Early Stages of Aluminum-Doped Zinc Oxide Growth on Silicon Nanowires
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kempa, T.J.; Cahoon, J.F.; Kim, S.K.; Day, R.W.; Bell, D.C.; Park, H.G.; Lieber, C.M. Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics. Proc. Natl. Acad. Sci. USA 2012, 109, 1407–1412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, N.; Ramasamy, P.; Bhargav, P.B.; Rayerfrancis, A.; Chandra, B. Development of silicon nanowires with optimized characteristics and fabrication of radial junction solar cells with <100 nm amorphous silicon absorber layer. Mater. Sci. Semicond. Process. 2020, 106, 104778. [Google Scholar] [CrossRef]
- Misra, S.; Yu, L.; Foldyna, M.; Roca, I.; Cabarrocas, P. High efficiency and stable hy- drogenated amorphous silicon radial junction solar cells built on VLS-grown silicon nanowires. Sol. Energy Mater. Sol. Cells 2013, 118, 90–95. [Google Scholar] [CrossRef]
- Jung, Y.; Vacic, A.; Perea, D.E.; Picraux, S.T.; Reed, M.A. Minority carrier life- times and surface effects in VLS-grown axial p-n junction silicon nanowires. Adv. Mater. 2011, 23, 4306–4311. [Google Scholar] [CrossRef]
- Garnett, E.; Yang, P. Light Trapping in Silicon Nanowire Solar Cells. Nano Lett. 2010, 10, 1082–1087. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Zhong, Z.; Wang, D.; Wang, W.U.; Lieber, C.M. High performance silicon nanowire field effect transistors. Nano Lett. 2003, 3, 149–152. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, B.; Shao, Z.; He, L.; Zhang, Q.; Jie, J.; Zhang, X. Ultraminiaturized Stretchable Strain Sensors Based on Single Silicon Nanowires for Imperceptible Electronic Skins. Nano Lett. 2020, 20, 2478–2485. [Google Scholar] [CrossRef]
- Shao, M.; Cheng, L.; Zhang, X.; Ma, D.D.D.; Lee, S.T. Excellent photocatalysis of HF-treated silicon nanowires. J. Am. Chem. Soc. 2009, 131, 17738–17739. [Google Scholar] [CrossRef]
- Ginley, D.S.; Bright, C. Transparent conducting oxides. MRS Bull. 2000, 25, 15–21. [Google Scholar] [CrossRef]
- Kawashima, T.; Ezure, T.; Okada, K.; Matsui, H.; Goto, K.; Tanabe, N. FTO/ITO double-layered transparent conductive oxide for dye-sensitized solar cells. J. Photochem. Photobiol. A Chem. 2004, 164, 199–202. [Google Scholar] [CrossRef]
- Woods-Robinson, R.; Han, Y.; Zhang, H.; Ablekim, T.; Khan, I.; Persson, K.A.; Zakutayev, A. Wide Band Gap Chalcogenide Semiconductors. Chem. Rev. 2020, 120, 4007–4055. [Google Scholar] [CrossRef] [PubMed]
- Granqvist, C.G. Transparent conductors as solar energy materials: A panoramic review. Sol. Energy Mater Sol. Cells 2007, 91, 1529–1598. [Google Scholar] [CrossRef]
- Boscarino, S.; Crupi, I.; Mirabella, S.; Simone, F.; Terrasi, A. TCO/Ag/TCO transparent electrodes for solar cells application. Appl. Phys. A Mater. Sci. Process. 2014, 116, 1287–1291. [Google Scholar] [CrossRef]
- Shabani, A.; Nezhad, M.K.; Rahmani, N.; Mishra, Y.K.; Sanyal, B.; Adam, J. Revisiting the Optical Dispersion of Aluminium-Doped Zinc Oxide: New Perspectives for Plasmonics and Metamaterials. Adv. Photonics Res. 2020, 2, 2000086. [Google Scholar] [CrossRef]
- Sarma, B.; Barman, D.; Sarma, B.K. AZO (Al:ZnO) thin films with high figure of merit as stable indium free transparent conducting oxide. Appl. Surf. Sci. 2019, 479, 786–795. [Google Scholar] [CrossRef]
- Li, X.; Lin, C.; Xu, C. Structure and optoelectronic properties of AZO/Al/AZO tri-layer films grown on flexible substrates. J. Mater. Sci. Mater. Electron. 2019, 30, 3495–3503. [Google Scholar] [CrossRef]
