Micro-Nanometer Particle Composition and Functional Design of Surface Nano-Structured Ammonium Polyphosphate and Its Application in Intumescent Flame-Retardant Polypropylene
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of NSAPP Particles
2.3. Preparation of Flame Retardant PP Composites
2.4. Experimental Analysis
3. Results and Discussion
3.1. XPS Analysis of APP and NSAPP
3.2. SEM of APP and NSAPP Particles
3.3. Water Solubility of APP and NSAPP Particles
3.4. Thermogravimetric Analysis
3.5. Morphology, Mechanical Properties, and Rheological Behaviour of FR-PP Composites
3.6. LOI and UL 94 Testing of FR-PP Composites
3.7. Cone Calorimeter Testing of FR-PP Composites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gu, F.; Hall, P.; Miles, N.J. Development of composites based on recycled polypropylene for injection moulding automobile parts using hierarchical clustering analysis and principal component estimate. J. Clean. Prod. 2016, 137, 632–643. [Google Scholar] [CrossRef]
- Borazjani, S.; Belingardi, G. Development of an innovative design of a composite-sandwich based vehicle roof structure. Compos. Struct. 2017, 168, 522–534. [Google Scholar] [CrossRef]
- Zhang, S.; Horrocks, A.R. A review of flame retardant polypropylene fibres. Prog. Polym. Sci. 2003, 28, 1517–1538. [Google Scholar] [CrossRef]
- Bourbigot, S.; Bras, M.L.; Breant, P.; Tremillon, J.M.; Delobel, R. Zeolite: New synergistic agents for intumescent fire retardant thermoplastic formulations criteria for the choice of the zeolite. Fire Mater. 1996, 20, 145–154. [Google Scholar] [CrossRef]
- Spirckel, M.; Regnier, N.; Mortaigne, B.; Youssef, B.; Bunel, C. Thermal degradation and fire performance of new phosphonate polyurethanes. Polym. Degrad. Stab. 2002, 78, 211–218. [Google Scholar] [CrossRef]
- Bourbigot, S.; Bras, M.L.; Delobel, R.; Decressain, R.; Amourex, J.P. Synergistic effect of zeolite in an intumescent process study of the carbonaceous structure using solid-state NMR. Faraday Trans. 1996, 92, 149–158. [Google Scholar] [CrossRef]
- Chen, X.S.; Yu, Z.Z.; Liu, W.; Zhang, S. Synergistic effect of decabromodiphenyl ethane and montmorillonite on flame retardancy of polypropylene. Polym. Degrad. Stab. 2009, 94, 1520–1525. [Google Scholar] [CrossRef]
- Xie, H.L.; Lai, X.J.; Li, H.Q.; Zeng, X.G. Fabrication of ZrP nanosheet decorated macromolecular charring agent and its efficient synergism with ammonium polyphosphate in flame-retarding polypropylene. Compos. Part A Appl. Sci. Manuf. 2018, 105, 223–234. [Google Scholar] [CrossRef]
- Zeng, Z.H.; Liu, Y.; Zhang, L.; Dai, B.Y.; Yang, X.D.; Wang, H.Y. Fabrication of halogen-free ammonium phosphate with two components via a simple method and its flame retardancy in polypropylene composites. J. Therm. Anal. Calorim. 2017, 127, 2013–2023. [Google Scholar] [CrossRef]
- Camino, G.; Costa, L.; Trossarelli, L. Study of the mechanism of intumescence in fire retardant polymers: Part VI-mechanism of ester formation in ammonium polyphosphate-pentaerythritol mixtures. Polym. Degrad. Stab. 1985, 12, 213–228. [Google Scholar] [CrossRef]
