Clay-Supported Metal Oxide Nanoparticles in Catalytic Advanced Oxidation Processes: A Review
Abstract
:1. Introduction
2. Catalytic Advanced Oxidation Process for Water Treatment
3. Metal and Metal Oxide Nanoparticles in AOPs
4. Clay Structure and Utilization in Catalysis
5. Clay Modifications
5.1. Impregnation
5.2. Pillarization
5.3. Porous Clay Heterostructure
5.4. Clay Modification with Metal Nanoparticles
5.5. Intensification on Metal/Metal Oxide-Supported Clay Nanocomposite
5.5.1. Mechanochemical
5.5.2. Microwave Irradiation
5.5.3. Ultrasound Irradiation
6. Clay-Supported Metal Oxide in AOPs
Clay-Supported Metal or Metal Oxide Nanomaterial | Target Molecule | Process | Remark | Reference |
---|---|---|---|---|
MnO2 nanosheet/montmorillonite | MB | CO | MB removal achieved 99.89% at 5 min and the catalyst dose of 0.4 g/L | [99] |
MnO2/montmorillonite | Bisphenol A | CO | Bisphenol A removal was almost 100% after 20 min of treatment | [188] |
K-MnO2/CeO2/Palygorskite | Phenol | CO | 90% of phenol removal for the treatment at 130 °C for 103 min | [208] |
Fe/Palygorskite | Phenol | CO | CWPO of MB using Cu NPs/montmorillonite gave complete removal | [208] |
Fe2O3/montmorillonite | phenol | PCPO | Complete phenol oxidation reached at 90 min | [185] |
Fe2O3/montmorillonite | Diethyl phthalate | CPO | The material showed stability and reusability with insignificant change of photocatalytic activity until 3 cycles | [186] |
Fe2O3/montmorillonite | Toluene | CO | Complete toluene oxidation reached at 300 °C | [187] |
MnO2/Al2O3-pillared montmorillonite | Acetone | CO | Complete acetone oxidation reached at a temperature of 7500 K | [209] |
MnO2/ZrO2-pillared montmorillonite | Acetone | CO | 40% of acetone oxidation reached at a temperature of 7500 K | [209] |
Cu NPs/montmorillonite | Methylene blue (MB) | CWPO | CWPO of MB using Cu NPs/montmorillonite gave complete removal | [155] |
Cu NPs/montmorillonite | Atrazine | CWPO | Nanomaterials exhibited adsorption and catalytic oxidation activity for atrazine removal with DE of 82.12% and 85.94%, respectively | [189] |
Cu-impregnated Al-pillared montmorillonite | Reactive orange 16 (RO16) | CWPO PCPO | Complete removal of RO16 after 90 min by both AOP mechanisms | [190] |
Fe/Co-pillared clay | Paracetamol | CWPO | Optimum condition for completely paracetamol removal was treatment for 6 h, H2O2 concentration of 472 mg L−1, catalyst dose of 2.5 g L−1, temperature of 80 °C, and initial pH = 3.5 | [190] |
Zr-pillared clay | 4-nitrophenol | CWPO | Complete removal at 4 h with small amount of H2O2 and catalyst loading of 2.5 g/L) | [210] |
Al/Zr-pillared clay | Phenol | CWPO | The optimum condition for the CWAO process is a pH of 3, reaction temperature of 100 °C, catalyst dosage of 2 g/L, and oxygen pressure of 10 bar. The reaction obeys the first-order power rate law kinetics model with the apparent activation energy of 21.306 kJ/mol | [191] |
Zr immobilized in Cu/Al-pillared clay | Winery wastewater | CWPO | The presence of Zr enhanced the oxidation capability of the catalyst | |
Fe- and Cu-immobilized in Zr-pillared clay (Fe/Cu/Zr-APILC) | 4-nitrophenol | CWPO | Complete removal after 2 h; the highest TOC removal (65.1% after 8 h) was obtained with Fe/Cu/Zr-APILC | [210] |
Co-immobilized AL-pillared clay | Tartrazine | CO | Co2+ was impregnated onto aluminum-pillared clay and utilized as tartrazine oxidation via PMS | |
Copper-pillared ferrioxalate-modified bentonite (Cu/PBC) | 4-nitrophenol | PCPO | Maximum DE of 99.89% was achieved with an excess of H2O2, and catalyst loading of 2.0 g/L during 6 min of visible light illumination. | [203] |
Al–Fe-pillared clay | 4-NP | CWPO | Maximum DE of 99.7% with TOC removal and COD removal of 83.6% and 75%, respectively, attained after 300 min with an excess of H2O2 at 50 °C | [130] |
Al–Cu–Fe-pillared clay | 4-NP | CWPO | Maximum DE of 99.7% with TOC removal and COD removal of 63% and 65%, respectively, attained after 300 min with an excess of H2O2 at 50 °C | [130] |
Al–Cu PILCs | 4-NP | CWPO | Maximum DE of 99.7% with TOC removal and COD removal of 60% and 55%, respectively, attained after 300 min with an excess of H2O2 at 50 °C | [130] |
Al/Fe-, and Al/(Fe–Cu)- bentonite | Methyl orange (MO) | CWPO | The Al/Fe-pillared bentonite attained the complete removal of MO after 1 h of reaction at room temperature | [128] |
Cu-doped Fe-pillared Tunisian clay (Cu/Fe–PILC) | Phenol | PCPO | Cu/Fe–PILC demonstrated stability for a wide range of pH, from 3 to 7, for the PCPO process of phenol removal. Nanocomposite showed reusability with negligible metal leaching without a noticeable loss of activity | [211] |
Fe-pillared clay (Fe-PILC) | Phenol | PCPO | Phenol removal efficiency of 100% was achieved after 60 min of photocatalytic oxidation reaction UV 254 nm | [86] |
Fe2O3-Fe3O4 nanoparticles (NIO) supported in montmorillonite (NIOM) | MO | PCPO | NIOM exhibited a higher photocatalytic activity compared with Fe2O3–Fe3O4 | [202] |
Fe2O3/kaolin | Rhodamine B (RhB) | PCPO | DE of 98% by using 1 g/L of catalyst and 0.05 mol/L of H2O2 for 120 min. The Fe2O3–kaolin catalyst displayed high photocatalytic activity in a wide pH range of 2.21–10.13 |
7. Conclusions and Future Perspective
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leal Filho, W.; Totin, E.; Franke, J.A.; Andrew, S.M.; Abubakar, I.R.; Azadi, H.; Nunn, P.D.; Ouweneel, B.; Williams, P.A.; Simpson, N.P. Understanding responses to climate-related water scarcity in Africa. Sci. Total Environ. 2022, 806, 150420. [Google Scholar] [CrossRef]
- Antonelli, M.; Greco, F. The Water We Eat: Combining Virtual Water and Water Footprints; Springer International Publishing: Cham, Switzerland, 2015; pp. 1–256. [Google Scholar] [CrossRef]
- Alcon, F.; Zabala, J.A.; Martínez-García, V.; Albaladejo, J.A.; López-Becerra, E.I.; de-Miguel, M.D.; Martínez-Paz, J.M. The social wellbeing of irrigation water. A demand-side integrated valuation in a Mediterranean agroecosystem. Agric. Water Manag. 2022, 262, 107400. [Google Scholar] [CrossRef]
- Carmen, Z.; Daniel, S. Textile Organic Dyes—Characteristics, Polluting Effects and Separation/Elimination Procedures from Industrial Effluents—A Critical Overview. In Organic Pollutants Ten Years After the Stockholm Convention—Environmental and Analytical Update; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- Ince, N.H. Ultrasound-assisted advanced oxidation processes for water decontamination. Ultrason. Sonochem. 2018, 40, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Inayat, A.; Said, Z.; Alsaidi, O.; Al-Zaidi, R.; Ullah, S.; Stathopoulos, V. Review of Recent Progress in Wastewater Treatment Using Carbon Nanotubes. Curr. Anal. Chem. 2021, 17, 20–30. [Google Scholar] [CrossRef]
- Bergamasco, R.; Konradt-Moraes, L.C.; Vieira, M.F.; Fagundes-Klen, M.R.; Vieira, A.M.S. Performance of a coagulation–ultrafiltration hybrid process for water supply treatment. Chem. Eng. J. 2011, 166, 483–489. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Zheng, R.; Wei, W.; Wei, W.; Zou, W.; Li, J.; Ni, B.-J.; Chen, H. Recycling spent water treatment adsorbents for efficient electrocatalytic water oxidation reaction. Resour. Conserv. Recycl. 2022, 178, 106037. [Google Scholar] [CrossRef]
- Camargo-Perea, A.L.; Rubio-Clemente, A.; Peñuela, G.A. Use of Ultrasound as an Advanced Oxidation Process for the Degradation of Emerging Pollutants in Water. Water 2020, 12, 1068. [Google Scholar] [CrossRef] [Green Version]
