Influence of Graphene Oxide Nanoparticles on Bond-Slip Reponses between Fiber and Geopolymer Mortar
Abstract
:1. Introduction
2. Experimental Process
2.1. Materials
2.2. Preparation of Specimen
2.3. Experimental Program
3. Result and Discussion
3.1. Compressive Strength
3.2. Energy Dispersive X-ray Spectroscopy (EDS)
3.3. Fiber Pullout
3.3.1. Failure Pattern
3.3.2. Single Fiber Pullout Response
Effect of Graphene Oxide
Effect of Loading Rate on Bond-Slip Response
3.3.3. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; van Deventer, J.S.J. Geopolymer technology: The current state of the art. J. Mater. Sci. 2007, 42, 2917–2933. [Google Scholar] [CrossRef]
- Sukontasukkul, P.; Chindaprasirt, P.; Pongsopha, P.; Phoo-Ngernkham, T.; Tangchirapat, W.; Banthia, N. Effect of fly ash/silica fume ratio and curing condition on mechanical properties of fiber-reinforced geopolymer. J. Sustain. Cem. Based Mater. 2020, 9, 218–232. [Google Scholar] [CrossRef]
- Wang, H.; Li, H.; Yan, F. Synthesis and mechanical properties of metakaolinite-based geopolymer. Colloids Surf. A Physicochem. Eng. Asp. 2005, 268, 1–6. [Google Scholar] [CrossRef]
- Wongsa, A.; Siriwattanakarn, A.; Nuaklong, P.; Sata, V.; Sukontasukkul, P.; Chindaprasirt, P. Use of recycled aggregates in pressed fly ash geopolymer concrete. Environ. Prog. Sustain. Energy 2020, 39, e13327. [Google Scholar] [CrossRef]
- Lloyd, N.; Rangan, B. Geopolymer Concrete with Fly Ash. In Second International Conference on Sustainable Construction Materials and Technologies, Ancona, Italy, 28–30 June 2010; Zachar, J., Claisse, P., Naik, T., Ganjian, G., Eds.; UWM Center for By-Products Utilization: Milwaukee, WI, USA, 2010; Volume 3, pp. 1493–1504. [Google Scholar]
- Suksiripattanapong, C.; Krosoongnern, K.; Thumrongvut, J.; Sukontasukkul, P.; Horpibulsuk, S.; Chindaprasirt, P. Properties of cellular lightweight high calcium bottom ash-portland cement geopolymer mortar. Case Stud. Constr. Mater. 2020, 12, e00337. [Google Scholar] [CrossRef]
- Hanjitsuwan, S.; Injorhor, B.; Phoo-Ngernkham, T.; Damrongwiriyanupap, N.; Li, L.; Sukontasukkul, P.; Chindaprasirt, P. Drying shrinkage, strength and microstructure of alkali-activated high-calcium fly ash using FGD-gypsum and dolomite as expansive additive. Cem. Concr. Compos. 2020, 114, 103760. [Google Scholar] [CrossRef]
- Liu, D.; Liu, H.; Wu, Y.; Zhang, W.; Wang, Y.; Santosh, M. Characterization of geo-material parameters: Gene concept and big data approach in geotechnical engineering. Geosyst. Geoenviron. 2022, 1, 100003. [Google Scholar] [CrossRef]
- Wu, L.P.; Huang, G.P.; Liu, W.V. Performance evaluation of nano-silica and silica fume on enhancing acid resistance of cement-based composites for underground structures. J. Cent. South Univ. 2020, 27, 3821–3838. [Google Scholar] [CrossRef]
- Midhun, M.S.; Rao, T.D.G.; Srikrishna, T.C. Mechanical and fracture properties of glass fiber reinforced geopolymer concrete. Adv. Concr. Constr. 2018, 6, 29–45. [Google Scholar] [CrossRef]
- Sukontasukkul, P.; Pongsopha, P.; Chindaprasirt, P.; Songpiriyakij, S. Flexural performance and toughness of hybrid steel and polypropylene fibre reinforced geopolymer. Constr. Build. Mater. 2018, 161, 37–44. [Google Scholar] [CrossRef]
- Noushini, A.; Hastings, M.; Castel, A.; Aslani, F. Mechanical and flexural performance of synthetic fibre reinforced geopolymer concrete. Constr. Build. Mater. 2018, 186, 454–475. [Google Scholar] [CrossRef]
- Nuaklong, P.; Wongsa, A.; Boonserm, K.; Ngohpok, C.; Jongvivatsakul, P.; Sata, V.; Chindaprasirt, P. Enhancement of mechanical properties of fly ash geopolymer containing fine recycled concrete aggregate with micro carbon fiber. J. Build. Eng. 2021, 41, 102403. [Google Scholar] [CrossRef]