- Torrisi, G.; Crupi, I.; Mirabella, S.; Terrasi, A. Robustness and electrical reliability of AZO/Ag/AZO thin film after bending stress. Sol. Energy Mater. Sol. Cells 2017, 165, 88–93. [Google Scholar] [CrossRef]
- Kar, J.P.; Kim, S.; Shin, B.; Park, K.I.; Ahn, K.J.; Lee, W.; Cho, J.H.; Myoung, J.M. Influence of sputtering pressure on morphological, mechanical and electrical properties of Al-doped ZnO films. Solid-State Electron. 2010, 54, 1447–1450. [Google Scholar] [CrossRef]
- Miao, D.; Jiang, S.-X.K.; Zhao, H.; Shang, S.; Chen, Z. Characterization of AZO and Ag based films prepared by RF magnetron sputtering. J. Alloys Compd. 2014, 616, 26–31. [Google Scholar] [CrossRef]
- Lunt, R.R.; Benziger, J.B.; Forrest, S.R. Relationship between crystalline order and exciton diffusion length in molecular organic semiconductors. Adv. Mater. 2010, 22, 1233–1236. [Google Scholar] [CrossRef] [Green Version]
- Puglisi, R.A.; Bongiorno, C.; Caccamo, S.; Fazio, E.; Mannino, G.; Neri, F.; Scalese, S.; Spucches, D.; Magna, A.L. Chemical Vapor Deposition Growth of Silicon Nanowires with Diameter Smaller Than 5 nm. ACS Omega 2019, 4, 17967–17971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, S.L.; Liao, S.Y.; Syu, J.H. Growth kinetics and surface properties of single-crystalline aluminum-doped zinc oxide nanowires on silicon substrates. Ceram. Int. 2016, 42, 5271–5277. [Google Scholar] [CrossRef]
- Schmidt, V.; Senz, S.; Gosele, U. Diameter-Dependent Growth Direction of Epitaxial Silicon Nanowires. Nano Lett. 2005, 5, 931–935. [Google Scholar] [CrossRef] [PubMed]
- Garozzo, C.; La Magna, A.; Mannino, G.; Privitera, V.; Scalese, S.; Sberna, P.M.; Simone, F.; Puglisi, R.A. Competition between uncatalyzed and catalyzed growth during the plasma synthesis of Si nanowires and its role on their optical properties. J. Appl. Phys. 2013, 113, 214313. [Google Scholar] [CrossRef]
- Jeong, S.H.; Boo, J.H. Influence of target-to-substrate distance on the properties of AZO films grown by RF magnetron sputtering. Thin Solid Film. 2004, 447, 105–110. [Google Scholar] [CrossRef]
- French, R.H.; Mullejans, H.; Jones, D.J. Optical Properties of Aluminum Oxide: Determined from Vacuum Ultraviolet and Electron Energy-Loss Spectroscopies. J. Am. Ceram. Soc. 1998, 81, 2549–2557. [Google Scholar] [CrossRef]
- Ballerini, G.; Ogle, K.; Barthés-Labrousse, M.G. The acid-base properties of the surface of native zinc oxide layers: An XPS study of adsorption of 1,2-diaminoethane. Appl. Surf. Sci. 2007, 253, 6860–6867. [Google Scholar] [CrossRef]
- Qiu, Y.; Cristiano, F.; Huet, K.; Mazzamuto, F.; Fisicaro, G.; Magna, A.L.; Quillec, M.; Cherkashin, N.; Wang, H.; Duguay, S.; et al. Extended Defects Formation in Nanosecond Laser-Annealed Ion Implanted Silicon. Nano Lett. 2014, 14, 1769–1775. [Google Scholar] [CrossRef] [Green Version]
- Di Russo, E.D.; Dalapati, P.; Houard, J.; Venturi, L.; Blum, I.; Moldovan, S.; Van Bia, N.L.; Lefebvre, D.; Hugues, M.; Chauveau, J.M.; et al. Super-resolution Optical Spectroscopy of Nanoscale Emitters within a Photonic Atom Probe. Nano Lett. 2020, 20, 8733–8738. [Google Scholar] [CrossRef]
- Nanoelectronics: Doping difficulties deciphered. NPG Asia Mater. 2010, 1. [CrossRef]
- Arduca, E.; Perego, M. Doping of silicon nanocrystals. Mater. Sci. Semicond. Process. 2017, 62, 156–170. [Google Scholar] [CrossRef]
- Ossicini, S.; Iori, F.; Degoli, E.; Luppi, E.; Magri, R.; Poli, R.; Cantele, G.; Trani, F.; Ninno, D. Understanding doping in silicon nanostructures. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 1585–1590. [Google Scholar] [CrossRef]