- Zuorro, A.; Lavecchia, R.; Monaco, M.M.; Iervolino, G.; Vaiano, V. Photocatalytic degradation of azo dye reactive violet 5 on Fe-doped titania catalysts under visible light irradiation. Catalysts 2019, 9, 645. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Xu, Y.; Ma, X.; Li, F.; Liu, D.; Chen, Z.; Zhang, F.; Dionysiou, D.D. Microwave degradation of methyl orange dye in aqueous solution in the presence of nano-TiO2-supported activated carbon (supported-TiO2/AC/MW). J. Hazard. Mater. 2012, 209–210, 271–277. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, X.; Guo, X.; Su, M.; Xu, T.; Song, X. Investigation on the degradation of brilliant green induced oxidation by NiFe2O4 under microwave irradiation. Chem. Eng. J. 2011, 173, 737–742. [Google Scholar] [CrossRef]
- Velempini, T.; Prabakaran, E.; Pillay, K. Recent developments in the use of metal oxides for photocatalytic degradation of pharmaceutical pollutants in water—A review. Mater. Today Chem. 2021, 19, 100380. [Google Scholar] [CrossRef]
- Al-Hamdi, A.M.; Rinner, U.; Sillanpää, M. Tin dioxide as a photocatalyst for water treatment: A review. Process Saf. Environ. Prot. 2017, 107, 190–205. [Google Scholar] [CrossRef]
- Naseem, T.; Durrani, T. The role of some important metal oxide nanoparticles for wastewater and antibacterial applications: A review. Environ. Chem. Ecotoxicol. 2021, 3, 59–75. [Google Scholar] [CrossRef]
- Sarkar, S.; Guibal, E.; Quignard, F.; SenGupta, A.K. Polymer-supported metals and metal oxide nanoparticles: Synthesis, characterization, and applications. J. Nanoparticle Res. 2012, 14, 715. [Google Scholar] [CrossRef]
- Biswas, S.; Pal, A.; Pal, T. Supported metal and metal oxide particles with proximity effect for catalysis. RSC Adv. 2020, 10, 35449–35472. [Google Scholar] [CrossRef]
- Khraisheh, M.; Elhenawy, S.; Almomani, F.; Al-ghouti, M. Recent Progress on Nanomaterial-Based Membranes for Water Treatment. Membranes 2021, 11, 995. [Google Scholar] [CrossRef]
- da Cunha, T.; Maulu, A.; Guillot, J.; Fleming, Y.; Duez, B.; Lenoble, D.; Arl, D. Design of silica nanoparticles-supported metal catalyst by wet impregnation with catalytic performance for tuning carbon nanotubes growth. Catalysts 2021, 11, 986. [Google Scholar] [CrossRef]
- Hou, Y.X.; Abdullah, H.; Kuo, D.H.; Leu, S.J.; Gultom, N.S.; Su, C.H. A comparison study of SiO2/nano metal oxide composite sphere for antibacterial application. Compos. Part B Eng. 2018, 133, 166–176. [Google Scholar] [CrossRef]
- Kumar, J.P.; Ramacharyulu, P.V.R.K.; Prasad, G.K.; Singh, B. Montmorillonites supported with metal oxide nanoparticles for decontamination of sulfur mustard. Appl. Clay Sci. 2015, 116–117, 263–272. [Google Scholar] [CrossRef]
- Manos, G.; Yusof, I.Y.; Papayannakos, N.; Gangas, N.H. Catalytic Cracking of Polyethylene over Clay Catalysts. Comparison with an Ultrastable Y Zeolite. Ind. Eng. Chem. Res. 2001, 40, 2220–2225. [Google Scholar] [CrossRef]
- Kumar, B.S.; Dhakshinamoorthy, A.; Pitchumani, K. K10 montmorillonite clays as environmentally benign catalysts for organic reactions. Catal. Sci. Technol. 2014, 4, 2378–2396. [Google Scholar] [CrossRef]
- Xu, A.; Yang, M.; Yao, H.; Du, H.; Sun, C. Rectorite as catalyst for wet air oxidation of phenol. Appl. Clay Sci. 2009, 43, 435–438. [Google Scholar] [CrossRef]
- Prakash, B.J.; Bhat, Y.S.; Reddy, C.R. Clays as sustainable catalysts for organic transformations. Clay Types Prop. Uses 2011, 63, 44. [Google Scholar]
- Cuerda-Correa, E.M.; Alexandre-Franco, M.F.; Fernández-González, C. Advanced oxidation processes for the removal of antibiotics from water. An overview. Water 2020, 12, 102. [Google Scholar] [CrossRef] [Green Version]
- Xia, X.; Zhu, F.; Li, J.; Yang, H.; Wei, L.; Li, Q.; Jiang, J.; Zhang, G.; Zhao, Q. A Review Study on Sulfate-Radical-Based Advanced Oxidation Processes for Domestic/Industrial Wastewater Treatment: Degradation, Efficiency, and Mechanism. Front. Chem. 2020, 8, 1092. [Google Scholar] [CrossRef]
- Lian, L.; Yao, B.; Hou, S.; Fang, J.; Yan, S.; Song, W. Kinetic Study of Hydroxyl and Sulfate Radical-Mediated Oxidation of Pharmaceuticals in Wastewater Effluents. Environ. Sci. Technol. 2017, 51, 2954–2962. [Google Scholar] [CrossRef]
- Nihemaiti, M.; Permala, R.R.; Reactivity, J.C. Reactivity of Unactivated Peroxymonosulfate with Nitrogenous Compounds. Water Res. 2020, 169, 115221. [Google Scholar] [CrossRef]
- Xiao, G.; Xu, T.; Faheem, M.; Xi, Y.; Zhou, T.; Moryani, H.T.; Bao, J.; Du, J. Evolution of singlet oxygen by activating peroxydisulfate and peroxymonosulfate: A review. Int. J. Environ. Res. Public Health 2021, 18, 3344. [Google Scholar] [CrossRef]
- Processes, O. Oxidation Processes. In Metal-Oxygen Clusters. Fundamental and Applied Catalysis; Springer: Boston, MA, USA, 2002; pp. 227–288. [Google Scholar] [CrossRef]
- Argyle, M.D.; Bartholomew, C.H. Heterogeneous catalyst deactivation and regeneration: A review. Catalysts 2015, 5, 145–269. [Google Scholar] [CrossRef] [Green Version]
- Stampfl, C.; Veronica Ganduglia-Pirovano, M.; Reuter, K.; Scheffler, M. Catalysis and corrosion: The theoretical surface-science context. Surf. Sci. 2002, 500, 368–394. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Zhao, R. Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Curr. Pollut. Rep. 2015, 1, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Giwa, A.; Yusuf, A.; Balogun, H.A.; Sambudi, N.S.; Bilad, M.R.; Adeyemi, I.; Chakraborty, S.; Curcio, S. Recent advances in advanced oxidation processes for removal of contaminants from water: A comprehensive review. Process Saf. Environ. Prot. 2021, 146, 220–256. [Google Scholar] [CrossRef]
- Orlov, A.; Klinowski, J. Oxidation of volatile organic compounds on SBA-15 mesoporous molecular sieves modified with manganese. Chemosphere 2009, 74, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shen, J.; Zhao, L.; Wang, W.; Gong, W.; Zheng, F. Zinc-iron silicate for heterogeneous catalytic ozonation of acrylic acid: Efficiency and mechanism. RSC Adv. 2020, 10, 9146–9154. [Google Scholar] [CrossRef]
- Pirilä, M.; Saouabe, M.; Ojala, S.; Rathnayake, B.; Drault, F.; Valtanen, A.; Huuhtanen, M.; Brahmi, R.; Keiski, R.L. Photocatalytic degradation of organic pollutants in wastewater. Top. Catal. 2015, 58, 1085–1099. [Google Scholar] [CrossRef]
- Sagadevan, S.; Imteyaz, S.; Murugan, B.; Lett, J.A.; Sridevi, N.; Weldegebrieal, G.K.; Fatimah, I.; Oh, W.-C. A comprehensive review of green synthesis of titanium dioxide nanoparticles and their diverse biomedical applications. Inorg. Chem. Commun. 2022, 11, 44–63. [Google Scholar] [CrossRef]
- Rokesh, K.; Mohan, S.C.; Karuppuchamy, S.; Jothivenkatachalam, K. Photo-assisted advanced oxidation processes for Rhodamine B degradation using ZnO-Ag nanocomposite materials. J. Environ. Chem. Eng. 2016, 6, 3610–3620. [Google Scholar] [CrossRef]
- Karthik, R.; Govindasamy, M.; Chen, S.M.; Cheng, Y.H.; Muthukrishnan, P.; Padmavathy, S.; Elangovan, A. Biosynthesis of silver nanoparticles by using Camellia japonica leaf extract for the electrocatalytic reduction of nitrobenzene and photocatalytic degradation of Eosin-Y. J. Photochem. Photobiol. B Biol. 2017, 170, 164–172. [Google Scholar] [CrossRef]
- Wang, H.; Peng, D.; Chen, T.; Chang, Y.; Dong, S. A novel photocatalyst AgBr/ZnO/RGO with high visible light photocatalytic activity. Ceram. Int. 2016, 42, 4406–4412. [Google Scholar] [CrossRef]
- Dong, P.; Hou, G.; Liu, C.; Zhang, X.; Tian, H.; Xu, F.; Xi, X.; Shao, R. Origin of activity and stability enhancement for Ag3PO4 photocatalyst after calcination. Materials 2016, 9, 968. [Google Scholar] [CrossRef] [Green Version]
- Akbari, A.; Sabouri, Z.; Hosseini, H.A.; Hashemzadeh, A.; Khatami, M.; Darroudi, M. Effect of nickel oxide nanoparticles as a photocatalyst in dyes degradation and evaluation of effective parameters in their removal from aqueous environments. Inorg. Chem. Commun. 2020, 115, 107867. [Google Scholar] [CrossRef]
