Nano-Structuration of WO3 Nanoleaves by Localized Hydrolysis of an Organometallic Zn Precursor: Application to Photocatalytic NO2 Abatement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of WO3·xH2O NLs (x = 2, 1, 0)
2.3. Decoration of WO3·2H2O NLs by ZnO NPs
2.4. AuNPs Decoration of WO3 and ZnWO4@WO3·H2O NLs
2.5. Characterization
2.6. Photocatalytic Activity
2.7. NO2 Degradation
3. Results and Discussion
3.1. Characterization of WO3·xH2O (x = 0, 1, 2)
3.2. Synthesis of ZnO@WO3 Nanocomposite by Reaction of WO3·2H2O with Dicyclohexylzinc Solution (Zn(Cy)2)
3.3. Transformation of ZnO@WO3 Nanocomposite into ZnWO4 @WO3
3.4. Photocatalytic Properties of the WO3-Based Nanocomposites for NO2 Degradation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jahromi, H.S.; Behzad, M. Construction of 0, 1, 2 and 3 dimensional SnO2 nanostructures decorated by NiO nanopetals: Structures, growth and gas-sensing properties. Mater. Chem. Phys. 2018, 207, 489–498. [Google Scholar] [CrossRef]
- Liu, B.; Gao, L.; Zhou, F.; Duan, G. Preferentially epitaxial growth of β-FeOOH nanoflakes on SnO2 hollow spheres allows the synthesis of SnO2/α-Fe2O3 hetero-nanocomposites with enhanced gas sensing performance for dimethyl disulfide. Sens. Actuators B Chem. 2018, 272, 348–360. [Google Scholar] [CrossRef]
- Ma, L.; Chen, S.; Shao, Y.; Chen, Y.-L.; Liu, M.-X.; Li, H.-X.; Mao, Y.-L.; Ding, S.-J. Recent progress in constructing plasmonic metal/semiconductor hetero-nanostructures for improved photocatalysis. Catalysts 2018, 8, 634. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S.; Jang, J. Hetero-structured semiconductor nanomaterials for photocatalytic applications. J. Ind. Eng. Chem. 2014, 20, 363–371. [Google Scholar] [CrossRef]
- Jiang, W.; Ji, W.; Au, C.-T. Surface/interfacial catalysis of (metal)/oxide system: Structure and performance control. ChemCatChem 2018, 10, 2125–2163. [Google Scholar] [CrossRef]
- Kumar, S.G.; Rao, K.S.R.K. Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO2, WO3 and ZnO). Appl. Surf. Sci. 2017, 391, 124–148. [Google Scholar] [CrossRef]
- Ren, H.; Koshy, P.; Chen, W.-F.; Qi, S.; Sorrell, C.C. Photocatalytic materials and technologies for air purification. J. Hazard. Mater. 2017, 325, 340–366. [Google Scholar] [CrossRef]
- Zouzelka, R.; Rathousky, J. Photocatalytic abatement of NOx pollutants in the air using commercial functional coating with porous morphology. Appl. Catal. B Environ. 2017, 217, 466–476. [Google Scholar] [CrossRef]
- Liao, M.; Su, L.; Deng, Y.; Xiong, S.; Tang, R.; Wu, Z.; Ding, C.; Yang, L.; Gong, D. Strategies to improve WO3-based photocatalysts for wastewater treatment: A review. J. Mater. Sci. 2021, 56, 14416–14447. [Google Scholar] [CrossRef]
- Jing, L.; Xu, Z.; Sun, X.; Shang, J.; Cai, W. The surface properties and photocatalytic activities of ZnO ultrafine particles. Appl. Surf. Sci. 2001, 180, 308–314. [Google Scholar] [CrossRef]
- Adhikari, S.; Sarkar, D.; Madras, G. Highly efficient WO3-ZnO mixed oxides for photocatalysis. RSC Adv. 2015, 5, 11895–11904. [Google Scholar] [CrossRef] [Green Version]