- Bourbigot, S.; Bras, M.L.; Delobel, R. Fire degradation of an intumescent flame retardant polypropylene using the cone calorimeter. J. Fire Sci. 1995, 13, 3–22. [Google Scholar] [CrossRef]
- Kong, Q.H.; Wu, T.; Wang, J.Q.; Liu, H.; Zhang, J.H. Improving the Thermal Stability and Flame Retardancy of PP/IFR Composites by NiAl-Layered Double Hydroxide. J. Nanosci. Nanotechnol. 2018, 18, 3660–3665. [Google Scholar] [CrossRef] [PubMed]
- Camino, G.; Luda, M.P.; Costa, L. Recent Developments in intumescent fire-retardant systems-ammonium polyphosphate formaldehyde poly(ethyleneurea-formaldehyde) mixtures. Abstr. Pap. Am. Chem. Soc. 1984, 208, 22–28. [Google Scholar]
- Camino, G.; Costa, L.; Dicortemiglia, M.P.L. Overview of fire retardant mechanisms. Polym. Degrad. Stab. 1991, 33, 131–154. [Google Scholar] [CrossRef]
- Yan, H.; Zhao, Z.L.; Wang, Y.H.; Jin, Q.; Zhang, X.Y. Structural modification of ammonium polyphosphate by DOPO to achieve high water resistance and hydrophobicity. Power Technol. 2017, 320, 14–21. [Google Scholar] [CrossRef]
- Yang, Y.F.; Gai, G.S.; Hao, X.Y.; Chen, Q.R. Nanostructured modification of mineral particle surfaces in Ca(OH)2–H2O–CO2 system. J. Mater. Process. Technol. 2005, 170, 58–63. [Google Scholar] [CrossRef]
- Chen, Y.J.; Li, L.S.; Xu, L.F.; Qian, L.J. Phosphorus-containing silica gel-coated ammonium polyphosphate: Preparation, characterization, and its effect on the flame retardancy of rigid polyurethane foam. J. Appl. Polym. Sci. 2018, 135, 46334. [Google Scholar] [CrossRef]
- Liu, S.H.; Chen, W.J.; Shen, M.Y.; Yang, J.M.; Chiang, C.L. Preparation, characterization and its flame retardance performance of microencapsulated ammonium polyphosphate/bridged polysesquisiloxane polyurethane composites. J. Polym. Res. 2016, 23, 201. [Google Scholar] [CrossRef]
- Chen, Y.J.; Li, L.S.; Wang, W.; Qian, L.J. Preparation and characterization of surface-modified ammonium polyphosphate and its effect on the flame retardancy of rigid polyurethane foam. J. Appl. Polym. Sci. 2017, 134, 45369. [Google Scholar] [CrossRef]
- Yan, H.W.; Wei, J.L.; Yin, N.; Yang, M.B. Effect of the surface modification of ammonium polyphosphate on the structure and property of melamine–formaldehyde resin microencapsulated ammonium polyphosphate and polypropylene flame retardant composites. Polym. Bull. 2015, 72, 2725–2737. [Google Scholar] [CrossRef]
- Yang, Y.D.; Chen, W.; Liu, M.R.; Zhu, Q.M. Flame retarded rigid polyurethane foam composites based on gel-silica microencapsulated ammonium polyphosphate. J. Sol-Gel Sci. Technol. 2021, 98, 212–223. [Google Scholar] [CrossRef]
- Sun, Y.R.; Yuan, B.H.; Shang, S.; Zhang, H.M. Surface modification of ammonium polyphosphate by supramolecular assembly for enhancing fire safety properties of polypropylene. Compos. Part B Eng. 2020, 181, 107588. [Google Scholar] [CrossRef]
- Rao, T.N.; Naidu, T.M.; Kim, M.S. Influence of Zinc Oxide Nanoparticles and Char Forming Agent Polymer on Flame Retardancy of Intumescent Flame Retardant Coatings. Nanomaterials 2020, 10, 42. [Google Scholar]
