Synthesis of Hexagonal Structured GaS Nanosheets for Robust Femtosecond Pulse Generation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Crystal Growth
2.2. Apparatus and Characterization
2.3. Density Functional Theory Analysis and Saturable Absorption Mechanism
3. Experimental Setup and Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schille, J.; Kraft, S.; Pflug, T.; Scholz, C.; Clair, M.; Horn, A.; Loeschner, U. Study on X-Ray Emission Using Ultrashort Pulsed Lasers in Materials Processing. Materials 2021, 14, 4537. [Google Scholar] [CrossRef]
- Bai, Z.; Bai, Z.; Sun, X.; Liang, Y.; Wang, K.; Jin, D.; Fan, Z. A 33.2 W High Beam Quality Chirped-Pulse Amplification-Based Femtosecond Laser for Industrial Processing. Materials 2020, 13, 2841. [Google Scholar] [CrossRef]
- Stachowiak, D.; Bogusławski, J.; Głuszek, A.; Łaszczych, Z.; Wojtkowski, M.; Soboń, G. Frequency-Doubled Femtosecond Er-Doped Fiber Laser for Two-Photon Excited Fluorescence Imaging. Biomed. Opt. Express 2020, 11, 4431–4442. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.K.; Yabushita, A.; Kobayashi, T. Primary Electronic and Vibrational Dynamics of Cytochrome C Observed by Sub-10 Fs Nuv Laser Pulses. J. Phys. Chem. B 2020, 124, 8249–8258. [Google Scholar] [CrossRef]
- Han, W.; Zhao, K.; Pan, C.; Yuan, Y.; Zhao, Y.; Cheng, Z.; Wang, M. Fabrication of Ge2sb2te5 Crystal Micro/Nanostructures through Single-Shot Gaussian-Shape Femtosecond Laser Pulse Irradiation. Opt. Express 2020, 28, 25250–25262. [Google Scholar] [CrossRef]
- Bobb, J.A.; Rodrigues, C.J.; El-Shall, M.S.; Tibbetts, K.M. Laser-Assisted Synthesis of Gold–Graphene Oxide Nanocomposites: Effect of Pulse Duration. Phys. Chem. Chem. Phys. 2020, 22, 18294–18303. [Google Scholar] [CrossRef] [PubMed]
- Inoue, S.; Sakabe, S.; Nakamiya, Y.; Hashida, M. Jitter-Free 40-Fs 375-Kev Electron Pulses Directly Accelerated by an Intense Laser Beam and Their Application to Direct Observation of Laser Pulse Propagation in a Vacuum. Sci. Rep. 2020, 10, 20387. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Long, M.; Deng, H.; Cheng, S.; Wu, Z.; Zhang, Z.; Zhang, A.; Sun, J. Developments of Space Debris Laser Ranging Technology Including the Applications of Picosecond Lasers. Appl. Sci. 2021, 11, 10080. [Google Scholar] [CrossRef]
- Smyser, M.E.; Braun, E.L.; Athmanathan, V.; Slipchenko, M.N.; Roy, S.; Meyer, T.R. Dual-Output Fs/Ps Burst-Mode Laser for Megahertz-Rate Rotational Coherent Anti-Stokes Raman Scattering. Opt. Lett. 2020, 45, 5933–5936. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Wang, J.; Wu, J.; Ma, P.; Su, R.; Ma, Y.; Zhou, P. Near-Infrared Optical Modulation for Ultrashort Pulse Generation Employing Indium Monosulfide (Ins) Two-Dimensional Semiconductor Nanocrystals. Nanomaterials 2019, 9, 865. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.; Pan, J.; Li, D.; Shen, Y.; Han, X.; Gao, J.; Man, B.; Zhang, H.; Jiang, S. Versatile Mode-Locked Operations in an Er-Doped Fiber Laser with a Film-Type Indium Tin Oxide Saturable Absorber. Nanomaterials 2019, 9, 701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, S.; Liu, X.; Li, X.; Luo, W.; Xu, W.; Shi, Z.; Ren, Y.; Zhang, C.; Zhang, K. Electrochemical Peeling Few-Layer Snse2 for High-Performance Ultrafast Photonics. ACS Appl. Mater. Interfaces 2020, 12, 43049–43057. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Peng, J.; Liu, R.; Liu, J.; Feng, T.; Qyyum, A.; Gao, C.; Xue, M.; Zhang, J. Fe3o4 Nanoparticle-Enabled Mode-Locking in an Erbium-Doped Fiber Laser. Front. Optoelectron. 2020, 13, 149–155. [Google Scholar] [CrossRef]
- Guo, B.; Xiao, Q.-L.; Wang, S.-H.; Zhang, H. 2d Layered Materials: Synthesis, Nonlinear Optical Properties, and Device Applications. Laser Photonics Rev. 2019, 13, 1800327. [Google Scholar] [CrossRef]
- Lai, W.; Zhang, H.; Zhu, Z.; Yan, P.; Ruan, S.; Sun, Z.; Wang, J. Sub-200 Fs, 344 Mhz Mode-Locked Tm-Doped Fiber Laser. Opt. Lett. 2020, 45, 5492–5495. [Google Scholar] [CrossRef]
- Bao, Q.; Zhang, H.; Wang, Y.; Ni, Z.; Yan, Y.; Shen, Z.X.; Loh, K.P.; Tang, D.Y. Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers. Adv. Funct. Mater. 2009, 19, 3077–3083. [Google Scholar] [CrossRef]
- Hasan, T.; Sun, Z.; Wang, F.; Bonaccorso, F.; Tan, P.H.; Rozhin, A.G.; Ferrari, A.C. Nanotube–Polymer Composites for Ultrafast Photonics. Adv. Mater. 2009, 21, 3874–3899. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, X.; Wu, K.; Wang, H.; Wang, J.; Chen, J. Q-Switched Fiber Laser Based on Transition Metal Dichalcogenides Mos2, Mose2, Ws2, and Wse2. Opt. Express 2015, 23, 26723–26737. [Google Scholar] [CrossRef]
- Popa, D.; Sun, Z.; Torrisi, F.; Hasan, T.; Wang, F.; Ferrari, A.C. Sub 200 Fs Pulse Generation from a Graphene Mode-Locked Fiber Laser. Appl. Phys. Lett. 2010, 97, 203106. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Hasan, T.; Torrisi, F.; Popa, D.; Privitera, G.; Wang, F.; Bonaccorso, F.; Basko, D.M.; Ferrari, A.C. Graphene Mode-Locked Ultrafast Laser. ACS Nano 2010, 4, 803–810. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Li, X.H.; Jiang, C.; Brown, C.T.A.; Ning, J.Q.; Zhang, K.; Yu, Q.; Ge, X.T.; Wang, Q.J.; Zhang, Z.Y. Photon-Generated Carrier Transfer Process from Graphene to Quantum Dots: Optical Evidences and Ultrafast Photonics Applications. 2D Mater. Appl. 2020, 4, 27. [Google Scholar] [CrossRef]
- Lu, S.; Zhao, C.; Zou, Y.; Chen, S.; Chen, Y.; Li, Y.; Zhang, H.; Wen, S.; Tang, D. Third Order Nonlinear Optical Property of Bi2se3. Opt. Express 2013, 21, 2072–2082. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yin, J.; He, T.; Yan, P. Sb2te3 Mode-Locked Ultrafast Fiber Laser at 1.93 Μm. Chin. Phys. B 2018, 27, 084214. [Google Scholar] [CrossRef]
- Wang, T.; Yu, Q.; Guo, K.; Shi, X.; Kan, X.; Xu, Y.; Wu, J.; Zhang, K.; Zhou, P. Sb2te3 Topological Insulator for 52 Nm Wideband Tunable Yb-Doped Passively Q-Switched Fiber Laser. Front. Inf. Technol. Electron. Eng. 2021, 22, 287–295. [Google Scholar] [CrossRef]
- Zhu, S.-C.; Peng, S.-J.; Wu, K.-M.; Yip, C.-T.; Yao, K.-L.; Lam, C.-H. Negative Differential Resistance, Perfect Spin-Filtering Effect and Tunnel Magnetoresistance in Vanadium-Doped Zigzag Blue Phosphorus Nanoribbons. Phys. Chem. Chem. Phys. 2018, 20, 21105–21112. [Google Scholar] [CrossRef]