- Angel Ezhilarasi, A.; Judith Vijaya, J.; Kaviyarasu, K.; John Kennedy, L.; Ramalingam, R.J.; Al-Lohedan, H.A. Green synthesis of NiO nanoparticles using Aegle marmelos leaf extract for the evaluation of in-vitro cytotoxicity, antibacterial and photocatalytic properties. J. Photochem. Photobiol. B Biol. 2018, 180, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Ketteler, G.; Weiss, W.; Ranke, W.; Schlögl, R. Bulk and surface phases of iron oxides in oxygen and water atmosphere at low pressure. R. Phys. Chem. Chem. Phys. 2001, 3, 1114–1122. [Google Scholar] [CrossRef]
- Karim, W.; Kleibert, A.; Hartfelder, U.; Balan, A.; Gobrecht, H.; Bokhoven, J.A.; Ekinci, Y. Size-dependent redox behavior of iron observed by in-situ single nanoparticle spectro-microscopy on well-defined model systems. Sci. Rep. 2016, 6, 18818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debnath, B.; Roy, A.S.; Kapri, S.; Bhattacharyya, S. Efficient Dye Degradation Catalyzed by Manganese Oxide Nanoparticles and the Role of Cation Valence. ChemistrySelect 2016, 1, 4265–4273. [Google Scholar] [CrossRef]
- Bagheri, M.; Najafabadi, N.R.; Borna, E. Removal of reactive blue 203 dye photocatalytic using ZnO nanoparticles stabilized on functionalized MWCNTs. J. King Saud Univ.—Sci. 2020, 32, 799–804. [Google Scholar] [CrossRef]
- Yao, Y.R.; Zheng, Y.; Song, X.C. Catalytic degradation of phenol by γ-Fe2O3 nanoparticles. Adv. Mater. Res. 2014, 887–888, 139–142. [Google Scholar] [CrossRef]
- Kusior, A.; Michalec, K.; Jelen, P.; Radecka, M. Shaped Fe2O3 nanoparticles—Synthesis and enhanced photocatalytic degradation towards RhB. Appl. Surf. Sci. 2019, 476, 342–352. [Google Scholar] [CrossRef]
- Nayak, R.; Ali, F.A.; Mishra, D.K.; Ray, D.; Aswal, V.K.; Sahoo, S.K.; Nanda, B. Fabrication of CuO nanoparticle: An efficient catalyst utilized for sensing and degradation of phenol. J. Mater. Res. Technol. 2020, 9, 11045–11059. [Google Scholar] [CrossRef]
- Najjar, M.; Hosseini, H.A.; Masoudi, A.; Hashemzadeh, A.; Darroudi, M. Preparation of tin oxide (IV) nanoparticles by a green chemistry method and investigation of its role in the removal of organic dyes in water purification. Res. Chem. Intermed. 2020, 46, 2155–2168. [Google Scholar] [CrossRef]
- Abdullah, H.; Ariyanto, N.P.; Shaari, S.; Yuliarto, B.; Junaidi, S. Study of Porous Nanoflake ZnO for Dye-Sensitized Solar Cell Application. Am. J. Eng. Appl. Sci. 2009, 2, 236–240. [Google Scholar] [CrossRef]
- Mudusu, D.; Nandanapalli, K.R.; Dugasani, S.R.; Park, S.H.; Tu, C.W. Zinc oxide nanorods shielded with an Ultrathin Nickel layer: Tailoring of physical properties. Sci. Rep. 2016, 6, 28561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghannam, H.; Chahboun, A.; Turmine, M. Wettability of zinc oxide nanorod surfaces. RSC Adv. 2019, 9, 38289–38297. [Google Scholar] [CrossRef] [Green Version]
- Sofianos, V.M.; Lee, J.; Silvester, D.D.; .Samanta, P.K.; Paskevicius, M.; English, N.J.; Buckley, C.E. Diverse morphologies of zinc oxide nanoparticles and their electrocatalytic performance in hydrogen production. J. Energ. Chem. 2021, 56, 162–170. [Google Scholar] [CrossRef]
- Ridhuan, N.S.; Abdul Razak, K.; Lockman, Z.; Abdul Aziz, A. Structural and Morphology of ZnO Nanorods Synthesized Using ZnO Seeded Growth Hydrothermal Method and Its Properties as UV Sensing. PLoS ONE 2012, 7, e50405. [Google Scholar] [CrossRef]
- Perumal, V.; Hashim, U.; Gopinath, S.C.; Haarindraprasad, R.; Foo, K.L.; Balakrishnan, S.R.; Poopalan, P. ‘Spotted Nanoflowers’: Gold-seeded Zinc Oxide Nanohybrid for Selective Bio-capture. Sci. Rep. 2015, 5, 12231. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.H.; Patil, R.A.; Devan, R.S.; Liu, Z.A.; Wang, Y.P.; Ho, C.H.; Liou, Y.; Ma, Y.R. Photoluminescence mechanisms of metallic Zn nanospheres, semiconducting ZnO nanoballoons and metal-semiconductor Zn/ZnO nanospheres. Sci. Rep. 2014, 4, 6967. [Google Scholar] [CrossRef]
- Kołodziejczak-Radzimska, A.; Jesionowski, T. Zinc Oxide—From Synthesis to Application: A Review. Materials 2014, 7, 2833–2881. [Google Scholar] [CrossRef] [Green Version]
- Bundschuh, M.; Filser, J.; Lüderwald, S.; McKee, M.S.; Metreveli, G.; Schaumann, G.E.; Schulz, R.; Wagner, S. Nanoparticles in the environment: Where do we come from, where do we go to? Environ. Sci. Eur. 2018, 30, 6. [Google Scholar] [CrossRef] [Green Version]
- Taghavi, S.M.; Momenpour, M.; Azarian, M.; Ahmadian, M.; Souri, F.; Taghavi, S.A.; Sadeghain, M.; Karchani, M. Effects of Nanoparticles on the Environment and Outdoor Workplaces. Electron. Physician 2013, 5, 706–712. [Google Scholar] [CrossRef]
- Asif, S.A.B.; Khan, S.B.; Asiri, A.M. Efficient solar photocatalyst based on cobalt oxide/iron oxide composite nanofibers for the detoxification of organic pollutants. Nanoscale Res. Lett. 2014, 9, 510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, W.D.; Liu, X.Y.; Cui, S.C.; Liu, J.G. Loading of Co3O4 onto Pt-modified nitrogen-doped TiO2 nanocomposites promotes photocatalytic hydrogen production. RSC Adv. 2017, 7, 25650–25656. [Google Scholar] [CrossRef] [Green Version]
- Iazdani, F.; Nezamzadeh-Ejhieh, A. The photocatalytic rate of ZnO supported onto natural zeolite nanoparticles in the photodegradation of an aromatic amine. Environ. Sci. Pollut. Res. 2021, 28, 53314–53327. [Google Scholar] [CrossRef] [PubMed]
- Gayatri, R.; Agustina, T.E.; Bahrin, D.; Moeksin, R.; Gustini, G. Preparation and Characterization of ZnO-Zeolite Nanocomposite for Photocatalytic Degradation by Ultraviolet Light. J. Ecol. Eng. 2020, 22, 178–186. [Google Scholar] [CrossRef]
- Jahangirian, H.; Rafiee-Moghaddam, R.; Jahangirian, N.; Nikpey, B.; Jahangirian, S.; Bassous, N.; Saleh, B.; Kalantari, K.; Webster, T.J. Green synthesis of zeolite/Fe2O3 nanocomposites: Toxicity & cell proliferation assays and application as a smart iron nanofertilizer. Int. J. Nanomed. 2020, 15, 1005–1020. [Google Scholar] [CrossRef] [Green Version]
- Taghvaei, H.; Farhadian, M.; Davari, N.; Maazi, S. Preparation, characterization and photocatalytic degradation of methylene blue by Fe3+ doped TiO2 supported on natural zeolite using response surface methodology. Adv. Environ. Technol. 2017, 3, 205–216. [Google Scholar] [CrossRef]
- Su, R.; Tiruvalam, R.; Logsdail, A.J.; He, Q.; Downing, C.A.; Jensen, M.T.; Dimitratos, N.; Kesavan, L.; Wells, P.P.; Bechstein, R.; et al. Designer Titania-Supported Au À Pd Nanoparticles for Efficient Photocatalytic Hydrogen Production. ACS Nano 2014, 8, 3490–3497. [Google Scholar] [CrossRef]
- Hirakawa, H.; Shiota, S.; Shiraishi, Y.; Sakamoto, H.; Ichikawa, S.; Hirai, T. Au Nanoparticles Supported on BiVO4: Effective Inorganic Photocatalysts for H2O2 Production from Water and O2 under Visible Light. ACS Catal. 2016, 6, 4976–4982. [Google Scholar] [CrossRef]
- Radhika, N.P.; Selvin, R.; Kakkar, R.; Umar, A. Recent advances in nano-photocatalysts for organic synthesis. Arab. J. Chem. 2019, 12, 4550–4578. [Google Scholar] [CrossRef] [Green Version]
- Madni, A.; Noreen, S.; Maqbool, I.; Rehman, F.; Batool, A.; Kashif, P.M.; Rehman, M.; Tahir, N.; Khan, M.I. Graphene-based nanocomposites: Synthesis and their theranostic applications. J. Drug Target. 2018, 26, 858–883. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.; Wageh, S.; Al-Ghamdi, A.A.; Xie, J. Graphene in Photocatalysis: A Review. Small 2016, 12, 6640–6696. [Google Scholar] [CrossRef] [PubMed]
- Song, B.T.; Long, N.V.; Hang, N.T.N. The development of biomass-derived carbon based photocatalysts for visible-light-driven photodegradation of pollutants: A comprehensive review. RSC Adv. 2021, 11, 30574. [Google Scholar]
- Li, L.; Yu, Y.; Lin, S.; Chu, W.; Sun, D.; Su, Q.; Ma, S.; Du, G.; Xu, B. Single ruthenium atom supported on g-C3N4 as an efficient photocatalyst for nitrogen fixation in ultra-pure water. Catal. Commun. 2021, 153, 106294. [Google Scholar] [CrossRef]
- Quintanilla, A.; García-Rodríguez, S.; Domínguez, C.M.; Blasco, S.; Casas, J.A.; Rodriguez, J.J. Supported gold nanoparticle catalysts for wet peroxide oxidation. Appl. Catal. B Environ. 2012, 111–112, 81–89. [Google Scholar] [CrossRef]
