time-dependent random variability on analog ICs: From single transistor measurements to circuit simulations. IEEE Trans. Very Large Scale Integr. Syst. 2019, 27, 601–610. [Google Scholar] [CrossRef]
- Simoen, E.; Claeys, C. The low-frequency noise behaviour of silicon-on-insulator technologies. Solid-State Electron. 1996, 39, 949–960. [Google Scholar] [CrossRef]
- Fleetwood, D.M. Total-Ionizing-Dose Effects, Border Traps, and 1/f Noise in Emerging MOS Technologies. IEEE Trans. Nucl. Sci. 2020, 67, 1216–1240. [Google Scholar] [CrossRef]
- Wirth, G. Time-Dependent Random Threshold Voltage Variation Due to Random Telegraph Noise. IEEE Trans. Electron. Dev. 2021, 68, 17–23. [Google Scholar] [CrossRef]
- Michl, J.; Grill, A.; Stampfer, B.; Waldhoer, D.; Schleich, C.; Knobloch, T.; Ioannidis, E.; Enichlmair, H.; Minixhofer, R.; Kaczer, B.; et al. Evidence of Tunneling Driven Random Telegraph Noise in Cryo-CMOS. In Proceedings of the 2021 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 11 December 2021; pp. 31.3.1–31.3.4. [Google Scholar] [CrossRef]
- Dastgeer, G.; Afzal, A.M.; Jaffery, S.H.A.; Imran, M.; Assiri, M.A.; Nisar, S. Gate modulation of the spin current in graphene/WSe2 van der Waals heterostructure at room temperature. J. Alloys Compd. 2022, 919, 165815. [Google Scholar] [CrossRef]
- Dastgeer, G.; Shahzad, Z.M.; Chae, H.Y.; Kim, H.; Ko, B.M.; Eom, J. Bipolar Junction Transistor Exhibiting Excellent Output Characteristics with a Prompt Response against the Selective Protein. Adv. Funct. Mater. 2022, 32, 2204781. [Google Scholar] [CrossRef]
- Dastgeer, G.; Nisar, S.; Shahzad, Z.M.; Rasheed, A.; Kim, D.; Jaffery, S.H.A.; Wang, L.; Usman, M.; Eom, J. Low-Power Negative-Differential-Resistance Device for Sensing the Selective Protein via Supporter Molecule Engineering. Adv. Sci. 2022, 2204779. [Google Scholar] [CrossRef]
- Lv, C.; Hu, C.; Luo, J.; Liu, S.; Qiao, Y.; Zhang, Z.; Song, J.; Shi, Y.; Cai, J.; Watanabe, A. Recent advances in graphene-based humidity sensors. Nanomaterials 2019, 9, 422. [Google Scholar] [CrossRef]
- Whitcombe, A.; Taylor, S.; Denham, M.; Milovanovic, V.; Nikolic, B. On-chip I–V variability and random telegraph noise characterization in 28 nm CMOS. In Proceedings of the 2016 46th European Solid-State Device Research Conference (ESSDERC), Lausanne, Switzerland, 12–15 September 2016; pp. 248–251. [Google Scholar] [CrossRef]
- Li, Z.; Sotto, M.; Liu, F.; Husain, M.K.; Zeimpekis, I.; Yoshimoto, H.; Tani, K.; Sasago, Y.; Hisamoto, D.; Fletcher, J.D.; et al. Random-telegraph-noise by resonant tunnelling at low temperatures. In Proceedings of the 2017 IEEE Electron Devices Technology and Manufacturing Conference (EDTM), Toyama, Japan, 28 February–2 March 2017; pp. 172–174. [Google Scholar] [CrossRef] [Green Version]
- Kirton, M.J.; Uren, M.J. Noise in solid-state microstructures: A new perspective on individual defects, interface states and low-frequency (1/ƒ) noise. Adv. Phys. 1989, 38, 367–468. [Google Scholar] [CrossRef]
- Simoen, E.; Kaczer, B.; Toledano-Luque, M.; Claeys, C. Random Telegraph Noise: From a Device Physicist’s Dream to a Designer’s Nightmare. ECS Trans. 2011, 39, 3–15. [Google Scholar] [CrossRef]