- Tuo, M.; Xu, C.; Mu, H.; Bao, X.; Wang, Y.; Xiao, S.; Ma, W.; Li, L.; Tang, D.; Zhang, H.; et al. Ultrathin 2d Transition Metal Carbides for Ultrafast Pulsed Fiber Lasers. ACS Photonics 2018, 5, 1808–1816. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, S.; Zhang, Y.; Dong, Z.; Deng, H.; Guo, K.; Wang, T.; Shi, X.; Liu, F.; Xian, T. Femtosecond Ultrafast Pulse Generation with High-Quality 2h-Tas2 Nanosheets Via Top-Down Empirical Approach. Nanoscale 2021, 13, 20471–20480. [Google Scholar] [CrossRef]
- Jiang, X.; Liu, S.; Liang, W.; Luo, S.; He, Z.; Ge, Y.; Wang, H.; Cao, R.; Zhang, F.; Wen, Q.; et al. Broadband Nonlinear Photonics in Few-Layer Mxene Ti3c2tx (T = F, O, or Oh) (Laser Photonics Rev. 12(2)/2018). Laser Photonics Rev. 2018, 12, 1870013. [Google Scholar] [CrossRef] [Green Version]
- Jhon, Y.I.; Koo, J.; Anasori, B.; Seo, M.; Lee, J.H.; Gogotsi, Y.; Jhon, Y.M. Metallic Mxene Saturable Absorber for Femtosecond Mode-Locked Lasers. Adv. Mater. 2017, 29, 1702496. [Google Scholar] [CrossRef]
- Liu, J.; Huang, H.; Zhang, F.; Zhang, Z.; Liu, J.; Zhang, H.; Su, L. Bismuth Nanosheets as a Q-Switcher for a Mid-Infrared Erbium-Doped Srf2 Laser. Photonics Res. 2018, 6, 762–767. [Google Scholar] [CrossRef]
- Wang, C.; Wang, L.; Li, X.; Luo, W.; Feng, T.; Zhang, Y.; Guo, P.; Ge, Y. Few-Layer Bismuthene for Femtosecond Soliton Molecules Generation in Er-Doped Fiber Laser. Nanotechnology 2018, 30, 025204. [Google Scholar] [CrossRef] [PubMed]
- Chai, T.; Li, X.; Feng, T.; Guo, P.; Song, Y.; Chen, Y.; Zhang, H. Few-Layer Bismuthene for Ultrashort Pulse Generation in a Dissipative System Based on an Evanescent Field. Nanoscale 2018, 10, 17617–17622. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Dai, J.; Zeng, X.C. Electron-Transport Properties of Few-Layer Black Phosphorus. J. Phys. Chem. Lett. 2015, 6, 1996–2002. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, H.; Wu, H.; Xu, C.; Zhang, H.; Jin, L.; Zou, Y.; Ma, X.; Yin, J. Enhancing Q-Switched Fiber Laser Performance Based on Reverse Saturable and Saturable Absorption Properties of Cucro2 Nanoparticle-Polyimide Films. ACS Appl. Mater. Interfaces 2021, 13, 21748–21755. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Cao, L.; Chu, H.; Wang, Y.; Zhao, S.; Li, Y.; Qi, N.; Sun, Z.; Jiang, X.; Wang, R.; et al. Broadband Nonlinear Optical Response of Inse Nanosheets for the Pulse Generation from 1 to 2 Μm. ACS Appl. Mater. Interfaces 2019, 11, 48281–48289. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, J.; Yu, Q.; Wang, T.; Zhang, Y.; Chen, C.; Li, C.; Wang, Z.; Zhu, S.; Ding, X.; et al. Sub-Band Gap Absorption and Optical Nonlinear Response of Mnpse3 Nanosheets for Pulse Generation in the L-Band. ACS Appl. Mater. Interfaces 2021, 13, 13524–13533. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Tang, Y.; Zhang, S. Pbs Nanoparticles Saturable Absorber for Ultrafast Pulse Generation in 2-µm Fiber Laser. Opt. Lett. 2020, 45, 161–164. [Google Scholar] [CrossRef]