- Wang, J.; Farias, J.; Tiwary, A.; Tangyie, G.C.; Huddersman, K. Advance Oxidation Process (AOP) of Bisphenol A Using a Novel Surface-Functionalised Polyacrylonitrile (PAN) Fibre Catalyst. Water 2022, 14, 640. [Google Scholar] [CrossRef]
- Zhang, G.; Gao, Y.; Zhang, Y.; Guo, Y. Fe2O3-pillared rectorite as an efficient and stable fenton-like heterogeneous catalyst for photodegradation of organic contaminants. Environ. Sci. Technol. 2010, 44, 6384–6389. [Google Scholar] [CrossRef]
- Kokkinos, P.; Venieri, D.; Mantzavinos, D. Advanced Oxidation Processes for Water and Wastewater Viral Disinfection. A Systematic Review. Food Environ. Virol. 2021. 13, 283–302. [CrossRef]
- Misra, A.J.; Das, S.; Habeeb Rahman, A.P.; Das, B.; Jayabalan, R.; Behera, S.K.; Suar, M.; Tamhankar, A.J.; Mishra, A.; Lundborg, C.S.; et al. Doped ZnO nanoparticles impregnated on Kaolinite (Clay): A reusable nanocomposite for photocatalytic disinfection of multidrug resistant Enterobacter sp. under visible light. J. Colloid Interface Sci. 2018, 530, 610–623. [Google Scholar] [CrossRef]
- Mukherjee, S. Classification and Composition of Clay Constituents. In The Science of Clays; Springer: Dordrecht, The Netherlands, 2013; pp. 23–32. [Google Scholar] [CrossRef]
- Cecilia, J.A.; García-Sancho, C.; Vilarrasa-García, E.; Jiménez-Jiménez, J.; Rodriguez-Castellón, E. Synthesis, Characterization, Uses and Applications of Porous Clays Heterostructures: A Review. Chem. Rec. 2018, 18, 1085–1104. [Google Scholar] [CrossRef]
- Zhou, C.H. An overview on strategies towards clay-based designer catalysts for green and sustainable catalysis. Appl. Clay Sci. 2011, 53, 87–96. [Google Scholar] [CrossRef]
- Serwicka, E.M. Titania-clay mineral composites for environmental catalysis and photocatalysis. Catalysts 2021, 11, 1087. [Google Scholar] [CrossRef]
- Hadjltaief, H.B.; Da Costa, P.; Beaunier, P.; Gálvez, M.E.; Zina, M.B. Fe-clay-plate as a heterogeneous catalyst in photo-Fenton oxidation of phenol as probe molecule for water treatment. Appl. Clay Sci. 2014, 91–92, 46–54. [Google Scholar] [CrossRef]
- Bhattacharyya, K.G.; Gupta, S. Sen Kaolinite, montmorillonite, and their modified derivatives as adsorbents for removal of Cu(II) from aqueous solution. Sep. Purif. Technol. 2006, 50, 388–397. [Google Scholar] [CrossRef]
- Detellier, C. Functional Kaolinite. Chem. Rec. 2018, 18, 868–877. [Google Scholar] [CrossRef]
- Dedzo, G.K.; Detellier, C. Functional nanohybrid materials derived from kaolinite. Appl. Clay Sci. 2016, 130, 33–39. [Google Scholar] [CrossRef]
- Hettinger, W.P. Contribution to catalytic cracking in the petroleum industry. Appl. Clay Sci. 1991, 5, 445–468. [Google Scholar] [CrossRef]
- Bahulayan, D.; John, L.; Lalithambika, M. Modified clays as efficient acid-base catalyst systems for diazotization and diazocoupling reactions. Synth. Commun. 2003, 33, 863–869. [Google Scholar] [CrossRef]
- Liu, J.; Yun, Z.; Gui, X. CE/Kaolin clay as an active catalyst for fatty acid methyl esters production from cottonseed oil in a new integrated apparatus. Braz. J. Chem. Eng. 2018, 35, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Alves, H.J.; da Rocha, A.M.; Monteiro, M.R.; Moretti, C.; Cabrelon, M.D.; Schwengber, C.A.; Milinsk, M.C. Treatment of clay with KF: New solid catalyst for biodiesel production. Appl. Clay Sci. 2014, 91–92, 98–104. [Google Scholar] [CrossRef]
- Parida, K.; Varadwaj, G.B.B.; Sahu, S.; Sahoo, P.C. Schiff base Pt(II) complex intercalated montmorillonite: A robust catalyst for hydrogenation of aromatic nitro compounds at room temperature. Ind. Eng. Chem. Res. 2011, 50, 7849–7856. [Google Scholar] [CrossRef]
- Nagendrappa, G. Organic synthesis using clay and clay-supported catalysts. Appl. Clay Sci. 2011, 53, 106–138. [Google Scholar] [CrossRef]
- Fatimah, I.; Rubiyanto, D.; Prakoso, N.I.; Yahya, A.; Sim, Y.-L. Green conversion of citral and citronellal using tris(bipyridine)ruthenium(II)-supported saponite catalyst under microwave irradiation. Sustain. Chem. Pharm. 2019, 11, 61–70. [Google Scholar] [CrossRef]
- Mora, L.D.; Bonfim, L.F.; Barbosa, L.V.; da SIlva, T.H.; Nassar, E.J.; Ciuffi, K.J.; Gonzalez, B.; Vincente, M.A.; Trujillano, R.; Rives, V.; et al. White and Red Braxilian Sao Siamao’s Kaolinite-TiO2 Nanocomposites as Catalysts for Toluene Photodegradation from Aqueous Solutions. Materials 2019, 12, 3943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kočí, K.; Matějka, V.; Kovář, P.; Lacný, Z.; Obalová, L. Comparison of the pure TiO2 and kaolinite/TiO2 composite as catalyst for CO2 photocatalytic reduction. Catal. Today 2011, 161, 105–109. [Google Scholar] [CrossRef]
- He, Y.; Jiang, D.; Chen, J.; Jiang, D.Y.; Zhang, Y.X. Synthesis of MnO2 nanosheets on montmorillonite for oxidative degradation and adsorption of methylene blue. J. Colloid Interface Sci. 2018, 510, 207–220. [Google Scholar] [CrossRef]
- He, Q.; Xie, C.; Gan, D.; Xiao, C. The efficient degradation of organic pollutants in an aqueous environment under visible light irradiation by persulfate catalytically activated with kaolin-Fe2O3. RSC Adv. 2019, 10, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Luna, F.M.T.; Cecilia, J.A.; Saboya, R.M.A.; Barrera, D.; Sapag, K.; Rodríguez-Castellón, E.; Cavalcante, C.L. Natural and modified montmorillonite clays as catalysts for synthesis of biolubricants. Materials 2018, 11, 1764. [Google Scholar] [CrossRef] [Green Version]
- Vidal, C.B.; dos Santos, A.B.; do Nascimento, R.F.; Bandosz, T.J. Reactive adsorption of pharmaceuticals on tin oxide pillared montmorillonite: Effect of visible light exposure. Chem. Eng. J. 2015, 259, 865–875. [Google Scholar] [CrossRef]
- Sadykov, V.A.; Kuznetsova, T.G.; Doronin, V.P.; Sorokina, T.P.; Alikina, G.M.; Kochubei, D.I.; Novgorodov, B.N.; Paukshtis, E.A.; Fenelonov, V.B.; Zaikovskii, V.I.; et al. Zirconia Pillared Clays: Synthesis, Characterization and Catalytic Properties in the NOx Selective Reduction by Hydrocarbons in the Oxygen Excess. Chem. Sustain. Dev. 2003, 11, 249–262. [Google Scholar]
- Chaabene, S.B.; Bergaoui, L.; Ghorbel, A. Zirconium and sulfated zirconium pillared clays: A combined intercalation solution study and solid characterization. Colloids Surf. A Physicochem. Eng. Asp. 2004, 251, 109–115. [Google Scholar] [CrossRef]
- Cardona, Y.; Vicente, M.A.; Korili, S.A.; Gil, A. Progress and perspectives for the use of pillared clays as adsorbents for organic compounds in aqueous solution. Rev. Chem. Eng. 2020. [Google Scholar] [CrossRef]
- Tireli, A.A.; Marcos, F.C.F.; Oliveira, L.F.; do Guimarães, I.R.; Guerreiro, M.C.; Silva, J.P. Influence of magnetic field on the adsorption of organic compound by clays modified with iron. Appl. Clay Sci. 2014, 97–98, 1–7. [Google Scholar] [CrossRef]
- Chen, Q.; Wu, P.; Li, Y.; Zhu, N.; Dang, Z. Heterogeneous photo-Fenton photodegradation of reactive brilliant orange X-GN over iron-pillared montmorillonite under visible irradiation. J. Hazard. Mater. 2009, 168, 901–908. [Google Scholar] [CrossRef]
- Kloprogge, J.T.; Evans, R.; Hickey, L.; Frost, L. Characterisation and Al-pillaring of smectites from Miles, Queensland (Australia). Appl. Clay Sci. 2002, 20, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Kloprogge, J.T.; Duong, L.V.; Frost, R.L. A review of the synthesis and characterisation of pillared clays and related porous materials for cracking of vegetable oils to produce biofuels. Environ. Geol. 2005, 47, 967–981. [Google Scholar] [CrossRef] [Green Version]
- Undabeytia, T.; Galán-Jiménez, M.C.; Gómez-Pantoja, E.; Vázquez, J.; Casal, B.; Bergaya, F.; Morillo, E. Fe-pillared clay mineral-based formulations of imazaquin for reduced leaching in soil. Appl. Clay Sci. 2013, 80–81, 382–389. [Google Scholar] [CrossRef]
- De León, M.A.; Rodríguez, M.; Marchetti, S.G.; Sapag, K.; Faccio, R.; Sergio, M.; Bussi, J. Raw montmorillonite modified with iron for photo-Fenton processes: Influence of iron content on textural, structural and catalytic properties. J. Environ. Chem. Eng. 2017, 5, 4742–4750. [Google Scholar] [CrossRef]