- Abubakar, H.L.; Tijani, J.O.; Abdulkareem, S.A.; Mann, A.; Mustapha, S. A review on the applications of zinc tungstate (ZnWO4) photocatalyst for wastewater treatment. Heliyon 2022, 8, e09964. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-H.; Wu, J.; Yu, Y.-X. DFT exploration of sensor performances of two-dimensional WO3 to ten small gases in terms of work function and band gap changes and I-V responses. Appl. Surf. Sci. 2021, 546, 149104. [Google Scholar] [CrossRef]
- Liu, H.; Duan, L.; Xia, K.; Chen, Y.; Li, Y.; Deng, S.; Xu, J.; Hou, Z. Microwave synthesized 2D WO3 nanosheets for VOCs gas sensors. Nanomaterials 2022, 12, 3211. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.J.; Jun, H.; Borse, P.H.; Lee, J.S. Size effects of WO3 nanocrystals for photooxidation of water in particulate suspension and photoelectrochemical film systems. Int. J. Hydrogen Energy 2009, 34, 3234–3242. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, S.; Mehta, S.K.; Kansal, S.K. rGO-WO3 Heterostructure: Synthesis, characterization and utilization as an efficient adsorbent for the removal of fluoroquinolone antibiotic levofloxacin in an aqueous phase. Molecules 2022, 27, 6956. [Google Scholar] [CrossRef]
- Kahn, M.L.; Cardinal, T.; Bousquet, B.; Monge, M.; Jubera, V.; Chaudret, B. Optical properties of zinc oxide nanoparticles and nanorods synthesized using an organometallic method. ChemPhysChem 2006, 7, 2392–2397. [Google Scholar] [CrossRef]
- Kahn, M.L.; Monge, M.; Colliere, V.; Senocq, F.; Maisonnat, A.; Chaudret, B. Size- and shape-control of crystalline zinc oxide nanoparticles: A new organometallic synthetic method. Adv. Funct. Mater. 2005, 15, 458–468. [Google Scholar] [CrossRef]
- Ryzhikov, A.; Jonca, J.; Kahn, M.; Fajerwerg, K.; Chaudret, B.; Chapelle, A.; Menini, P.; Shim, C.H.; Gaudon, A.; Fau, P. Organometallic synthesis of ZnO nanoparticles for gas sensing: Towards selectivity through nanoparticles morphology. J. Nanopart. Res. 2015, 17, 280. [Google Scholar] [CrossRef]
- Chemseddine, A.; Morineau, R.; Livage, J. Electrochromism of colloidal tungsten oxide. Solid State Ion. 1983, 9, 357–361. [Google Scholar] [CrossRef]
- Choi, Y.-G.; Sakai, G.; Shimanoe, K.; Miura, N.; Yamazoe, N. Preparation of aqueous sols of tungsten oxide dihydrate from sodium tungstate by an ion-exchange method. Sens. Actuators B Chem. 2002, 87, 63–72. [Google Scholar] [CrossRef]
- Oakton, E.; Siddiqi, G.; Fedorov, A.; Coperet, C. Tungsten oxide by non-hydrolytic sol-gel: Effect of molecular precursor on morphology, phase and photocatalytic performance. New J. Chem. 2016, 40, 217–222. [Google Scholar] [CrossRef]
- Hot, J.; Topalov, J.; Ringot, E.; Bertron, A. Investigation on parameters affecting the effectiveness of photocatalytic functional coatings to degrade NO: TiO2 amount on surface, illumination, and substrate roughness. Int. J. Photoenergy 2017, 2017, 6241615. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.M.; Hibino, M.; Miyayania, M.; Kudo, T. Proton conductivity of tungsten trioxide hydrates at intermediate temperature. Solid State Ion. 2000, 134, 271–279. [Google Scholar] [CrossRef]