- Wongruk, R.; Songpiriyakij, S.; Sukontasukkul, P.; Chindaprasirt, P. Properties of steel fiber reinforced geopolymer. Key Eng. Mater. 2015, 659, 143–148. [Google Scholar] [CrossRef]
- Wang, Z.B.; Han, S.; Sun, P.; Liu, W.K.; Wang, Q. Mechanical properties of polyvinyl alcohol-basalt hybrid fiber engineered cementitious composites with impact of elevated temperatures. J. Cent. South Univ. 2021, 28, 1459–1475. [Google Scholar] [CrossRef]
- Wongprachum, W.; Sappakittipakorn, M.; Sukontasukkul, P.; Chindaprasirt, P.; Banthia, N. Resistance to sulfate attack and underwater abrasion of fiber reinforced cement mortar. Constr. Build. Mater. 2018, 189, 686–694. [Google Scholar] [CrossRef]
- Sukontasukkul, P. Tensile behaviour of hybrid fibre-reinforced concrete. Adv. Cem. Res. 2004, 16, 115–122. [Google Scholar] [CrossRef]
- Sukontasukkul, P.; Mindess, S. The shear fracture of concrete under impact loading using end confined beams. Mater. Struct. 2003, 36, 372–378. [Google Scholar] [CrossRef]
- Sukontasukkul, P.; Chaisakulkiet, U.; Jamsawang, P.; Horpibulsuk, S.; Jaturapitakkul, C.; Chindaprasirt, P. Case investigation on application of steel fibers in roller compacted concrete pavement in thailand. Case Stud. Constr. Mater. 2019, 11, e00271. [Google Scholar] [CrossRef]
- Soroushian, P.; Bayasi, Z. Fiber Type Effects on the Performance of Steel Fiber Reinforced Concrete. Mater. J. 1991, 88, 129–134. [Google Scholar]
- Yao, W.; Li, J.; Wu, K. Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction. Cem. Concr. Res. 2003, 33, 27–30. [Google Scholar] [CrossRef]
- Sukontasukkul, P.; Jamnam, S.; Sappakittipakorn, M.; Fujikake, K.; Chindaprasirt, P. Residual flexural behavior of fiber reinforced concrete after heating. Mater. Struct. 2018, 51, 98. [Google Scholar] [CrossRef]
- Soroushian, P.; Lee, C.D. Distribution and Orientation of Fibers in Steel Fiber Reinforced Concrete. Mater. J. 1990, 87, 433–439. [Google Scholar]
- Lee, J.H.; Cho, B.S.; Choi, E.S. Flexural capacity of fiber reinforced concrete with a consideration of concrete strength and fiber content. Constr. Build. Mater. 2017, 138, 222–231. [Google Scholar] [CrossRef]
- Song, P.S.; Hwang, S. Mechanical properties of high-strength steel fiber-reinforced concrete. Constr. Build. Mater. 2004, 18, 669–673. [Google Scholar] [CrossRef]
- Sukontasukkul, P.; Nontiyutsirikul, N.; Songpiriyakij, S.; Sakai, K.; Chindaprasirt, P. Use of phase change material to improve thermal properties of lightweight geopolymer panel. Mater. Struct. 2016, 49, 4637–4645. [Google Scholar] [CrossRef]
- Sukontasukkul, P.; Sutthiphasilp, T.; Chalodhorn, W.; Chindaprasirt, P. Improving thermal properties of exterior plastering mortars with phase change materials with different melting temperatures: Paraffin and polyethylene glycol. Adv. Build. Energy Res. 2019, 13, 220–240. [Google Scholar] [CrossRef]
- Sukontasukkul, P.; Intawong, E.; Preemanoch, P.; Chindaprasirt, P. Use of paraffin impregnated lightweight aggregates to improve thermal properties of concrete panels. Mater. Struct. 2016, 49, 1793–1803. [Google Scholar] [CrossRef]
- Sukontasukkul, P.; Uthaichotirat, P.; Sangpet, T.; Sisomphon, K.; Newlands, M.; Siripanichgorn, A.; Chindaprasirt, P. Thermal properties of lightweight concrete incorporating high contents of phase change materials. Constr. Build. Mater. 2019, 207, 431–439. [Google Scholar] [CrossRef] [Green Version]
- Uthaichotirat, P.; Sukontasukkul, P.; Jitsangiam, P.; Suksiripattanapong, C.; Sata, V.; Chindaprasirt, P. Thermal and sound properties of concrete mixed with high porous aggregates from manufacturing waste impregnated with phase change material. J. Build. Eng. 2020, 29, 101111. [Google Scholar] [CrossRef]