- Rigoti, E.; Schwanke, A.J.; Araújo, K.C.; Martínez-Huitle, C.A.; Pergher, S.B.C. Titanium oxide supported montmorillonite clays for environmental applications. J. Mex. Chem. Soc. 2019, 63, 1–12. [Google Scholar] [CrossRef]
- Lu, P.; Liang, C.; Wei, Y.; Song, Z. New design for titanium-pillared montmorillonite composites as efficient heterogeneous catalysts to enhance Fe(II) reductivity for 2-nitrophenol removal. Appl. Clay Sci. 2021, 205, 106052. [Google Scholar] [CrossRef]
- Vercellone, S.Z.; Sham, E.; Torres, E.M.F. Measure of Zeta Potential of Titanium Pillared Clays. Procedia Mater. Sci. 2015, 8, 599–607. [Google Scholar] [CrossRef] [Green Version]
- Vicente, M.A.; Bañares-Muñoz, M.A.; Toranzo, R.; Gandía, L.M.; Gil, A. Influence of the Ti precursor on the properties of Ti–pillared smectites. Clay Miner. 2001, 36, 125–138. [Google Scholar] [CrossRef]
- Al-Beladi, A.A.; Kosa, S.A.; Wahab, R.A.; Salam, M.A. Removal of orange G dye from water using halloysite nanoclay-supported ZnO nanoparticles. Desalin. Water Treat. 2020, 196, 287–298. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, D.; Xu, A.; Wu, F.; Cao, R. Quantum Sized Zinc Oxide Immobilized on Bentonite Clay and Degradation of C.I. Acid Red 35 in Aqueous under Ultraviolet Light. Int. J. Photoenergy 2015, 2015, 750869. [Google Scholar] [CrossRef] [Green Version]
- Butman, M.F.; Ovchinnikov, N.L.; Karasev, N.S.; Kochkina, N.E.; Agafonov, A.V.; Vinogradov, A.V. Photocatalytic and adsorption properties of TiO2-pillared montmorillonite obtained by hydrothermally activated intercalation of titanium polyhydroxo complexes. Beilstein J. Nanotechnol. 2018, 9, 364–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravari, M.H.; Sarrafi, A.; Tahmooresi, M. Synthesizing and characterizing the mixed Al,Cu-pillared and copper doped Al-pillared bentonite for electrocatalytic reduction of CO2. S. Afr. J. Chem. Eng. 2020, 31, 1–6. [Google Scholar] [CrossRef]
- Guimarães, V.; Teixeira, A.R.; Lucas, M.S.; Peres, J.A. Effect of Zr Impregnation on Clay-Based Materials for H2O2-Assisted Photocatalytic Wet Oxidation of Winery Wastewater. Water 2020, 12, 3387. [Google Scholar] [CrossRef]
- Timofeeva, M.N.; Malyshev, M.E.; Panchenko, V.N.; Shmakov, A.N.; Potapov, A.G.; Mel’gunov, M.S. FeAl12-Keggin type cation as an active site source for Fe,Al-silica mesoporous catalysts. Appl. Catal. B Environ. 2010, 95, 110–119. [Google Scholar] [CrossRef]
- Romero, A.; Dorado, F.; Asencio, I.; García, P.B.; Valverde, J.L. Ti-pillared clays: Synthesis and general characterization. Clays Clay Miner. 2006, 54, 737–747. [Google Scholar] [CrossRef]
- Fatimah, I.; Nurkholifah, Y.Y. Physicochemical and photocatalytic properties of Fe-pillared bentonite at various fe content. Bull. Chem. React. Eng. Catal. 2016, 11, 398–405. [Google Scholar] [CrossRef] [Green Version]
- Valverde, J.L.; Romero, A.; Romero, R.; García, P.B.; Sánchez, M.L.; Asencio, I. Preparation and characterization of Fe-PILCS. Influence of the synthesis parameters. Clays Clay Miner. 2005, 53, 613–621. [Google Scholar] [CrossRef]
- Fatimah, I.; Rubiyanto, D.; Sahroni, I.; Putra, R.S.; Nurillahi, R.; Nugraha, J. Physicochemical characteristics and photocatalytic performance of Tin oxide/montmorillonite nanocomposites at various Sn/montmorillonite molar to mass ratios. Appl. Clay Sci. 2020, 193, 105671. [Google Scholar] [CrossRef]
- Damardji, B.; Khalaf, H.; Duclaux, L.; David, B. Preparation of TiO2-pillared montmorillonite as photocatalyst Part I. Microwave calcination, characterisation, and adsorption of a textile azo dye. Appl. Clay Sci. 2009, 44, 201–205. [Google Scholar] [CrossRef]
- Munoz, H.-J.; Blanco, C.; Gil, A.; Vicente, M.-A.; Galeano, L.-A. Preparation of Al/Fe-Pillared Clays: Effect of the Starting Mineral. Materials 2017, 10, 1364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galeano, L.A.; Gil, A.; Vicente, M.A. Effect of the atomic active metal ratio in Al/Fe-, Al/Cu- and Al/(Fe-Cu)-intercalating solutions on the physicochemical properties and catalytic activity of pillared clays in the CWPO of methyl orange. Appl. Catal. B Environ. 2010, 100, 271–281. [Google Scholar] [CrossRef]
- Labib, I.; Boutoumi, H.; Khalaf, H. Synergistic effect of microwave calcination and sonophotocatalytic activity of TiO2-montmorillonite on the degradation of direct yellow 106 and disperse violet 1. Bull. Chem. React. Eng. Catal. 2020, 15, 304–318. [Google Scholar] [CrossRef]
- Minz, S.; Garg, S.; Gupta, R. Catalytic Wet Peroxide Oxidation of 4-Nitrophenol Over Al–Fe, Al–Cu and Al–Cu–Fe Pillared Clays. Indian Chem. Eng. 2018, 60, 16–36. [Google Scholar] [CrossRef]
- Akkari, M.; Aranda, P.; Belver, C.; Bedia, J.; Ben Haj Amara, A.; Ruiz-Hitzky, E. ZnO/sepiolite heterostructured materials for solar photocatalytic degradation of pharmaceuticals in wastewater. Appl. Clay Sci. 2018, 156, 104–109. [Google Scholar] [CrossRef]
- Babu, A.T.; Antony, R. Clay semiconductor hetero-system of SnO2/bentonite nanocomposites for catalytic degradation of toxic organic wastes. Appl. Clay Sci. 2019, 183, 105312. [Google Scholar] [CrossRef]
- Liu, R.; Ji, Z.; Wang, J.; Zhang, J. Mesocrystalline TiO2/sepiolite composites for the effective degradation of methyl orange and methylene blue. Front. Mater. Sci. 2018, 12, 292–303. [Google Scholar] [CrossRef]
- Ooka, C.; Yoshida, H.; Suzuki, K.; Hattori, T. Highly hydrophobic TiO2 pillared clay for photocatalytic degradation of organic compounds in water. Microporous Mesoporous Mater. 2004, 67, 143–150. [Google Scholar] [CrossRef]
- Khalfaoui-Boutoumi, N.; Boutoumi, N.; Khalaf, H.; David, B. Synthesis and characterization of TiO2—Montmorillonite/Polythiophene-SDS nanocomposites: Application in the sonophotocatalytic degradation of rhodamine 6G. Appl. Clay. Sci. 2013, 80–81, 56–62. [Google Scholar] [CrossRef]
- Ghnimi, S.M.; Srasra, N.F. Effect of Temperature Synthesis on the Catalytic Performance of Zirconium Pillared Interlayered Clays for Phenol Oxidation. Mod. Chem. Appl. 2017, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Zhu, Q.; Zhou, F.; Deng, X.; Li, F. Synthesis and photocatalytic performances of the TiO2 pillared montmorillonite. J. Hazard. Mater. 2012, 235–236, 186–193. [Google Scholar] [CrossRef]
- Ruiz-Hitzky, E.; Aranda, P.; Akkari, M.; Khaorapapong, N.; Ogawa, M. Photoactive nanoarchitectures based on clays incorporating TiO2 and ZnO nanoparticles. Beilstein J. Nanotechnol. 2019, 10, 1140–1156. [Google Scholar] [CrossRef] [Green Version]
- Sasikala, S.P.; Nibila, T.A.; Babitha, K.B.; Mohamed, A.A.P.; Solaiappan, A. Competitive photo-degradation performance of ZnO modified bentonite clay in water containing both organic and inorganic contaminants. Sustain. Environ. Res. 2019, 29, 1. [Google Scholar] [CrossRef] [Green Version]
- Ruslan; Khairuddin; Hardi, J.; Mirzan, M. Characterization of zirconia-pillared clay with sulfate acid activation. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2020; Volume 2243. [Google Scholar] [CrossRef]
- Sharma, S.; Sarasan, D.G. Influence of Acid Activation on Natural Calcium Montmorillonite Clay. IOSR J. Appl. Chem. 2017, 10, 71–77. [Google Scholar] [CrossRef]
- Fatimah, I.; Purwiandono, G.; Citradewi, P.W.; Sagadevan, S.; Oh, W.C.; Doong, R.A. Influencing Factors in the Synthesis of Photoactive Nanocomposites of ZnO/SiO2-Porous Heterostructures from Montmorillonite and the Study for Methyl Violet Photodegradation. Nanomaterials 2021, 11, 3427. [Google Scholar] [CrossRef]
- Kooli, F.; Hian, P.C.; Weirong, Q.; Alshahateet, S.F.; Chen, F. Effect of the acid-activated clays on the properties of porous clay heterostructures. J. Porous Mater. 2006, 13, 319–324. [Google Scholar] [CrossRef]