- Lin, H.; Zhou, F.; Liu, C.-P.; Ozolins, V. Non-Grotthuss proton diffusion mechanism in tungsten oxide dihydrate from first-principles calculations. J. Mater. Chem. A Mater. Energy Sustain. 2014, 2, 12280–12288. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Ou, J.Z.; Strano, M.S.; Kaner, R.B.; Mitchell, A.; Kalantar-zadeh, K. Nanostructured tungsten oxide-properties, synthesis, and applications. Adv. Funct. Mater. 2011, 21, 2175–2196. [Google Scholar] [CrossRef]
- Figlarz, M.; Gerand, B.; Delahaye-Vidal, A.; Dumont, B.; Harb, F.; Coucou, A.; Fievet, F. Topotaxy, nucleation and growth. Solid State Ion. 1990, 43, 143–170. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, J.; Wang, S.; Wang, T.; Lian, J.; Duan, X.; Zheng, W. Topochemical preparation of WO3 nanoplates through precursor H2WO4 and their gas-sensing performances. J. Phys. Chem. C 2011, 115, 18157–18163. [Google Scholar] [CrossRef]
- Ahmadi, M.; Guinel, M.J.F. Synthesis and characterization of tungstite (WO3·H2O) nanoleaves and nanoribbons. Acta Mater. 2014, 69, 203–209. [Google Scholar] [CrossRef] [Green Version]
- Boulova, M.; Lucazeau, G. Crystallite nanosize effect on the structural transitions of WO3 studied by Raman spectroscopy. J. Solid State Chem. 2002, 167, 425–434. [Google Scholar] [CrossRef]
- Solarska, R.; Alexander, B.D.; Augustynski, J. Electrochromic and structural characteristics of mesoporous WO3 films prepared by a sol-gel method. J. Solid State Electrochem. 2004, 8, 748–756. [Google Scholar] [CrossRef]
- Daniel, M.F.; Desbat, B.; Lassegues, J.C.; Gerand, B.; Figlarz, M. Infrared and Raman study of WO3 tungsten trioxides and WO3.xH2O tungsten trioxide hydrates. J. Solid State Chem. 1987, 67, 235–247. [Google Scholar] [CrossRef]
- Nonaka, K.; Takase, A.; Miyakawa, K. Raman spectra of sol-gel derived tungsten oxides. J. Mater. Sci. Lett. 1993, 12, 274–277. [Google Scholar] [CrossRef]
- Andreev, A.S.; Livadaris, V. Characterization of catalytic materials through a facile approach to probe OH groups by solid-state NMR. J. Phys. Chem. C 2017, 121, 14108–14119. [Google Scholar] [CrossRef]
- Escalante, G.; Lopez, R.; Demesa, F.N.; Villa-Sanchez, G.; Castrejon-Sanchez, V.H.; Vivaldo de la Cruz, I. Correlation between Raman spectra and color of tungsten trioxide (WO3) thermally evaporated from a tungsten filament. AIP Adv. 2021, 11, 055103. [Google Scholar] [CrossRef]
- Castillero, P.; Rico-Gavira, V.; Lopez-Santos, C.; Barranco, A.; Perez-Dieste, V.; Escudero, C.; Espinos, J.P.; Gonzalez-Elipe, A.R. Formation of subsurface W5+ species in gasochromic Pt/WO3 thin films exposed to hydrogen. J. Phys. Chem. C 2017, 121, 15719–15727. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, M.; Qin, X. Photocatalytic activity of TiO2 nanofibers: The surface crystalline phase matters. Nanomaterials 2019, 9, 535. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.P.; Xu, X.N.; Liu, Y.T.; Xu, M.; Deng, S.H.; Chen, Y.; Yuan, H.; Yu, F.; Huang, Y.; Zhao, K.; et al. A feasible strategy to balance the crystallinity and specific surface area of metal oxide nanocrystals. Sci. Rep. 2017, 7, 46424. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.-T.; Xiao, E.-C.; Lv, J.-Q.; Qi, Z.-M.; Yue, Z.; Chen, Y.; Chen, G.; Shi, F. Phonon characteristics and intrinsic properties of single phase ZnWO4 ceramic. J. Mater. Sci. Mater. Electron. 2020, 31, 6192–6198. [Google Scholar] [CrossRef]
