Material Design and Optimisation of Electrochemical Li-Ion Storage Properties of Ternary Silicon Oxycarbide/Graphite/Tin Nanocomposites
Abstract
:1. Introduction
2. Materials and Methods
Synthesis of SiOC/C/Sn Composites
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Obrovac, M.N.; Chevrier, V.L. Alloy Negative Electrodes for Li-Ion Batteries. Chem. Rev. 2014, 114, 11444–11502. [Google Scholar] [CrossRef] [PubMed]
- Scrosati, B.; Hassoun, J.; Sun, Y.-K. Lithium-ion batteries. A look into the future. Energy Environ. Sci. 2011, 4, 3287–3295. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, T.; Cao, G. Promises and challenges of tin-based compounds as anode materials for lithium-ion batteries. Int. Mater. Rev. 2015, 60, 330–352. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, Q.; Zhu, Y.; Liu, Y.; Langrock, A.; Zachariah, M.R.; Wang, C. Uniform nano-Sn/C composite anodes for lithium ion batteries. Nano Lett. 2013, 13, 470–474. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lee, J.Y.; Deivaraj, T.C. Tin Nanoparticle Loaded Graphite Anodes for Li-Ion Battery Applications. J. Electrochem. Soc. 2004, 151, A1804. [Google Scholar] [CrossRef]
- Idota, Y.; Kubota, T.; Matsufuji, A. Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion—Storage Material. Science 1997, 31, 1395–1398. [Google Scholar] [CrossRef] [Green Version]
- Mao, O.; Dahn, J.R. Mechanically Alloyed Sn-Fe(-C) Powders as Anode Materials for Li-Ion Batteries: II. The Sn-Fe System. J. Electrochem. Soc. 1999, 146, 405–413. [Google Scholar] [CrossRef]
- Tamura, N.; Ohshita, R.; Fujimoto, M.; Fujitani, S.; Kamino, M.; Yonezu, I. Study on the anode behavior of Sn and Sn-Cu alloy thin-film electrodes. J. Power Sources 2002, 107, 48–55. [Google Scholar] [CrossRef]
- Kamali, A.R.; Fray, D.J. Tin-based materials as advanced anode materials for lithium ion batteries: A review. Rev. Adv. Mater. Sci. 2011, 27, 14–24. [Google Scholar]
- Derrien, G.; Hassoun, J.; Panero, S.; Scrosati, B. Nanostructured Sn-C composite as an advanced anode material in high-performance lithium-ion batteries. Adv. Mater. 2007, 19, 2336–2340. [Google Scholar] [CrossRef]
- Rohrer, J.; Vrankovic, D.; Cupid, D.; Riedel, R.; Seifert, H.J.; Albe, K.; Graczyk-Zajac, M. Si-and Sn-containing SiOCN-based nanocomposites as anode materials for lithium ion batteries: Synthesis, thermodynamic characterization and modeling. Int. J. Mater. Res. 2017, 108, 920–932. [Google Scholar] [CrossRef]
- Kaspar, J.; Terzioglu, C.; Ionescu, E.; Graczyk-Zajac, M.; Hapis, S.; Kleebe, H.J.; Riedel, R. Stable SiOC/Sn nanocomposite anodes for lithium-ion batteries with outstanding cycling stability. Adv. Funct. Mater. 2014, 24, 4097–4104. [Google Scholar] [CrossRef]
- Dubey, R.J.-C.; Sasikumar, P.V.W.; Krumeich, F.; Blugan, G.; Kuebler, J.; Kravchyk, K.V.; Graule, T.; Kovalenko, M.V. Silicon Oxycarbide—Tin Nanocomposite as a High-Power-Density Anode for Li-Ion Batteries. Adv. Sci. 2019, 6, 1901220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tolosa, A.; Widmaier, M.; Krüner, B.; Griffin, J.M.; Presser, V. Continuous silicon oxycarbide fiber mats with tin nanoparticles as a high capacity anode for lithium-ion batteries. Sustain. Energy Fuels 2018, 2, 215–228. [Google Scholar] [CrossRef] [Green Version]