- Taher, T.; Mohadi, R.; Lesbani, A. Effect of Ti4+/clay ratio on the properties of titanium pillared bentonite and its application for Cr (VI) removal. Rasayan J. Chem. 2018, 11, 1244–1254. [Google Scholar] [CrossRef]
- Belver, C.; Hinojosa, M.; Bedia, J.; Tobajas, M.; Alvarez, M.A.; Rodríguez-González, V.; Rodrigue, J.J. Ag-Coated Heterostructures of ZnO-TiO2/DelaminatedMontmorillonite as Solar Photocatalysts. Materials 2017, 10, 960. [Google Scholar] [CrossRef] [Green Version]
- Ökte, A.N.; Tuncel, D.; Pekcan, A.H.; Özden, T. Characteristics of iron-loaded TiO2-supported montmorillonite catalysts: β-Naphthol degradation under UV-A irradiation. J. Chem. Technol. Biotechnol. 2014, 89, 1155–1167. [Google Scholar] [CrossRef]
- Dali, A.; Rekkab-Hammoumraoui, I.; El Korso, S.; Boudjema, S.; Choukchou-Braham, A. Ruthenium-doped titania-pillared clay for the selective catalytic oxidation of cyclohexene: Influence of RU loading. Bull. Chem. React. Eng. Catal. 2019, 14, 614–624. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.S.; Kalmakhanova, M.S.; Massalimova, B.K.; de Tuesta, J.L.D.; Gomes, H.T. Wet peroxide oxidation of paracetamol using acid activated and Fe/Co-pillared clay catalysts prepared from natural clays. Catalysts 2019, 9, 705. [Google Scholar] [CrossRef] [Green Version]
- Widjaya, R.R.; Saridewi, N.; Putri, A.A.; Rinaldi, N.; Dwiatmoko, A.A. Fe-Cr pillared clay as catalysts for the ethanol to gasoline conversion. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021; Volume 1011. [Google Scholar] [CrossRef]
- Marković, M.; Marinović, S.; Mudrinić, T.; Ajduković, M.; Jović-Jovičić, N.; Mojović, Z.; Orlić, J.; Milutinović-Nikolić, A.; Banković, P. Co(II) impregnated Al(III)-pillared montmorillonite–Synthesis, characterization and catalytic properties in Oxone® activation for dye degradation. Appl. Clay Sci. 2019, 182, 105276. [Google Scholar] [CrossRef]
- Chmielarz, L.; Gil, B.; Kuśtrowski, P.; Piwowarska, Z.; Dudek, B.; Michalik, M. Montmorillonite-based porous clay heterostructures (PCHs) intercalated with silica-titania pillars-synthesis and characterization. J. Solid State Chem. 2009, 182, 1094–1104. [Google Scholar] [CrossRef]
- Rubiyanto, D.; Prakoso, N.I.; Sahroni, I.; Nurillahi, R. ZnO-Porous Clay Heterostructure from Saponite as Green Catalyst for Citronellal Cyclization. Bull. Chem. React. Eng. Catal. 2020, 15, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Belver, C.; Han, C.; Rodriguez, J.J.; Dionysiou, D.D. Innovative W-doped titanium dioxide anchored on clay for photocatalytic removal of atrazine. Catal. Today 2017, 280, 21–28. [Google Scholar] [CrossRef]
- Jia, H.; Wang, C. Comparative studies on montmorillonite-supported zero-valent iron nanoparticles produced by different methods: Reactivity and stability. Environ. Technol. 2013, 34, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Mekewi, M.A.; Darwish, A.S.; Amin, M.S.; Eshaq, G.; Bourazan, H.A. Copper nanoparticles supported onto montmorillonite clays as efficient catalyst for methylene blue dye degradation. Egypt. J. Pet. 2016, 25, 269–279. [Google Scholar] [CrossRef] [Green Version]
- Dhakshinamoorthy, A.; Pitchumani, K. Clay entrapped nickel nanoparticles as efficient and recyclable catalysts for hydrogenation of olefins. Tetrahedron Lett. 2008, 49, 1818–1823. [Google Scholar] [CrossRef]
- Makwana, D.; Dakhara, B.; Bajaj, H.C.; Parmar, D.; Kumar, S.; Dhakhda, S.; Oza, M.D. Montmorillonite Clay Supported Palladium Nanoparticle for the Catalytic Hydrogenation of Furfural to Tetrahydrofurfuryl Alcohol. Int. J. Eng. Res. Technol. 2019, 8, 65–71. [Google Scholar]
- Kahangi, F.G.; Mehrdad, M.; Heravi, M.M.; Sadjadi, S. Bio-assisted synthesized Ag(0) nanoparticles stabilized on hybrid of sepiolite and chitin: Efficient catalytic system for xanthene synthesis. Sci. Rep. 2020, 10, 15285. [Google Scholar] [CrossRef] [PubMed]
- Bagchi, B.; Thakur, P.; Kool, A.; Das, S.; Nandy, P. In situ synthesis of environmentally benign montmorillonite supported composites of Au/Ag nanoparticles and their catalytic activity in the reduction of p-nitrophenol. RSC Adv. 2014, 4, 61114–61123. [Google Scholar] [CrossRef]
- Wang, N.; Xiao, F.; Zhang, J.; Zhou, H.; Qin, Y.; Pan, D. Spherical montmorillonite-supported nano-silver as a self-sedimentary catalyst for methylene blue removal. Appl. Clay Sci. 2019, 174, 146–151. [Google Scholar] [CrossRef]
- Zhao, X.F.; Liu, Z.L.; Li, X.D.; Li, S.P.; Song, F.G. The performance of attapulgite hybrids combined with MTX and Au nanoparticles. J. Phys. Chem. Solids 2019, 124, 73–80. [Google Scholar] [CrossRef]
- Xiao, F.; Qin, Y.; Wang, N.; Pan, D. Towards mass production of Au nanoparticles supported on montmorillonite microspheres for catalytic reduction of 4-nitrophenol. Appl. Clay Sci. 2018, 166, 74–79. [Google Scholar] [CrossRef]
- Belova, V.; Möhwald, H.; Shchukin, D.G. Sonochemical intercalation of preformed gold nanoparticles into multilayered clays. Langmuir 2008, 24, 9747–9753. [Google Scholar] [CrossRef] [PubMed]
- Sohrabnezhad, S.; Rassa, M.; Seifi, A. Green synthesis of Ag nanoparticles in montmorillonite. Mater. Lett. 2016, 168, 28–30. [Google Scholar] [CrossRef]
- Hariram, M.; Ganesan, V.; Muthuramkumar, S.; Vivekanandhan, S. Functionalization of kaolin clay with silver nanoparticles by Murraya koenigii fruit extract-mediated bioreduction process for antimicrobial applications. J. Aust. Ceram. Soc. 2021, 57, 505–513. [Google Scholar] [CrossRef]
- Moradi, F.; Sedaghat, S.; Arab-Salmanabadi, S.; Moradi, O. Biosynthesis of silver-montmorillonite nanocomposites using Ocimum Basilicum and Teucrium Polium; A comparative study. Mater. Res. Express 2019, 6, 125008. [Google Scholar] [CrossRef]
- Sheikh-Mohseni, M.H.; Sedaghat, S.; Derakhshi, P.; Safekordi, A. Green bio-synthesis of Ni/montmorillonite nanocomposite using extract of Allium jesdianum as the nano-catalyst for electrocatalytic oxidation of methanol. Chin. J. Chem. Eng. 2020, 28, 2555–2565. [Google Scholar] [CrossRef]
- Das, T.K.; Ganguly, S.; Bhawal, P.; Remanan, S.; Mondal, S.; Das, N.C. Mussel inspired green synthesis of silver nanoparticles-decorated halloysite nanotube using dopamine: Characterization and evaluation of its catalytic activity. Appl. Nanosci. 2018, 8, 173–186. [Google Scholar] [CrossRef] [Green Version]
- Wu, E.M.-Y.; Kuo, S.-L. Decolourization of Methylene Blue in Water Using Bentonite Impregnated with Ti and Ag as Photocatalyst. Water Environ. Res. 2015, 87, 727–734. [Google Scholar] [CrossRef]
- Kaloidas, V.; Koufopanos, C.A.; Gangas, N.H.; Papayannakos, N.G. Scale-up studies for the preparation of pillared layered clays at 1 kg per batch level. Microporous Mater. 1995, 5, 97–106. [Google Scholar] [CrossRef]
- Bertella, F.; Pergher, S.B.C. Scale up pillaring: A study of the parameters that influence the process. Materials 2017, 10, 712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muñoz, H.J.; Vallejo, C.; Blanco, C.; Gil, A.; Vicente, M.Á.; Ramírez, J.H.; Galeano, L.A. 10 kg scaled-up preparation of Al/Fe-pillared clay CWPO catalysts from concentrated precursors. Green Chem. 2018, 20, 5196–5208. [Google Scholar] [CrossRef]
- Li, Z.; Pan, Z.; Wang, Y. Mechanochemical preparation of ternary polyethyleneimine modified magnetic illite/smectite nanocomposite for removal of Cr(VI) in aqueous solution. Appl. Clay Sci. 2020, 198, 105832. [Google Scholar] [CrossRef]
- Ravichandran, K.; Praseetha, P.K.; Arun, T.; Gobalakrishnan, S. Synthesis of Nanocomposites; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780081019757. [Google Scholar]
- Yang, R.; Cai, J.; Yang, H. Enhanced reactivity of zero-valent aluminum/O2 by using Fe-bearing clays in 4-chlorophenol oxidation. Sci. Total Environ. 2021, 773, 145661. [Google Scholar] [CrossRef]