- Maddalena, L.; Gomez, J.; Fina, A.; Carosio, F. Effects of Graphite Oxide Nanoparticle Size on the Functional Properties of Layer-by-Layer Coated Flexible Foams. Nanomaterials 2021, 11, 266. [Google Scholar] [CrossRef] [PubMed]
- Sherif, E. Novel multi-component flame retardant system based on nanoscopic aluminium-trihydroxide (ATH). Powder Technol. 2017, 305, 538–545. [Google Scholar]
- Shimpi, N.G.; Shirole, S.; Suryawanshi, Y.; Mishra, S. Optimized Synthesis of nTiO2 Using Murraya koenigii Leaf Extract and Its Application in iPP-EPDM Blends. Adv. Polym. Technol. 2017, 36, 160–167. [Google Scholar] [CrossRef]
- Daimstsu, K.; Sugimoto, H.; Kato, Y.; Nakanishi, E.; Inomata, K.; Amekawa, Y.; Takemura, K. Preparation and physical properties of flame retardant acrylic resin containing nano-sized aluminum hydroxide. Polym. Degrad. Stab. 2007, 92, 1433–1438. [Google Scholar] [CrossRef]
- Qin, Z.L.; Li, D.H.; Li, Q.; Yang, R.J. Effect of nano-aluminum hydroxide on mechanical properties, flame retardancy and combustion behavior of intumescent flame retarded polypropylene. Mater. Des. 2016, 89, 988–995. [Google Scholar] [CrossRef]
- Ruedaa, F.; Mendialduaa, J.; Rodrigueza, A.; Casanovaa, R.; Barbauxb, Y.; Gengembreb, L.; Jalowieckib, L. Characterization of Venezuelan laterites by X-ray photoelectron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 1996, 82, 135–143. [Google Scholar] [CrossRef]
- Bharti, A.S.; Sharma, S.; Shukla, N.; Tiwari, M.K.; Uttam, K.N. Elemental Investigation of the Leaf and Seed of Coriander Plant by Synchrotron Radiation X-ray Fluorescence Spectroscopy. Natl. Acad. Sci. Lett. India 2017, 40, 373–377. [Google Scholar] [CrossRef]
- Abdel-Fattah, T.M.; Wixtrom, A.; Arias, L.; Zhang, K.; Baumgart, H. Quantitative Analysis of X-ray fluorescence absorption and emission for thickness determination of ALD-grown metal and oxide nanoscaled films. J. Nanosci. Nanotechnol. 2017, 17, 5745–5750. [Google Scholar] [CrossRef]
- Camino, G.; Costa, L.; Trossarelli, L. Study of the mechanism of intumescence in fire retardant polymers. 1. Thermal degradation of ammonium polyphosphate pentaerythritol mixtures. Polym. Degrad. Stab. 1985, 6, 243–252. [Google Scholar] [CrossRef]
- Castrovinci, A.; Camino, G.; Drevelle, C.; Duquesne, S.; Magniez, C.; Vouters, M. Ammonium polyphosphate-aluminum trihydroxide antagonism in fire retarded butadiene-styrene block copolymer. Eur. Polym. J. 2005, 41, 2023–2033. [Google Scholar] [CrossRef]
- Camino, G.; Grassie, N.; Mcneill, I.C. Influence of the fire retardant, ammonium polyphosphate, on the thermal degradation of poly (methyl methacrylate). J. Polym. Sci. Polym. Chem. Ed. 1978, 16, 95–106. [Google Scholar] [CrossRef]
- Ma, H.Y.; Tong, L.F.; Xu, Z.B. Clay network in ABS-graft-MAH nanocomposites: Rheology and flammability. Polym. Degrad. Stab. 2007, 92, 1439–1445. [Google Scholar] [CrossRef]
- Kashiwagi, T.; Mu, M.F.; Winey, K. Relation between the viscoelastic and flammability properties of polymer nanocomposites. Polymer 2008, 49, 4358–4368. [Google Scholar] [CrossRef]
- Urman, K.; Otaigbe, J.U. New phosphate glass/polymer hybrids-Current status and future prospects. Prog. Polym. Sci. 2007, 32, 1462–1498. [Google Scholar] [CrossRef]