- Kaspar, J.; Graczyk-Zajac, M.; Choudhury, S.; Riedel, R. Impact of the electrical conductivity on the lithium capacity of polymer-derived silicon oxycarbide (SiOC) ceramics. Electrochim. Acta 2016, 216, 196–202. [Google Scholar] [CrossRef]
- Graczyk-Zajac, M.; Reinold, L.M.; Kaspar, J.; Sasikumar, P.V.W.; Soraru, G.D.; Riedel, R. New insights into understanding irreversible and reversible lithium storage within SIOC and SICN ceramics. Nanomaterials 2015, 5, 233–245. [Google Scholar] [CrossRef] [Green Version]
- Colombo, P.; Mera, G.; Riedel, R.; Sorarù, G.D. Polymer-derived ceramics: 40 Years of research and innovation in advanced ceramics. J. Am. Ceram. Soc. 2010, 93, 1805–1837. [Google Scholar] [CrossRef]
- Erb, D.; Lu, K. Additive and pyrolysis atmosphere effects on polysiloxane-derived porous SiOC ceramics. J. Eur. Ceram. Soc. 2017, 37, 4547–4557. [Google Scholar] [CrossRef]
- Xia, K.; Wu, Z.; Xuan, C.; Xiao, W.; Wang, J.; Wang, D. Effect of KOH etching on the structure and electrochemical performance of SiOC anodes for lithium-ion batteries. Electrochim. Acta 2017, 245, 287–295. [Google Scholar] [CrossRef]
- Stabler, C.; Celarie, F.; Rouxel, T.; Limbach, R.; Wondraczek, L.; Riedel, R.; Ionescu, E. Effect of composition and high-temperature annealing on the local deformation behavior of silicon oxycarbides. J. Eur. Ceram. Soc. 2019, 39, 2287–2296. [Google Scholar] [CrossRef]
- Stabler, C.; Reitz, A.; Stein, P.; Albert, B.; Riedel, R.; Ionescu, E. Thermal properties of SiOC glasses and glass ceramics at elevated temperatures. Materials 2018, 11, 279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pradeep, V.S.; Graczyk-Zajac, M.; Wilamowska, M.; Riedel, R.; Soraru, G.D. Influence of pyrolysis atmosphere on the lithium storage properties of carbon-rich polymer derived SiOC ceramic anodes. Solid State Ionics 2014, 262, 22–24. [Google Scholar] [CrossRef]
- Wilamowska, M.; Pradeep, V.S.; Graczyk-Zajac, M.; Riedel, R.; Sorarù, G.D. Tailoring of SiOC composition as a way to better performing anodes for Li-ion batteries. Solid State Ionics 2014, 260, 94–100. [Google Scholar] [CrossRef]
- Wilamowska-Zawlocka, M.; Puczkarski, P.; Grabowska, Z.; Kaspar, J.; Graczyk-Zajac, M.; Riedel, R.; Sorarù, G.D. Silicon oxycarbide ceramics as anodes for lithium ion batteries: Influence of carbon content on lithium storage capacity. RSC Adv. 2016, 6, 104597–104607. [Google Scholar] [CrossRef]
- Kaspar, J.; Graczyk-Zajac, M.; Riedel, R. Carbon-rich SiOC anodes for lithium-ion batteries: Part II. Role of thermal cross-linking. Solid State Ionics 2012, 225, 527–531. [Google Scholar] [CrossRef]
- Cordelair, J.; Greil, P. Electrical conductivity measurements as a microprobe for structure transitions in polysiloxane derived Si-O-C ceramics. J. Eur. Ceram. Soc. 2000, 20, 1947–1957. [Google Scholar] [CrossRef]