- Foroughi, M.M.; Pardakhty, A.; Ranjbar, M. Simple Microwave Synthesis of CdO/Clay Nanocomposites and Investigation its Application for Degradation of MB. J. Clust. Sci. 2017, 28, 1685–1692. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, P.; Hu, J.; Liu, B.; Yang, J.; Liang, S.; Xiao, K.; Hou, H. A review on microwave irradiation to the properties of geopolymers: Mechanisms and challenges. Constr. Build. Mater. 2021, 294, 123491. [Google Scholar] [CrossRef]
- Barakan, S.; Aghazadeh, V. Synthesis and characterization of hierarchical porous clay heterostructure from Al, Fe-pillared nano-bentonite using microwave and ultrasonic techniques. Microporous Mesoporous Mater. 2019, 278, 138–148. [Google Scholar] [CrossRef]
- Nain, S.; Singh, R.; Ravichandran, S. Importance of Microwave Heating In Organic Synthesis. Adv. J. Chem. A 2019, 2, 94–104. [Google Scholar] [CrossRef]
- Hao, M.; Gao, P.; Liu, W.; Fang, B.; Liang, J.; Zhang, T.; Ding, Y.; Zhang, H.; Wang, F. Microwave hydrothermal-reduction synthesis of zanthoxylum trunk-like Co/CoAl2O4/sepiolite nanocomposite. Ceram. Int. 2021, 47, 4722–4728. [Google Scholar] [CrossRef]
- Borah, B.; Dhar Dwivedi, K.; Kumar, B.; Raju Chowhan, L. Recent advances in the microwave- and ultrasound-assisted green synthesis of coumarin-heterocycles. Arab. J. Chem. 2021, 15, 103654. [Google Scholar] [CrossRef]
- Olaya, A.; Blanco, G.; Bernal, S.; Moreno, S.; Molina, R. Synthesis of pillared clays with Al-Fe and Al-Fe-Ce starting from concentrated suspensions of clay using microwaves or ultrasound, and their catalytic activity in the phenol oxidation reaction. Appl. Catal. B Environ. 2009, 93, 56–65. [Google Scholar] [CrossRef]
- Fuentes-García, J.A.; Santoyo-Salzar, J.; Rangel-Cortes, E.; Goya, G.F.; Cardozo-Mata, V.; Pescador-Rojas, J.A. Effect of ultrasonic irradiation power on sonochemical synthesis of gold nanoparticles. Ultrason. Sonochem. 2021, 70, 105274. [Google Scholar] [CrossRef] [PubMed]
- Díez-García, M.I.; Manzi-Orezzoli, V.; Jankulovska, M.; Anandan, S.; Bonete, P.; Gómez, R.; Lana-Villarreal, T. Effects of Ultrasound Irradiation on the Synthesis of Metal Oxide Nanostructures. Phys. Procedia 2015, 63, 85–90. [Google Scholar] [CrossRef] [Green Version]
- Pradisty, N.A.; Sihombing, R.; Howe, R.F.; Krisnandi, Y.K. Fe(III) Oxide-modified Indonesian Bentonite for Catalytic Photodegradation of Phenol in Water. Makara J. Sci. 2017, 21, 5. [Google Scholar] [CrossRef]
- Sun, Z.; Feng, L.; Fang, G.; Chu, L.; Zhou, D.; Gao, J. Nano Fe2O3 embedded in montmorillonite with citric acid enhanced photocatalytic activity of nanoparticles towards diethyl phthalate. J. Environ. Sci. 2021, 101, 248–259. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, F.G.E.; Lopes, J.H.; Silva, A.C.; Lago, R.M.; Fabris, J.D.; Oliveira, L.C.A. Catalysts based on clay and iron oxide for oxidation of toluene. Appl. Clay Sci. 2011, 51, 385–389. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.; Hong, R.; Gao, J.; Gu, C. Degradation of bisphenol A by nano-sized manganese dioxide synthesized using montmorillonite as templates. Appl. Clay Sci. 2016, 132–133, 155–160. [Google Scholar] [CrossRef] [Green Version]
- Kalidhasan, S.; Dror, I.; Berkowitz, B. Atrazine degradation through PEI-copper nanoparticles deposited onto montmorillonite and sand. Sci. Rep. 2017, 7, 1415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tepmatee, P.; Siriphannon, P. Facile preparation of copper impregnated aluminum pillared montmorillonite: Nanoclays for wastewater treatment. Bull. Pol. Acad. Sci. Tech. Sci. 2016, 64, 553–560. [Google Scholar] [CrossRef] [Green Version]
- John, M.; Jeffrey, B.; Thabang, N. Influence of operational parameters and kinetic modelling of catalytic wet air oxidation of phenol by al/zr pillared clay catalyst. Iran. J. Chem. Chem. Eng. 2019, 38, 189–203. [Google Scholar]
- Kibanova, D.; Trejo, M.; Destaillats, H.; Cervini-Silva, J. Synthesis of hectorite–TiO2 and kaolinite–TiO2 nanocomposites with photocatalytic activity for the degradation of model air pollutants. Appl. Clay Sci. 2009, 42, 563–569. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Peng, K.; Chen, H.; Wang, Z. TiO2 nanoparticles assembled on kaolinites with different morphologies for efficient photocatalytic performance. Sci. Rep. 2018, 8, 11663. [Google Scholar] [CrossRef] [Green Version]
- Djellabi, R.; Ghorab, M.F.; Cerrato, G.; Morandi, S.; Gatto, S.; Oldani, V.; Di Michele, A.; Bianchi, C.L. Photoactive TiO2-montmorillonite composite for degradation of organic dyes in water. J. Photochem. Photobiol. A Chem. 2015, 295, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhao, X.; Wu, F.; Tang, Z.; Zhao, T.; Niu, L.; Fang, M.; Wang, H.; Wang, F. Impact of montmorillonite clay on the homo- and heteroaggregation of titanium dioxide nanoparticles (nTiO2) in synthetic and natural waters. Sci. Total Environ. 2021, 784, 147019. [Google Scholar] [CrossRef]
- Fatimah, I.; Nurillahi, R.; Sahroni, I.; Muraza, O. TiO2-pillared saponite and photosensitization using a ruthenium complex for photocatalytic enhancement of the photodegradation of bromophenol blue. Appl. Clay Sci. 2019, 183, 105302. [Google Scholar] [CrossRef]
- Xiang, H.; Tuo, B.; Tian, J.; Hu, K.; Wang, J.; Cheng, J.; Tang, Y. Preparation and photocatalytic properties of Bi-doped TiO2/montmorillonite composite. Opt. Mater. 2021, 117, 111137. [Google Scholar] [CrossRef]
- Aritonang, A.B.; Pratiwi, E.; Warsidah, W.; Nurdiansyah, S.I.; Risko, R. Fe-doped TiO2/Kaolinite as an antibacterial photocatalyst under visible light irradiation. Bull. Chem. React. Eng. Catal. 2021, 16, 293–301. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, S.; Xie, Y.; Gao, J. Characterization of N-doped TiO2 pillared clay and its photocatalytic performance under visible light. Chem. Eng. Trans. 2018, 71, 217–222. [Google Scholar] [CrossRef]
- Natsir, M.; Putri, Y.I.; Wibowo, D.; Maulidiyah, M.; Salim, L.O.A.; Azis, T.; Bijang, C.M.; Mustapa, F.; Irwan, I.; Arham, Z.; et al. Effects of Ni–TiO2 Pillared Clay–Montmorillonite Composites for Photocatalytic Enhancement Against Reactive Orange Under Visible Light. J. Inorg. Organomet. Polym. Mater. 2021, 31, 3378–3388. [Google Scholar] [CrossRef]
- Wang, W.K.; Chen, J.J.; Gao, M.; Huang, Y.X.; Zhang, X.; Yu, H.Q. Photocatalytic degradation of atrazine by boron-doped TiO2 with a tunable rutile/anatase ratio. Appl. Catal. B Environ. 2016, 195, 69–76. [Google Scholar] [CrossRef]
- Wang, J.; Liu, G.; Liu, Y.; Zhou, C.; Wu, Y. Photocatalytic Degradation of Methyl Orange by Fe2O3−Fe3O4 Nanoparticles and Fe2O3−Fe3O4−Montmorillonite Nanocomposites. Clean 2017, 45, 1600472. [Google Scholar] [CrossRef]
- Ayodele, O.B.; Hameed, B.H. Synthesis of copper pillared bentonite ferrioxalate catalyst for degradation of 4-nitrophenol in visible light assisted Fenton process. J. Ind. Eng. Chem. 2013, 19, 966–974. [Google Scholar] [CrossRef]
- Akkari, M.; Aranda, P.; Rhaiem, H.B.; Amara, A.B.H.; Ruiz-Hitzky, E. ZnO/clay nanoarchitectures: Synthesis, characterization and evaluation as photocatalysts. Appl. Clay Sci. 2016, 131, 131–139. [Google Scholar] [CrossRef]
- Akkari, M.; Aranda, P.; Ben Haj Amara, A.; Ruiz-Hitzky, E. Organoclay hybrid materials as precursors of porous ZnO/silica-clay heterostructures for photocatalytic applications. Beilstein J. Nanotechnol. 2016, 7, 1971–1982. [Google Scholar] [CrossRef] [Green Version]
- Fatimah, I.; Ardianti, S.; Sahroni, I.; Purwiandono, G.; Sagadevan, S.; Doong, R.A. Visible light sensitized porous clay heterostructure photocatalyst of zinc-silica modified montmorillonite by using tris(2,2′-bipyridyl) dichlororuthenium. Appl. Clay Sci. 2021, 204, 106023. [Google Scholar] [CrossRef]
- Aguiar, J.E.; Cecilia, J.A.; Tavares, P.A.S.; Azevedo, D.C.S.; Castellón, E.R.; Lucena, S.M.P.; Silva, I.J. Adsorption study of reactive dyes onto porous clay heterostructures. Appl. Clay Sci. 2017, 135, 35–44. [Google Scholar] [CrossRef]