- Keereeta, Y.; Thongtem, S.; Thongtem, T. Enhanced photocatalytic degradation of methylene blue by WO3/ZnWO4 composites synthesized by a combination of microwave-solvothermal method and incipient wetness procedure. Powder Technol. 2015, 284, 85–94. [Google Scholar] [CrossRef]
- Li, W.; Cao, L.; Kong, X.; Huang, J.; Yao, C.; Fei, J.; Li, J. In situ synthesis and photocatalytic performance of WO3/ZnWO4 composite powders. RSC Adv. 2016, 6, 23783–23789. [Google Scholar] [CrossRef]
- Krysiak, O.A.; Barczuk, P.J.; Bienkowski, K.; Wojciechowski, T.; Augustynski, J. The photocatalytic activity of rutile and anatase TiO2 electrodes modified with plasmonic metal nanoparticles followed by photoelectrochemical measurements. Catal. Today 2019, 321–322, 52–58. [Google Scholar] [CrossRef]
- Somdee, A.; Wannapop, S. Enhanced photocatalytic behavior of ZnO nanorods decorated with a Au, ZnWO4, and Au/ZnWO4 composite: Synthesis and characterization. Colloid Interface Sci. Commun. 2022, 47, 100591. [Google Scholar] [CrossRef]
- Cure, J.; Assi, H.; Cocq, K.; Marin, L.; Fajerwerg, K.; Fau, P.; Beche, E.; Chabal, Y.J.; Esteve, A.; Rossi, C. Controlled growth and grafting of high-density Au nanoparticles on zinc oxide thin films by photo-deposition. Langmuir 2018, 34, 1932–1940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballari, M.M.; Yu, Q.L.; Brouwers, H.J.H. Experimental study of the NO and NO2 degradation by photocatalytically active concrete. Catal. Today 2011, 161, 175–180. [Google Scholar] [CrossRef]
- Gandolfo, A.; Bartolomei, V.; Gomez Alvarez, E.; Tlili, S.; Gligorovski, S.; Kleffmann, J.; Wortham, H. The effectiveness of indoor photocatalytic paints on NOx and HONO levels. Appl. Catal. B Environ. 2015, 166–167, 84–90. [Google Scholar] [CrossRef]
- Bartram, M.E.; Koel, B.E. The molecular adsorption of NO2 and the formation of N2O3 on Au(111). Surf. Sci. 1989, 213, 137–156. [Google Scholar] [CrossRef]
- Sun, L.; Hou, C.; Sun, J.; Mo, Q.; Han, J.; Bai, S.; Luo, R. One-step calcined equiatomic W and Zn precursors to synthesize heterojunction of ZnO/ZnWO4 for NO2 detection. Sens. Actuators B Chem. 2022, 367, 131987. [Google Scholar] [CrossRef]
- Li, J.; Guo, C.; Li, L.; Gu, Y.; BoK-Hee, K.; Huang, J. In situ fabrication of 1D WO3 nanorod/2D ZnWO4 nanosheet heterojunction for enhanced photoelectrochemical performance. Catal. Lett. 2022, 152, 1611–1620. [Google Scholar] [CrossRef]
- He, D.; Zhang, X.; Xie, T.; Zhai, J.; Li, H.; Chen, L.; Peng, L.; Zhang, Y.; Jiang, T. Studies of photo-induced charge transfer properties of ZnWO4 photocatalyst. Appl. Surf. Sci. 2011, 257, 2327–2331. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y.L.; Liu, R.-S.; Tsai, D.P. Plasmonic photocatalysis. Rep. Prog. Phys. 2013, 76, 046401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, D.; Diao, P.; Xu, D.; Wu, Q. Gold/WO3 nanocomposite photoanodes for plasmonic solar water splitting. Nano Res. 2016, 9, 1735–1751. [Google Scholar] [CrossRef]
- Cui, Y.; Pan, L.; Chen, Y.; Afzal, N.; Ullah, S.; Liu, D.; Wang, L.; Zhang, X.; Zou, J.-J. Defected ZnWO4-decorated WO3 nanorod arrays for efficient photoelectrochemical water splitting. RSC Adv. 2019, 9, 5492–5500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, M.; Wang, X.; Zhang, J.; Lu, Y.; Chen, X.; Yang, L.; Wang, F. Boosting the photocatalytic oxidative desulfurization of dibenzothiophene by decoration of MWO4 (M = Cu, Zn, Ni) on WO3. J. Environ. Chem. Eng. 2019, 7, 102809. [Google Scholar] [CrossRef]