- Wilson, A.M.; Xing, W.; Zank, G.; Yates, B.; Dahn, J.R. Pyrolysed pitch-polysilane blends for use as anode materials in lithium ion batteries II: The effect of oxygen. Solid State Ionics 1997, 100, 259–266. [Google Scholar] [CrossRef]
- Larcher, D.; Mudalige, C.; George, A.E.; Porter, V.; Gharghouri, M.; Dahn, J.R. Si-containing disordered carbons prepared by pyrolysis of pitch/polysilane blends: Effect of oxygen and sulfur. Solid State Ionics 1999, 122, 71–83. [Google Scholar] [CrossRef]
- Dibandjo, P.; Graczyk-Zajac, M.; Riedel, R.; Pradeep, V.S.; Soraru, G.D. Lithium insertion into dense and porous carbon-rich polymer-derived SiOC ceramics. J. Eur. Ceram. Soc. 2012, 32, 2495–2503. [Google Scholar] [CrossRef]
- Blum, Y.D.; MacQueen, D.B.; Kleebe, H.J. Synthesis and characterization of carbon-enriched silicon oxycarbides. J. Eur. Ceram. Soc. 2005, 25, 143–149. [Google Scholar] [CrossRef]
- Fukui, H.; Ohsuka, H.; Hino, T.; Kanamura, K. Influence of polystyrene/phenyl substituents in precursors on microstructures of Si-O-C composite anodes for lithium-ion batteries. J. Power Sources 2011, 196, 371–378. [Google Scholar] [CrossRef]
- David, L.; Bhandavat, R.; Barrera, U.; Singh, G. Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries. Nat. Commun. 2016, 7, 10998–11008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, G.; Hanaor, D.A.H.; Wang, J.; Kober, D.; Li, S.; Wang, X.; Shen, X.; Bekheet, M.F.; Gurlo, A. Polymer derived SiOC integrated with graphene aerogel as highly stable Li-ion battery anodes. ACS Appl. Mater. Interfaces 2020, 12, 46045–46056. [Google Scholar] [CrossRef] [PubMed]
- Bhandavat, R.; Singh, G. Stable and efficient li-ion battery anodes prepared from polymer-derived silicon oxycarbide-carbon nanotube shell/core composites. J. Phys. Chem. C 2013, 117, 11899–11905. [Google Scholar] [CrossRef] [Green Version]
- Knozowski, D.; Graczyk-Zajac, M.; Vrankovic, D.; Trykowski, G.; Sawczak, M.; De Carolis, D.M.; Wilamowska-Zawłocka, M. New insights on lithium storage in silicon oxycarbide/carbon composites: Impact of microstructure on electrochemical properties. Compos. Part B Eng. 2021, 109302. [Google Scholar] [CrossRef]
- Konno, H.; Morishita, T.; Sato, S.; Habazaki, H.; Inagaki, M. High-capacity negative electrode materials composed of Si-C-O glass-like compounds and exfoliated graphite for lithium ion battery. Carbon N. Y. 2005, 43, 1111–1114. [Google Scholar] [CrossRef]
- Knozowski, D.; Graczyk-Zajac, M.; Trykowski, G.; Wilamowska-Zawłocka, M. Silicon oxycarbide-graphite electrodes for high-power energy storage devices. Materials 2020, 13, 4302. [Google Scholar] [CrossRef]
- Wu, Z.; Cheng, X.; Tian, D.; Gao, T.; He, W.; Yang, C. SiOC nanolayers directly-embedded in graphite as stable anode for high-rate lithium ion batteries. Chem. Eng. J. 2019, 375, 121997. [Google Scholar] [CrossRef]