- Luo, M.; Wang, R.; Guo, S.; Wang, J.; Zou, J.; Huang, R. Impacts of random telegraph noise (RTN) on digital circuits. IEEE Trans. Electron. Dev. 2015, 62, 1725–1732. [Google Scholar] [CrossRef]
- Lee, S.; Cho, H.J.; Son, Y.; Lee, D.S.; Shin, H. Characterization of oxide traps leading to RTN in high-K and metal gate MOSFETs. In Proceedings of the 2009 IEEE International Electron Devices Meeting (IEDM), Baltimore, MD, USA, 7–9 December 2009; pp. 763–766. [Google Scholar] [CrossRef]
- Nagumo, T.; Takeuchi, K.; Hase, T.; Hayashi, Y. Statistical characterization of trap position, energy, amplitude and time constants by RTN measurement of multiple individual traps. In Proceedings of the 2010 International Electron Devices Meeting, San Francisco, CA, USA, 6–8 December 2010; pp. 628–631. [Google Scholar] [CrossRef]
- Chiu, H.F.; Wu, S.L.; Chang, Y.S.; Chang, S.J.; Huang, P.C.; Chen, J.F.; Tsai, S.C.; Lai, C.M.; Hsu, C.W.; Cheng, O. Effect of annealing process on trap properties in high-k/metal gate n-channel metal-oxide-semiconductor field-effect transistors through low-frequency noise and random telegraph noise characterization. Jpn. J. Appl. Phys. 2013, 52 Pt 2, 04CC22. [Google Scholar] [CrossRef]
- Chiu, H.F.; Wu, S.L.; Chang, Y.S.; Chang, S.J.; Chen, J.F.; Tsai, S.C.; Hsu, C.H.; Lai, C.M.; Hsu, C.W.; Cheng, O. Impact of oxygen annealing on high-k gate stack defects characterized by random telegraph noise. Appl. Phys. Lett. 2012, 101, 5–8. [Google Scholar] [CrossRef]
- Wu, S.-L.; Chiu, H.-F.; Chang, Y.-S.; Cheng, O. Defect properties of high-k/metal-gate metal-oxide-semiconductor field-effect transistors determined by characterization of random telegraph noise. Jpn. J. Appl. Phys. 2014, 53, 038005. [Google Scholar] [CrossRef]
- Carter, R.; Mazurier, J.; Pirro, L.; Sachse, J.-U.; Baars, P.; Faul, J.; Grass, C.; Grasshoff, G.; Javorka, P.; Kammler, T.; et al. 22 nm FDSOI technology for emerging mobile, Internet-of-Things, and RF applications. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016; pp. 2.2.1–2.2.4. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Bi, J.; Bu, J.; Liu, H.; Zhao, F.; Cao, H.; Ai, C. Characteristics of 22 nm UTBB-FDSOI technology with an ultra-wide temperature range. Semicond. Sci. Technol. 2022, 37, 105004. [Google Scholar] [CrossRef]
- Miki, H.; Yamaoka, M.; Frank, D.J.; Cheng, K.; Park, D.-G.; Leobandung, E.; Torii, K. Voltage and temperature dependence of random telegraph noise in highly scaled HKMG ETSOI nFETs and its impact on logic delay uncertainty. In Proceedings of the 2012 Symposium on VLSI Technology (VLSIT), Honolulu, HI, USA, 12–14 June 2012; Volume 12, pp. 137–138. [Google Scholar] [CrossRef]
- Çelik-Butler, Z.; Vasina, P.; Amarasinghe, N.V. A method for locating the position of oxide traps responsible for random telegraph signals in submicron MOSFET’s. IEEE Trans. Electron. Dev. 2000, 47, 646–648. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, L.; Yu, Z.; Li, Z. On the degeneracy of quantized inversion layer in MOS structures. Solid-State Electron. 2000, 44, 1925–1929. [Google Scholar] [CrossRef]
- Ma, Y.; Li, Z.; Liu, L.; Yu, Z. Comprehensive analytical physical model of quantized inversion layer in MOS structure. Solid-State Electron. 2001, 45, 267–273. [Google Scholar] [CrossRef]