Sample | PP | APP | NSAPP-1 | NSAPP-2 | NSAPP-3 | NSAPP-4 | DPER | 1010 | 168 |
---|---|---|---|---|---|---|---|---|---|
PP/DPER/APP | 74.7 | 17.2 | - | - | - | - | 7.8 | 0.1 | 0.2 |
PP/DPER/NSAPP-1 | 74.7 | - | 17.2 | - | - | - | 7.8 | 0.1 | 0.2 |
PP/DPER/NSAPP-2 | 74.7 | - | - | 17.2 | - | - | 7.8 | 0.1 | 0.2 |
PP/DPER/NSAPP-3 | 74.7 | - | - | - | 17.2 | - | 7.8 | 0.1 | 0.2 |
PP/DPER/NSAPP-4 | 74.7 | - | - | - | - | 17.2 | 7.8 | 0.1 | 0.2 |
Samples | Elements Concentration (%) | ||||
---|---|---|---|---|---|
C | N | O | P | Al | |
APP | 24.46 | 15.49 | 43.83 | 16.22 | 0.00 |
NSAPP-1 | 25.74 | 8.83 | 46.48 | 13.35 | 5.60 |
NSAPP-2 | 23.49 | 6.78 | 48.53 | 10.26 | 10.94 |
NSAPP-3 | 22.52 | 5.31 | 51.28 | 7.23 | 13.66 |
NSAPP-4 | 23.38 | 4.01 | 53.98 | 5.11 | 13.52 |
Sample | T5% (°C) | Rmax (%/min) | Tmax (°C) | Residue (%) |
---|---|---|---|---|
APP | 303 | −14.05 | 624 | 14.48 |
NSAPP-1 | 301 | −8.79 | 587 | 22.08 |
NSAPP-2 | 297 | −11.29 | 546 | 20.25 |
NSAPP-3 | 295 | −9.83 | 551 | 23.31 |
NSAPP-4 | 289 | −6.90 | 553 | 29.87 |
Samples | LOI (%) | UL-94 (3.2 mm) | t1 (s) | t2 (s) | Mass Loss (%) |
---|---|---|---|---|---|
PP/DPER/APP | 26.6 | V-1 | 0.8 | 8.7 | 8.34 |
PP/DPER/NSAPP-1 | 28.7 | V-1 | 0.9 | 7.2 | 4.97 |
PP/DPER/NSAPP-2 | 30.9 | V-0 | 0.7 | 2.8 | 0.98 |
PP/DPER/NSAPP-3 | 29.6 | V-0 | 0.7 | 3.6 | 1.41 |
PP/DPER/NSAPP-4 | 28.5 | V-0 | 0.8 | 4.3 | 1.33 |
Sample | TTI (s) | p-HRR (kW/m2) | avCO (kg/kg) | avCO2 (kg/kg) | THR (MJ/m2) | TSR m2/s |
---|---|---|---|---|---|---|
PP Control | 35 | 809 | 0.05 | 3.56 | 144 | 1297 |
PP/DPER/APP | 23 | 487 | 0.10 | 3.03 | 136 | 2036 |
PP/DPER/NSAPP-1 | 21 | 426 | 0.08 | 2.93 | 132 | 1899 |
PP/DPER/NSAPP-2 | 20 | 368 | 0.08 | 2.97 | 120 | 1770 |
PP/DPER/NSAPP-3 | 21 | 346 | 0.08 | 2.91 | 123 | 1914 |
PP/DPER/NSAPP-4 | 21 | 345 | 0.09 | 2.95 | 128 | 1927 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Qin, Z.; Zhang, X.; Yu, Z.; Zhang, W.; Yang, R.; Li, D. Micro-Nanometer Particle Composition and Functional Design of Surface Nano-Structured Ammonium Polyphosphate and Its Application in Intumescent Flame-Retardant Polypropylene. Nanomaterials 2022, 12, 606. https://doi.org/10.3390/nano12040606
Wu X, Qin Z, Zhang X, Yu Z, Zhang W, Yang R, Li D. Micro-Nanometer Particle Composition and Functional Design of Surface Nano-Structured Ammonium Polyphosphate and Its Application in Intumescent Flame-Retardant Polypropylene. Nanomaterials. 2022; 12(4):606. https://doi.org/10.3390/nano12040606
Chicago/Turabian StyleWu, Xiaolu, Zhaolu Qin, Xiang Zhang, Zhenfei Yu, Wenchao Zhang, Rongjie Yang, and Dinghua Li. 2022. "Micro-Nanometer Particle Composition and Functional Design of Surface Nano-Structured Ammonium Polyphosphate and Its Application in Intumescent Flame-Retardant Polypropylene" Nanomaterials 12, no. 4: 606. https://doi.org/10.3390/nano12040606
APA StyleWu, X., Qin, Z., Zhang, X., Yu, Z., Zhang, W., Yang, R., & Li, D. (2022). Micro-Nanometer Particle Composition and Functional Design of Surface Nano-Structured Ammonium Polyphosphate and Its Application in Intumescent Flame-Retardant Polypropylene. Nanomaterials, 12(4), 606. https://doi.org/10.3390/nano12040606