- Graczyk-Zajac, M.; Fasel, C.; Riedel, R. Polymer-derived-SiCN ceramic/graphite composite as anode material with enhanced rate capability for lithium ion batteries. J. Power Sources 2011, 196, 6412–6418. [Google Scholar] [CrossRef]
- Veeraraghavan, B.; Durairajan, A.; Haran, B.; Popov, B.; Guidotti, R. Study of Sn-Coated Graphite as Anode Material for Secondary Lithium-Ion Batteries. J. Electrochem. Soc. 2002, 149, A675. [Google Scholar] [CrossRef]
- Nobili, F.; Mancini, M.; Dsoke, S.; Tossici, R.; Marassi, R. Low-temperature behavior of graphite-tin composite anodes for Li-ion batteries. J. Power Sources 2010, 195, 7090–7097. [Google Scholar] [CrossRef]
- Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Pöschl, U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon N. Y. 2005, 43, 1731–1742. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef] [Green Version]
- Sorarù, G.D.; Modena, S.; Guadagnino, E.; Colombo, P.; Egan, J.; Pantano, C. Chemical Durability of Silicon Oxycarbide Glasses. J. Am. Ceram. Soc. 2002, 85, 1529–1536. [Google Scholar] [CrossRef]
- Leveîque, G.; Abanades, S. Thermodynamic and kinetic study of the carbothermal reduction of SnO2 for solar thermochemical fuel generation. Energy Fuels 2014, 28, 1396–1405. [Google Scholar] [CrossRef]
- Padilla, R.; Sohn, H.Y. The reduction of stannic oxide with carbon. Metall. Trans. B 1979, 10, 109–115. [Google Scholar] [CrossRef]
- Kleebe, H.J.; Blum, Y.D. SiOC ceramic with high excess free carbon. J. Eur. Ceram. Soc. 2008, 28, 1037–1042. [Google Scholar] [CrossRef]
- Swain, I.P.; Sadual, N.; Behera, S.K. Porosity and nanostructure of silicon oxycarbide derived carbon. Open Ceram. 2021, 6, 100116. [Google Scholar] [CrossRef]
- Moumeni, E.; Tiedje, N.S.; Horsewell, A.; Hattel, J.H. A TEM study on the Microstructure of fine flaky graphite. In Proceedings of the 52nd International Foundry Conference, Portoroz, Slovenia, 12–14 September 2012; pp. 1–9. [Google Scholar]
- Dubey, R.J.C.; Sasikumar, P.V.W.; Cerboni, N.; Aebli, M.; Krumeich, F.; Blugan, G.; Kravchyk, K.V.; Graule, T.; Kovalenko, M.V. Silicon oxycarbide-antimony nanocomposites for high-performance Li-ion battery anodes. Nanoscale 2020, 12, 13540–13547. [Google Scholar] [CrossRef]
- Widgeon, S.J.; Sen, S.; Mera, G.; Ionescu, E.; Riedel, R.; Navrotsky, A. 29Si and 13C Solid-state NMR spectroscopic study of nanometer-scale structure and mass fractal characteristics of amorphous polymer derived silicon oxycarbide ceramics. Chem. Mater. 2010, 22, 6221–6228. [Google Scholar] [CrossRef]
- Zhang, H.; Patano, C.G. Synthesis and Characterization of Silicon Oxycarbide Glasses. J. Am. Ceram. Soc. 1990, 73, 958–963. [Google Scholar] [CrossRef]
- Seidl, L.; Martens, S.; Ma, J.; Stimming, U.; Schneider, O. In situ scanning tunneling microscopy studies of the SEI formation on graphite electrodes for Li+-ion batteries. Nanoscale 2016, 8, 14004–14014. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Ding, M.S.; Xu, K.; Allen, J.; Jow, T.R. Understanding solid electrolyte interface film formation on graphite electrodes. Electrochem. Solid-State Lett. 2001, 4, 206–208. [Google Scholar] [CrossRef]