- Toriumi, A.; Yoshimi, M.; Iwase, M.; Taniguchi, K.; Hamaguchi, C. Experimental determination of finite inversion layer thickness in thin gate oxide MOSFETS. Surf. Sci. 1986, 170, 363–369. [Google Scholar] [CrossRef]
- Liu, W.; Jin, X.; King, Y.; Hu, C. An efficient and accurate compact model for thin-oxide-mosfet intrinsic capacitance considering the finite charge layer thickness. IEEE Trans. Electron. Dev. 1999, 46, 1070–1072. [Google Scholar] [CrossRef]
- Stern, F. Self-consistent results for n-type Si inversion layers. Phys. Rev. B 1972, 5, 4891–4899. [Google Scholar] [CrossRef]
- Ando, T.; Fowler, A.B.; Stern, F. Electronic properties of two-dimensional systems. Rev. Mod. Phys. 1982, 54, 437–672. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, L.; Tian, L.; Li, Z. Statistical analysis of quantized inversion layer in MOS devices with ultra-thin gate oxide and high substrate doping levels. In Proceedings of the IEEE Hong Kong Electron Devices Meeting, Hong Kong, China, 24 June 2000; pp. 126–129. [Google Scholar] [CrossRef]
- Schwarz, S.A.; Russek, S.E. Semi-Empirical Equations for Electron Velocity in Silicon: Part II—MOS Inversion Layer. IEEE Trans. Electron. Dev. 1983, 30, 1634–1639. [Google Scholar] [CrossRef]
- Schrieffer, J.R. Effective Carrier Mobility in Surface-Space Charge Layers. Phys. Rev. 1955, 97, 641–646. [Google Scholar] [CrossRef]
Name | Geometric Size |
---|---|
tSi | 7 nm |
tBOX | 25 nm |
tOX | 2 nm |
Lg | 20 nm |
W | 160 nm |
Temperature | Max Error | Average Error |
---|---|---|
100 K | 0.21419 | 0.06411 |
77 K | 0.63789 | 0.17187 |
50 K | 0.29193 | 0.10779 |
25 K | 0.30458 | 0.14914 |
10 K | 0.54369 | 0.17107 |
Total | 0.63789 | 0.13280 |
Temperature | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
100 K | 300 K | 1 (MV/cm)0.7 | 1.9 × 10−7 cm(MV/cm)0.7 | 1.3 | 2 nm | 0.13 nm | 0.46 V | 0.05 V | 0.34 | 24.1 |
77 K | 0.49 V | 0.05 V | 0.23 | 23.3 | ||||||
50 K | 0.49 V | 0.08 V | 0.08 | 15.2 | ||||||
25 K | 0.57 V | 0.12 V | 0.036 | 14.3 | ||||||
10 K | 0.55 V | 0.15 V | 0 | 7.85 |
Temperature | Max Error | Average Error |
---|---|---|
100 K | 0.27068 | 0.06977 |
77 K | 0.62478 | 0.17199 |
50 K | 0.3329 | 0.12734 |
25 K | 0.17920 | 0.07727 |
10 K | 0.16343 | 0.08233 |
Total | 0.62478 | 0.10574 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Bi, J.; Wang, H.; Fan, L.; Zhao, B.; Shen, L.; Liu, M. Mechanism of Random Telegraph Noise in 22-nm FDSOI-Based MOSFET at Cryogenic Temperatures. Nanomaterials 2022, 12, 4344. https://doi.org/10.3390/nano12234344
Ma Y, Bi J, Wang H, Fan L, Zhao B, Shen L, Liu M. Mechanism of Random Telegraph Noise in 22-nm FDSOI-Based MOSFET at Cryogenic Temperatures. Nanomaterials. 2022; 12(23):4344. https://doi.org/10.3390/nano12234344
Chicago/Turabian StyleMa, Yue, Jinshun Bi, Hanbin Wang, Linjie Fan, Biyao Zhao, Lizhi Shen, and Mengxin Liu. 2022. "Mechanism of Random Telegraph Noise in 22-nm FDSOI-Based MOSFET at Cryogenic Temperatures" Nanomaterials 12, no. 23: 4344. https://doi.org/10.3390/nano12234344
APA StyleMa, Y., Bi, J., Wang, H., Fan, L., Zhao, B., Shen, L., & Liu, M. (2022). Mechanism of Random Telegraph Noise in 22-nm FDSOI-Based MOSFET at Cryogenic Temperatures. Nanomaterials, 12(23), 4344. https://doi.org/10.3390/nano12234344