- Pereira, P.F.S.; Gouveia, A.F.; Assis, M.; de Oliveira, R.C.; Pinatti, I.M.; Penha, M.; Goncalves, R.F.; Gracia, L.; Andres, J.; Longo, E. ZnWO4 nanocrystals: Synthesis, morphology, photoluminescence and photocatalytic properties. Phys. Chem. Chem. Phys. 2018, 20, 1923–1937. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Gao, Y.; Zhang, Q.; Cao, J.-j.; Huang, R.-j.; Ho, W.; Lee, S.C. Hierarchical porous ZnWO4 microspheres synthesized by ultrasonic spray pyrolysis: Characterization, mechanistic and photocatalytic NOx removal studies. Appl. Catal. A Gen. 2016, 515, 170–178. [Google Scholar] [CrossRef] [Green Version]
- Bonanni, M.; Spanhel, L.; Lerch, M.; Füglein, E.; Müller, G.; Jermann, F. Conversion of colloidal ZnO-WO3 heteroaggregates into strongly blue luminescing ZnWO4 xerogels and films. Chem. Mater. 1998, 10, 304–310. [Google Scholar] [CrossRef]
- Li, S.; Chang, L.; Peng, J.; Gao, J.; Lu, J.; Zhang, F.; Zhu, G.; Hojamberdiev, M. Bi0 nanoparticle loaded on Bi3+-doped ZnWO4 nanorods with oxygen vacancies for enhanced photocatalytic NO removal. J. Alloys Compd. 2020, 818, 152837. [Google Scholar] [CrossRef]
TGA | Microanalysis | |||||
---|---|---|---|---|---|---|
Zn(Cy)2 Amount | Molar Ratio H2O/Zn | Low T° H2O Weight Loss (%) | High T° H2O Weight Loss (%) | Zn (% wt.) | W (% wt.) | O (% wt.) |
0 | - | 7.4 | 8 | - | 76.6 | 19.9 |
0.1 | 8 | 3.5 | 7.8 | - | - | - |
0.25 | 3.4 | 2.2 | 8 | 6.8 | 65 | 23 |
0.5 | 1.7 | 1.54 | 7.9 | 11.2 | 61 | 24.2 |
1 | 0.8 | 1.2 | 8.1 | 12.2 | 60.5 | 23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castello Lux, K.; Fajerwerg, K.; Hot, J.; Ringot, E.; Bertron, A.; Collière, V.; Kahn, M.L.; Loridant, S.; Coppel, Y.; Fau, P. Nano-Structuration of WO3 Nanoleaves by Localized Hydrolysis of an Organometallic Zn Precursor: Application to Photocatalytic NO2 Abatement. Nanomaterials 2022, 12, 4360. https://doi.org/10.3390/nano12244360
Castello Lux K, Fajerwerg K, Hot J, Ringot E, Bertron A, Collière V, Kahn ML, Loridant S, Coppel Y, Fau P. Nano-Structuration of WO3 Nanoleaves by Localized Hydrolysis of an Organometallic Zn Precursor: Application to Photocatalytic NO2 Abatement. Nanomaterials. 2022; 12(24):4360. https://doi.org/10.3390/nano12244360
Chicago/Turabian StyleCastello Lux, Kevin, Katia Fajerwerg, Julie Hot, Erick Ringot, Alexandra Bertron, Vincent Collière, Myrtil L. Kahn, Stéphane Loridant, Yannick Coppel, and Pierre Fau. 2022. "Nano-Structuration of WO3 Nanoleaves by Localized Hydrolysis of an Organometallic Zn Precursor: Application to Photocatalytic NO2 Abatement" Nanomaterials 12, no. 24: 4360. https://doi.org/10.3390/nano12244360
APA StyleCastello Lux, K., Fajerwerg, K., Hot, J., Ringot, E., Bertron, A., Collière, V., Kahn, M. L., Loridant, S., Coppel, Y., & Fau, P. (2022). Nano-Structuration of WO3 Nanoleaves by Localized Hydrolysis of an Organometallic Zn Precursor: Application to Photocatalytic NO2 Abatement. Nanomaterials, 12(24), 4360. https://doi.org/10.3390/nano12244360