- Yan, Y.; Ben, L.; Zhan, Y.; Huang, X. Nano-Sn embedded in expanded graphite as anode for lithium ion batteries with improved low temperature electrochemical performance. Electrochim. Acta 2016, 187, 186–192. [Google Scholar] [CrossRef]
- Winter, M.; Besenhard, J.O. Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim. Acta 1999, 45, 31–50. [Google Scholar] [CrossRef]
- Lorie Lopez, J.L.; Grandinetti, P.J.; Co, A.C. Phase transformations and capacity fade mechanism in LixSn nanoparticle electrodes revealed by operando 7Li NMR. J. Mater. Chem. A 2019, 7, 10781–10794. [Google Scholar] [CrossRef]
- Graczyk-Zajac, M.; Toma, L.; Fasel, C.; Riedel, R. Carbon-rich SiOC anodes for lithium-ion batteries: Part I. Influence of material UV-pre-treatment on high power properties. Solid State Ionics 2012, 225, 522–526. [Google Scholar] [CrossRef]
- Levi, M.D.; Aurbach, D. Simultaneous measurements and modeling of the electrochemical impedance and the cyclic voltammetric characteristics of graphite electrodes doped with lithium. J. Phys. Chem. B 1997, 101, 4630–4640. [Google Scholar] [CrossRef]
- Smrekar, S.; Bracamonte, M.V.; Primo, E.N.; Luque, G.L.; Thomas, J.; Barraco, D.E.; Leiva, E. A Mapping of the Physical and Electrochemical Properties of Composite Lithium-Ion Batteries Anodes Made from Graphite, Sn, and Si. Batter. Supercaps 2020, 3, 1248–1256. [Google Scholar] [CrossRef]
- Böhme, S.; Edström, K.; Nyholm, L. On the electrochemistry of tin oxide coated tin electrodes in lithium-ion batteries. Electrochim. Acta 2015, 179, 482–494. [Google Scholar] [CrossRef]
- Dufficy, M.K.; Huang, S.Y.; Khan, S.A.; Fedkiw, P.S. Effects of composition and structure on the performance of tin/graphene-containing carbon nanofibers for Li-ion anodes. RSC Adv. 2017, 7, 15428–15438. [Google Scholar] [CrossRef] [Green Version]
- Kroll, P. Tracing Reversible and Irreversible Li Insertion in SiCO Ceramics with Modeling and Ab-Initio Simulations. MRS Proc. 2011, 1313, 70701–70706. [Google Scholar] [CrossRef]
- Ruggeri, I.; Martin, J.; Wohlfahrt-Mehrens, M.; Mancini, M. Interfacial kinetics and low-temperature behavior of spheroidized natural graphite particles as anode for Li-ion batteries. J. Solid State Electrochem. 2022, 26, 73–83. [Google Scholar] [CrossRef]
- Lucas, I.T.; Pollak, E.; Kostecki, R. In situ AFM studies of SEI formation at a Sn electrode. Electrochem. commun. 2009, 11, 2157–2160. [Google Scholar] [CrossRef]
- Wagner, M.R.; Raimann, P.R.; Trifonova, A.; Moeller, K.C.; Besenhard, J.O.; Winter, M. Electrolyte decomposition reactions on tin- And graphite-based anodes are different. Electrochem. Solid-State Lett. 2004, 7, 2–7. [Google Scholar] [CrossRef]
- Eom, K.S.; Jung, J.; Lee, J.T.; Lair, V.; Joshi, T.; Lee, S.W.; Lin, Z.; Fuller, T.F. Improved stability of nano-Sn electrode with high-quality nano-SEI formation for lithium ion battery. Nano Energy 2015, 12, 314–321. [Google Scholar] [CrossRef]