- Tamura, K.; Ippen, E.P.; Haus, H.A.; Nelson, L.E. 77-Fs Pulse Generation from a Stretched-Pulse Mode-Locked All-Fiber Ring Laser. Opt. Lett. 1993, 18, 1080–1082. [Google Scholar] [CrossRef]
- Xian, T.; Zhan, L.; Wang, W.; Zhang, W. Subharmonic Entrainment Breather Solitons in Ultrafast Lasers. Phys. Rev. Lett. 2020, 125, 163901. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kim, J.J.; Lee, S.B.; Kim, D.-Y.; Lee, K.; Lee, W. Broadband Passively Mode-Locked Fiber Laser with DNA Aqueous Solution as Saturable Absorber. Appl. Sci. 2021, 11, 9871. [Google Scholar] [CrossRef]
- Yun, L.; Zhao, W. Pbs Quantum Dots Saturable Absorber for Dual-Wavelength Solitons Generation. Nanomaterials 2021, 11, 2561. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhu, Y.-N.; Liu, M.; Wen, B.; Fang, S.; Teng, H.; Lei, M.; Liu, L.-M.; Wei, Z. Optical Properties and Applications for Mos2-Sb2te3-Mos2 Heterostructure Materials. Photonics Res. 2018, 6, 220–227. [Google Scholar] [CrossRef]
- Shang, X.; Guo, L.; Zhang, H.; Li, D.; Yue, Q. Titanium Disulfide Based Saturable Absorber for Generating Passively Mode-Locked and Q-Switched Ultra-Fast Fiber Lasers. Nanomaterials 2020, 10, 1922. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.K.; Liu, S.; Ahmed, S.; Qu, J.; Qiao, J.; Wen, Q.; Tsang, Y.H. Ultrafast Yb-Doped Fiber Laser Using Few Layers of Pds2 Saturable Absorber. Nanomaterials 2020, 10, 2441. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Gu, Y.; Lin, Y.-C.; Yu, Y.; Geohegan, B.D.; Xiao, K. Synthesis and Emerging Properties of 2d Layered Iii–Vi Metal Chalcogenides. Appl. Phys. Rev. 2019, 6, 041312. [Google Scholar] [CrossRef]
- Yang, S.; Li, Y.; Wang, X.; Huo, N.; Xia, J.-B.; Li, S.-S.; Li, J. High Performance Few-Layer Gas Photodetector and Its Unique Photo-Response in Different Gas Environments. Nanoscale 2014, 6, 2582–2587. [Google Scholar] [CrossRef]
- Ma, Y.; Dai, Y.; Guo, M.; Yu, L.; Huang, B. Tunable Electronic and Dielectric Behavior of Gas and Gase Monolayers. Phys. Chem. Chem. Phys. 2013, 15, 7098–7105. [Google Scholar] [CrossRef]
- Sun, Z.; Chang, H. Graphene and Graphene-Like Two-Dimensional Materials in Photodetection: Mechanisms and Methodology. ACS Nano 2014, 8, 4133–4156. [Google Scholar] [CrossRef]
- Giannazzo, F.; Greco, G.; Roccaforte, F.; Sonde, S.S. Vertical Transistors Based on 2d Materials: Status and Prospects. Crystals 2018, 8, 70. [Google Scholar] [CrossRef] [Green Version]
- Jung, C.S.; Shojaei, F.; Park, K.; Oh, J.Y.; Im, H.S.; Jang, D.M.; Park, J.; Kang, H.S. Red-to-Ultraviolet Emission Tuning of Two-Dimensional Gallium Sulfide/Selenide. ACS Nano 2015, 9, 9585–9593. [Google Scholar] [CrossRef]
- Araujo, F.D.V.; Oliveira, V.V.; Gadelha, A.C.; Carvalho, T.C.V.; Fernandes, T.F.D.; Silva, F.W.N.; Longuinhos, R.; Ribeiro-Soares, J.; Jorio, A.; Filho, A.G.S.; et al. Temperature-Dependent Phonon Dynamics and Anharmonicity of Suspended and Supported Few-Layer Gallium Sulfide. Nanotechnology 2020, 31, 495702. [Google Scholar] [CrossRef]
- Giannazzo, F.; Shtepliuk, I.; Ivanov, G.; Iakimov, T.; Kakanakova-Georgieva, A.; Schiliro, E.; Fiorenza, P.; Yakimova, R. Probing the Uniformity of Hydrogen Intercalation in Quasi-Free-Standing Epitaxial Graphene on Sic by Micro-Raman Mapping and Conductive Atomic Force Microscopy. Nanotechnology 2019, 30, 284003. [Google Scholar] [CrossRef] [PubMed]