- Samadi, M.; Zirak, M.; Naseri, A.; Khorashadizade, E.; Moshfegh, A.Z. Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Film. 2016, 605, 2–19. [Google Scholar] [CrossRef] [Green Version]
- Ozgur, U.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Dogan, S.; Avrutin, V.; Cho, S.-J.; Morkoc, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 041301. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Sun, D.; Tan, C.; Tian, X.; Huang, Y. Al-Doped ZnO Monolayer as a Promising Transparent Electrode Material: A First-Principles Study. Materials 2017, 10, 359. [Google Scholar] [CrossRef] [PubMed]
- Snedeker, L.P.; Risbud, A.S.; Masala, O.; Zhang, J.P.; Seshadri, R. Organic phase conversion of bulk (wurtzite) ZnO to nanophase (wurtzite and zinc blende) ZnO. Solid State Sci. 2005, 7, 1500–1505. [Google Scholar] [CrossRef]
- Perillo, P.M.; Atia, M.N.; Rodrıguez, D.F. Studies on the growth control of ZnO nanostructures synthesized by the chemical method. Matéria (Rio J.). 2018, 23. [Google Scholar] [CrossRef] [Green Version]
- Furmanchuk, A.; Isayev, O.; Dinadayalane, T.C.; Leszczynska, D.; Leszczynski, J. Mechanical properties of silicon nanowires. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 817–828. [Google Scholar] [CrossRef]
- Pecora, E.F.; Irrera, A.; Boninelli, S.; Romano, L.; Spinella, C.; Priolo, F. Nanoscale amorphization, bending and recrystallization in silicon nanowires. Appl. Phys. A 2011, 102, 13–19. [Google Scholar]
- Greenberg, Y.; Kelrich, A.; Cohen, S.; Kar-Narayan, S.; Ritter, D.; Calahorra, Y. Strain-mediated bending of InP nanowires through the growth of an asymmetric InAs shell. Nanomaterials 2019, 9, 1327. [Google Scholar] [CrossRef] [Green Version]
- Bharti, B.; Kumar, S.; Kumar, R. Superhydrophilic TiO2 thin film by nanometer scale surface roughness and dangling bonds. Appl. Surf. Sci. 2016, 364, 51–60. [Google Scholar] [CrossRef]
- Gallet, J.J.; Bournel, F.; Rochet, F.; Kohler, U.; Kubsky, S.; Silly, M.G.; Sirotti, F.; Pierucci, D. Isolated silicon dangling bonds on a water-saturated n+-doped Si(001)-2 1 surface: An XPS and STM study. J. Phys. Chem. C 2011, 115, 7686–7693. [Google Scholar] [CrossRef]
- Gao, P.; Wang, Z.Z.; Liu, K.H.; Xu, Z.; Wang, W.L.; Bai, X.D.; Wang, E.G. Pho- toconducting response on bending of individual ZnO nanowires. J. Mater. Chem. 2009, 19, 1002–1005. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borgh, G.; Bongiorno, C.; Cosentino, S.; La Magna, A.; Patanè, S.; Scalese, S.; Terrasi, A.; Torrisi, G.; Puglisi, R.A. Early Stages of Aluminum-Doped Zinc Oxide Growth on Silicon Nanowires. Nanomaterials 2022, 12, 772. https://doi.org/10.3390/nano12050772
Borgh G, Bongiorno C, Cosentino S, La Magna A, Patanè S, Scalese S, Terrasi A, Torrisi G, Puglisi RA. Early Stages of Aluminum-Doped Zinc Oxide Growth on Silicon Nanowires. Nanomaterials. 2022; 12(5):772. https://doi.org/10.3390/nano12050772
Chicago/Turabian StyleBorgh, Giovanni, Corrado Bongiorno, Salvatore Cosentino, Antonino La Magna, Salvatore Patanè, Silvia Scalese, Antonio Terrasi, Giacomo Torrisi, and Rosaria A. Puglisi. 2022. "Early Stages of Aluminum-Doped Zinc Oxide Growth on Silicon Nanowires" Nanomaterials 12, no. 5: 772. https://doi.org/10.3390/nano12050772
APA StyleBorgh, G., Bongiorno, C., Cosentino, S., La Magna, A., Patanè, S., Scalese, S., Terrasi, A., Torrisi, G., & Puglisi, R. A. (2022). Early Stages of Aluminum-Doped Zinc Oxide Growth on Silicon Nanowires. Nanomaterials, 12(5), 772. https://doi.org/10.3390/nano12050772