- Li, N.; Sun, M.Z.; Hwang, S.; Li, S.; Zhao, H.Y.; Du, Y.P.; Huang, B.L.; Su, D. Non-equilibrium insertion of lithium ions into graphite. J. Mater. Chem. A 2021, 9, 12080–12086. [Google Scholar] [CrossRef]
- Zhang, P.; Yuan, T.; Pang, Y.; Peng, C.; Yang, J.; Ma, Z.-F.; Zheng, S. Influence of Current Density on Graphite Anode Failure in Lithium-Ion Batteries. J. Electrochem. Soc. 2019, 166, A5489–A5495. [Google Scholar] [CrossRef]
- Sasikumar, P.V.W.; Zera, E.; Graczyk-Zajac, M.; Riedel, R.; Soraru, G.D. Structural Design of Polymer-Derived SiOC Ceramic Aerogels for High-Rate Li Ion Storage Applications. J. Am. Ceram. Soc. 2016, 99, 2977–2983. [Google Scholar] [CrossRef]
- Pradeep, V.; Ayana, D.G.; Graczyk-Zajac, M.; Soraru, G.; Riedel, R. High Rate Capability of SiOC Ceramic Aerogels with Tailored Porosity as Anode Materials for Li-ion Batteries. Electrochim. Acta. 2015, 157, 41–45. [Google Scholar] [CrossRef]
- Swanson, H.E.; Tatge, E. Data for 54 inorganic substances. NBS Circ. 1953, 539, 24. [Google Scholar]
Composite | Tin Octoate | Matrix | |
---|---|---|---|
Graphite | PMHS/DVB; 1:1 w/w Ratio | ||
SiOC | - | - | 5 g |
SiOC/Sn-40% | 3.33 g | - | 5 g |
SiOC:C0.2/Sn-40% | 3.33 g | 1 g | 4 g |
SiOC:C0.2/Sn-60% | 7.5 g | 1 g | 4 g |
SiOC:C0.1/Sn-60% | 7.5 g | 0.5 g | 4.5 g |
Material | 1st Cycle Cirrev/mAh g−1 | 1st Cycle Crev/mAh g−1 | η (0.005 V–1.5 V)/% | η (0.005 V–3 V) /% |
---|---|---|---|---|
SiOC:C0.2/Sn-40% | 600 | 439 | 42 | 56.5 |
SiOC:C0.2/Sn-60% | 623 | 507 | 45 | 62 |
SiOC:C0.1/Sn-60% | 625 | 515 | 45 | 63 |
SiOC/Sn-40% | 699 | 572 | 45 | 65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knozowski, D.; Vallachira Warriam Sasikumar, P.; Madajski, P.; Blugan, G.; Gazda, M.; Kovalska, N.; Wilamowska-Zawłocka, M. Material Design and Optimisation of Electrochemical Li-Ion Storage Properties of Ternary Silicon Oxycarbide/Graphite/Tin Nanocomposites. Nanomaterials 2022, 12, 410. https://doi.org/10.3390/nano12030410
Knozowski D, Vallachira Warriam Sasikumar P, Madajski P, Blugan G, Gazda M, Kovalska N, Wilamowska-Zawłocka M. Material Design and Optimisation of Electrochemical Li-Ion Storage Properties of Ternary Silicon Oxycarbide/Graphite/Tin Nanocomposites. Nanomaterials. 2022; 12(3):410. https://doi.org/10.3390/nano12030410
Chicago/Turabian StyleKnozowski, Dominik, Pradeep Vallachira Warriam Sasikumar, Piotr Madajski, Gurdial Blugan, Maria Gazda, Natalia Kovalska, and Monika Wilamowska-Zawłocka. 2022. "Material Design and Optimisation of Electrochemical Li-Ion Storage Properties of Ternary Silicon Oxycarbide/Graphite/Tin Nanocomposites" Nanomaterials 12, no. 3: 410. https://doi.org/10.3390/nano12030410
APA StyleKnozowski, D., Vallachira Warriam Sasikumar, P., Madajski, P., Blugan, G., Gazda, M., Kovalska, N., & Wilamowska-Zawłocka, M. (2022). Material Design and Optimisation of Electrochemical Li-Ion Storage Properties of Ternary Silicon Oxycarbide/Graphite/Tin Nanocomposites. Nanomaterials, 12(3), 410. https://doi.org/10.3390/nano12030410