- Shtepliuk, I.; Caffrey, N.M.; Iakimov, T.; Khranovskyy, V.; Abrikosov, I.A.; Yakimova, R. On the Interaction of Toxic Heavy Metals (Cd, Hg, Pb) with Graphene Quantum Dots and Infinite Graphene. Sci. Rep. 2017, 7, 3934. [Google Scholar] [CrossRef] [PubMed]
- Carey, B.J.; Ou, J.Z.; Clark, R.M.; Berean, K.J.; Zavabeti, A.; Chesman, A.S.R.; Russo, S.P.; Lau, D.W.M.; Xu, Z.-Q.; Bao, Q.; et al. Wafer-Scale Two-Dimensional Semiconductors from Printed Oxide Skin of Liquid Metals. Nat. Commun. 2017, 8, 14482. [Google Scholar] [CrossRef]
- Tverjanovich, A.; Khomenko, M.; Bereznev, S.; Fontanari, D.; Sokolov, A.; Usuki, T.; Ohara, K.; le Coq, D.; Masselin, P.; Bychkov, E. Glassy Gas: Transparent and Unusually Rigid Thin Films for Visible to Mid-Ir Memory Applications. Phys. Chem. Chem. Phys. 2020, 22, 25560–25573. [Google Scholar] [CrossRef] [PubMed]
- Shen, G.; Chen, D.; Chen, P.-C.; Zhou, C. Vapor−Solid Growth of One-Dimensional Layer-Structured Gallium Sulfide Nanostructures. ACS Nano 2009, 3, 1115–1120. [Google Scholar] [CrossRef]
- Ahmed, S.; Qiao, J.; Cheng, P.K.; Saleque, A.M.; Ivan, M.N.A.S.; Alam, T.I.; Tsang, Y.H. Two-Dimensional Gallium Sulfide as a Novel Saturable Absorber for Broadband Ultrafast Photonics Applications. ACS Appl. Mater. Interfaces 2021, 13, 61518–61527. [Google Scholar] [CrossRef]
- Castellanos-Gomez, A.; Vicarelli, L.; Prada, E.; Island, J.O.; Narasimha-Acharya, K.L.; Blanter, S.I.; Groenendijk, D.J.; Buscema, M.; Steele, G.A.; Alvarez, J.V.; et al. Isolation and Characterization of Few-Layer Black Phosphorus. 2D Materials 2014, 1, 025001. [Google Scholar] [CrossRef]
- Alencar, R.S.; Longuinhos, R.; Rabelo, C.; Miranda, H.; Viana, B.C.; Filho, A.G.S.; Cançado, L.G.; Jorio, A.; Ribeiro-Soares, J. Raman Spectroscopy Polarization Dependence Analysis in Two-Dimensional Gallium Sulfide. Phys. Rev. B 2020, 102, 165307. [Google Scholar] [CrossRef]
- Liu, M.; Wei, Z.-W.; Luo, A.-P.; Xu, W.-C.; Luo, Z.-C. Recent Progress on Applications of 2d Material-Decorated Microfiber Photonic Devices in Pulse Shaping and All-Optical Signal Processing. Nanophotonics 2020, 9, 2641–2671. [Google Scholar] [CrossRef]
- Xinxin, J.; Guohua, H.; Meng, Z.; Tom, A.-O.; Zheng, Z.; Tawfique, H. Environmentally Stable Black Phosphorus Saturable Absorber for Ultrafast Laser. Nanophotonics 2020, 9, 2445–2449. [Google Scholar]
- Liu, H.; Zheng, X.-W.; Liu, M.; Zhao, N.; Luo, A.-P.; Luo, Z.-C.; Xu, W.-C.; Zhang, H.; Zhao, C.-J.; Wen, S.-C. Femtosecond Pulse Generation from a Topological Insulator Mode-Locked Fiber Laser. Opt. Express 2014, 22, 6868–6873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Pang, L.; Zhao, Q.; Liu, W.; Su, Y. Vse2 Nanosheets for Ultrafast Fiber Lasers. J. Mater. Chem. C 2020, 8, 1104–1109. [Google Scholar] [CrossRef]