- Junior, S.A.; de Sousa, J.F.; Benachour, M.; Rojas, L.O. Oxidacion Humeda de Fenoles con Catalizadores Fe-CeO2, KMnO2/CeO2/Paligorsquita y Fe/Paligorsquita. Inf. Technol. 2011, 22, 55–68. [Google Scholar]
- Gandía, L.M.; Vicente, M.A.; Gil, A. Complete oxidation of acetone over manganese oxide catalysts supported on alumina- and zirconia-pillared clays. Appl. Catal. B Environ. 2002, 38, 295–307. [Google Scholar] [CrossRef]
- Kalmakhanova, M.S.; Diaz de Tuesta, J.L.; Kabykenovna, B.; Gomes, H.T. Pillared clays from natural resources as catalysts for catalytic wet peroxide oxidation: Characterization and kinetic insights. Environ. Eng. Res. 2020, 25, 186–196. [Google Scholar] [CrossRef] [Green Version]
- Hadjltaief, H.B.; Zina, M.B.; Galvez, M.E.; Da Costa, P. Photo-Fenton oxidation of phenol over a Cu-doped Fe-pillared clay. Comptes Rendus Chim. 2015, 18, 1161–1169. [Google Scholar] [CrossRef]
Metal/Metal Oxide | Precursor and Synthesis Method | Remark | Reference |
---|---|---|---|
Mn3O4 | Precursor of MnCl2, by the precipitation method | Particle sizes of Mn3O4 nanoparticles are 20–35 nm, Mn3O4 NPs show high activity for the 99.9% degradation of methylene blue by photooxidation | [48] |
ZnO | Zinc acetate precipitation method | ZnO NPs show a removal efficiency of reactive blue of 85.4% | [49] |
γ-Fe2O3 | Synthesized using FeSO4·7H2O by the precipitation method | γ-Fe2O3 NP sizes of 40–50 nm with a phenol degradation activity of 94.5% within 420 min at 80 °C. The NPs shows reusability until the fifth cycle | [50] |
α-Fe2O3 | α-Fe2O3 NPs were in nanocubic form, prepared using a metal-ion-mediated hydrothermal route. | α-Fe2O3 NPs showed photocatalytic activity in rhodamine B degradation | [51] |
CuO | CuO NPs were prepared by reflux and precipitation methods, followed by calcination at different temperatures of 350–550 °C. Particle’s sizes are in the range of 17–34 nm, depending on method and calcination temperature | The highest activity of CuO NPs was exhibited by the NPs prepared by the reflux method and calcined at 450 °C. The highest degradation efficiency toward phenol was 95%. Nanoparticles showed stability until the third cycle | [52] |
SnO2 | SnO2 in nanosphere form was synthesized through a solvothermal method by a SnCl2 precursor | The highest degradation efficiency of rhodamine B was 99% during 90 min under UV light | [53] |
Pillared Clay | Precursor | d001 (nm) | Crucial Factor | Ref |
---|---|---|---|---|
Fe2O3-rectorite | Na2CO3 solution in mixture with Fe(NO3)3 at the molar ratio Na:Fe of 1:1, under stirring at 25 °C | 0.25 | - | [79] |
TiO2/montmorillonite | Tetrabutyl titanate in mixture with HCl by slowly dropping 0.5 of [Ti]:[H+] molar ratio under stirring 1.0 h | 0.357 | Calcination temperature determined the specific surface area | [113] |
TiO2/montmorillonite | Various pillaring precursor: Ti-PILCs consist of adding TiCl4 to a solution of HCl, which can be diluted with deionized water under vigorous stirring to obtain hydrolyzed Ti4+ | 0.2–0.3 | HCl:Ti molar ratio; temperature at which the pillaring solution is prepared; clay suspension concentration; mmol of Ti:clay ratio; and calcination temperature | [122] |
Fe2O3-pillared bentonite | FeCl3 and NaOH at a molar ratio −OH:Fe = 1:1, stirred at room temperature overnight | 0.06–0.84 | Fe molar-to-mass ratio influencing the specific surface area and basal spacing d001 | [123] |
Fe2O3-pillared montmorillonite | Trinuclear acetate Fe(III) ion, [Fe3(OCOCH3)7OH·2H2O] | 0.1 | Fe molar-to-mass ratio influencing the specific surface area | [111] |
Fe2O3-pillared montmorillonite | FeCl3 and NaOH at the molar ratio −OH:Fe = 1:1, stirring for 4 h at room temperature | - | −OH:Fe molar ratio, Fe content and calcination temperature are the important parameters influencing the character of pillared clay | [124] |
SnO2/montmorillonite | Slowly titrated with NaOH and SnCl2 solution with Sn:OH molar ratio of 1:1, stirred overnight | 1.4–1.6 nm | Sn molar-to-mass ratio influencing the specific surface area, basal spacing d001, and particle size of SnO2 | [125] |
Cu/Al-pillared bentonite | Cu2+/(Al3++Cu2+) molar ratios 0, 0.05, 0.1, 0.15 and 0.2. | 0.7–0.88 | Cu2+/(Al3++Cu2+) molar ratios determined the increasing d001 and specific surface area | [119] |
TiO2-pillared montmorillonite | The mixture of HCl-Ti isopropoxide at the HCl:Ti molar ratio of 10 | The calcination by microwave irradiation influenced by the power of microwave | [126] | |
Al/Fe-pillared clay | AlCl3 in mixture with FeCl3 titrated with NaOH | The starting clay | [127] | |
Al/Fe-pillared clay | AlCl3 in mixture with FeCl3 titrated with NaOH | 0.45 | Al:Fe molar ratio influenced the physicochemical character of material | [128] |
SnO2/montmorillonite | SnCl2 in mixture with NaOH at the Sn:OH molar ratio of 1:1 | Sn:montmorillonite mass ratio influenced the character of materials | [80] | |
TiO2-pillared montmorillonite | Titanium isopropoxide-HCl | 0.25 | Microwave power influenced the physicochemical character of material | [129] |
Al-Fe pillared clay | FeCl3 and AlCl3 with the molar ratio of Al:Fe = 5:1, titrated with NaOH under vigorous stirring to obtain a molar ratio of OH:(Al+Fe) = 2 | 0.46 | Al:Fe and OH:(Al+Fe) = 2 determining the basal spacing d001 and specific surface area | [130] |
ZnO/sepiolite heterostructure | Zn-acetate and KOH in methanol under precipitation method | Not reported | Material has capability to be support for Fe2O3 | [131] |
SnO2/bentonite | SnCl2 at various contents (10, 20, and 30 wt.%) in mixture with NaOH at the pH of 11–12, stirred at 60 °C | Not reported | Material has the capability to effectively degrade MB | [132] |
TiO2/sepiolite | Tetrabutyl titanate (TBT) and acetic acid under solvothermal | Not reported | Material has the capability to effectively degrade MB | [133] |
TiO2/montmorillonite | Titanium tetraisopropoxide was added to a vigorously stirred acetic acid solution of 80 wt.%. The resulting white slurry was stirred at 323 K to give a clear TiO2 sol | 0.48 | Kind of clay determined the hydrophobicity of pillared clay | [134] |
TiO2/montmorillonite | TiCl4 was diluted with CH2Cl2 to obtain a clear solution. Then, the mixture was slowly added to Na–M suspension under vigorous stirring at 65 °C for 4 h under reflex system | 1.60 | The Ti content in TiO2–M was 48.6 wt.% with an anatase crystallite size of about 15–20 nm | [135] |
ZrO2/bentonite | A zirconium polycation solution was prepared by the slow titration of a ZrCl4 solution (0.1 M) with a solution of NaOH (0.2 M) under vigorous stirring, using an OH:Zr molar ratio equal to 4:1. | 0.95 | Ageing temperature of intercalated bentonite influences the distribution of polyoxocations | [136] |
TiO2/montmorillonite | Titanium polycation solution was prepared by the hydrolysis of TiCl4 | 0.20 | Hydrothermal treatment and calcination temperature influenced the increasing d001 and titanium dioxide phase | [118] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fatimah, I.; Fadillah, G.; Yanti, I.; Doong, R.-a. Clay-Supported Metal Oxide Nanoparticles in Catalytic Advanced Oxidation Processes: A Review. Nanomaterials 2022, 12, 825. https://doi.org/10.3390/nano12050825
Fatimah I, Fadillah G, Yanti I, Doong R-a. Clay-Supported Metal Oxide Nanoparticles in Catalytic Advanced Oxidation Processes: A Review. Nanomaterials. 2022; 12(5):825. https://doi.org/10.3390/nano12050825
Chicago/Turabian StyleFatimah, Is, Ganjar Fadillah, Ika Yanti, and Ruey-an Doong. 2022. "Clay-Supported Metal Oxide Nanoparticles in Catalytic Advanced Oxidation Processes: A Review" Nanomaterials 12, no. 5: 825. https://doi.org/10.3390/nano12050825
APA StyleFatimah, I., Fadillah, G., Yanti, I., & Doong, R. -a. (2022). Clay-Supported Metal Oxide Nanoparticles in Catalytic Advanced Oxidation Processes: A Review. Nanomaterials, 12(5), 825. https://doi.org/10.3390/nano12050825