- Wu, Q.; Jin, X.; Chen, S.; Jiang, X.; Hu, Y.; Jiang, Q.; Wu, L.; Li, J.; Zheng, Z.; Zhang, M.; et al. Mxene-Based Saturable Absorber for Femtosecond Mode-Locked Fiber Lasers. Opt. Express 2019, 27, 10159–10170. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.-F.; Lin, W.; Zhang, H.-N.; Xu, S.-H.; Yang, Z.-M. Nonlinear Absorption Properties of Cr2ge2te6 and Its Application as an Ultra-Fast Optical Modulator. Nanomaterials 2019, 9, 789. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, H.; Aidit, S.N.; Thambiratnam, K. 85 Nm Wide-Band Tunable Erbium Doped Fiber Laser Using a Gallium Selenide (Gase)-Based Saturable Absorber for Passive Optical Modulation. Laser Phys. Lett. 2019, 16, 095101. [Google Scholar] [CrossRef]
- Long, H.; Shi, Y.; Wen, Q.; Tsang, Y.H. Ultrafast Laser Pulse (115 Fs) Generation by Using Direct Bandgap Ultrasmall 2d Gate Quantum Dots. J. Mater. Chem. C 2019, 7, 5937–5944. [Google Scholar] [CrossRef]
- Liu, X.; Wang, G.; Zhu, M.; Han, K.; Zhang, W.; Zhang, H. Traditional Soliton Erbium-Doped Fiber Laser with Inse as Saturable Absorber. Front. Inf. Technol. Electron. Eng. 2021, 22, 325–333. [Google Scholar] [CrossRef]
SA | Isat [MW/cm−2] | ΔT [%] | λ [nm] | tmin [fs] | F [MHz] | SNR [dB] | Emax [nJ] | Reported Work Duration | Ref. | |
---|---|---|---|---|---|---|---|---|---|---|
Gra | Graphene | 0.61/0.71 | 6.2 | 1565 | 756 | 1.79 | 65 | \ | \ | [16] |
BP | Black phosphorus | 8.23 | 9.98 | 1567 | 538 | 30.3 | 60 | \ | 200 h | [61] |
TIs | Bi2Se3 | 12 | 3.9 | 1557.5 | 660 | 12.5 | 55 | 0.144 | 8 h | [62] |
TMDC | VSe2 | 61.9 | 22.5 | 1565.69 | 910 | 2.081 | 76 | \ | 24 h | [63] |
MXene | Ti3C2Tx | 1.94 | 11.3 | 1564 | 597 | 18 | 55.2 | \ | \ | [64] |
other | Cr2Ge2Te6 | 5.8 | 15.3 | 1561.59 | 881 | 19.33 | 48 | 0.149 | \ | [65] |
Group III metal chalcogenides | GaSe | 0.024 | 10 | 1501–1586 | 3.6 µs | 0.058 | 47 | 30 | Q-switched | [66] |
GaTe | 3100 | 1.27 | 1530.9 | 115 | 8.79 | 43 | 0.436 | 9 h | [67] | |
InSe | \ | 9.55 | 1568.73 | 2.06 ps | 1.73 | \ | \ | \ | [68] | |
TIS2 | 17.79 | 13.19 | 1531.69 | 2.36 ps | 3.43 | 60 | 0.05 | \ | [43] | |
GaS | 140 | 8.2 | 1560 | 448 | 16.6 | 51.55 | 0.48 | 30 days | Our work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, K.; Yu, Q.; Liu, F.; Deng, H.; Yi, T.; Ren, B.; Su, W.; Zhu, S.; Wang, Z.; Wu, J.; et al. Synthesis of Hexagonal Structured GaS Nanosheets for Robust Femtosecond Pulse Generation. Nanomaterials 2022, 12, 378. https://doi.org/10.3390/nano12030378
Guo K, Yu Q, Liu F, Deng H, Yi T, Ren B, Su W, Zhu S, Wang Z, Wu J, et al. Synthesis of Hexagonal Structured GaS Nanosheets for Robust Femtosecond Pulse Generation. Nanomaterials. 2022; 12(3):378. https://doi.org/10.3390/nano12030378
Chicago/Turabian StyleGuo, Kun, Qiang Yu, Fangqi Liu, Haiqin Deng, Tianan Yi, Bo Ren, Wei Su, Sicong Zhu, Zhiqiang Wang, Jian Wu, and et al. 2022. "Synthesis of Hexagonal Structured GaS Nanosheets for Robust Femtosecond Pulse Generation" Nanomaterials 12, no. 3: 378. https://doi.org/10.3390/nano12030378
APA StyleGuo, K., Yu, Q., Liu, F., Deng, H., Yi, T., Ren, B., Su, W., Zhu, S., Wang, Z., Wu, J., & Zhou, P. (2022). Synthesis of Hexagonal Structured GaS Nanosheets for Robust Femtosecond Pulse Generation. Nanomaterials, 12(3), 378. https://doi.org/10.3390/nano12030378