- Sukontasukkul, P.; Sangpet, T.; Newlands, M.; Yoo, D.; Tangchirapat, W.; Limkatanyu, S.; Chindaprasirt, P. Thermal storage properties of lightweight concrete incorporating phase change materials with different fusion points in hybrid form for high temperature applications. Heliyon 2020, 6, e04863. [Google Scholar] [CrossRef]
- Chaikaew, C.; Sukontasukkul, P.; Chaisakulkiet, U.; Sata, V.; Chindaprasirt, P. Properties of concrete pedestrian blocks containing crumb rubber from recycle waste tyres reinforced with steel fibres. Case Stud. Constr. Mater. 2019, 11, e00304. [Google Scholar] [CrossRef]
- Hasanzadeh, M.; Rezaifar, O.; Gholhaki, M.; Kazem Sharbatdar, M. Performance optimization of ground rubberized green concrete with metakaolin. Structures 2021, 34, 433–448. [Google Scholar] [CrossRef]
- Maho, B.; Sukontasukkul, P.; Jamnam, S.; Yamaguchi, E.; Fujikake, K.; Banthia, N. Effect of rubber insertion on impact behavior of multilayer steel fiber reinforced concrete bulletproof panel. Constr. Build. Mater. 2019, 216, 476–484. [Google Scholar] [CrossRef]
- Pongsopha, P.; Sukontasukkul, P.; Maho, B.; Intarabut, D.; Phoo-Ngernkham, T.; Hanjitsuwan, S.; Limkatanyu, S. Sustainable rubberized concrete mixed with surface treated PCM lightweight aggregates subjected to high temperature cycle. Constr. Build. Mater. 2021, 303, 124535. [Google Scholar] [CrossRef]
- Said, A.M.; Zeidan, M.S.; Bassuoni, M.T.; Tian, Y. Properties of concrete incorporating nano-silica. Constr. Build. Mater. 2012, 36, 838–844. [Google Scholar] [CrossRef]
- Nuaklong, P.; Boonchoo, N.; Jongvivatsakul, P.; Charinpanitkul, T.; Sukontasukkul, P. Hybrid effect of carbon nanotubes and polypropylene fibers on mechanical properties and fire resistance of cement mortar. Constr. Build. Mater. 2021, 275, 122189. [Google Scholar] [CrossRef]
- Tontiwattanakul, K.; Sanguansin, J.; Ratanavaraha, V.; Sata, V.; Limkatanyu, S.; Sukontasukkul, P. Effect of viscoelastic polymer on damping properties of precast concrete panel. Heliyon 2021, 7, e06967. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Huang, Z.; Cao, F.; Sun, Z.; Shah, S.P. Effects of nano-silica and nano-limestone on flowability and mechanical properties of ultra-high-performance concrete matrix. Constr. Build. Mater. 2015, 95, 366–374. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Sukontasukkul, P.; Techaphatthanakon, A.; Kongtun, S.; Ruttanapun, C.; Yoo, D.-Y.; Banthia, N. Effect of graphene oxide on single fiber pullout behavior. Constr. Build. Mater. 2021, 280, 122539. [Google Scholar] [CrossRef]
- ASTM C1609/C1609M-19a; Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam with Third-Point Loading). ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM C1399/C1399M-10; Standard Test Method for Obtaining Average Residual-Strength of Fiber-Reinforced Concrete. ASTM International: West Conshohocken, PA, USA, 2015.
- JSCE AF4; Method of Test for Flexural Strength and Flexural Toughness. JSCE: Tokyo, Japan, 1984.
- Yoo, D.Y.; Park, J.J.; Kim, S.W. Fiber pullout behavior of HPFRCC: Effects of matrix strength and fiber type. Compos. Struct. 2017, 174, 263–276. [Google Scholar] [CrossRef]
- Yoo, D.Y.; Je, J.H.; Choi, H.J.; Sukontasukkul, P. Influence of embedment length on the pullout behavior of steel fibers from ultra-high-performance concrete. Mater. Lett. 2020, 276, 128233. [Google Scholar] [CrossRef]
- Phrompet, C.; Sriwong, C.; Srepusharawoot, P.; Maensiri, S.; Chindaprasirt, P.; Ruttanapun, C. Effect of free oxygen radical anions and free electrons in a Ca12Al14O33 cement structure on its optical, electronic and antibacterial properties. Heliyon 2019, 5, e01808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phrompet, C.; Sriwong, C.; Ruttanapun, C. Mechanical, dielectric, thermal and antibacterial properties of reduced graphene oxide (rGO)-nanosized C3AH6 cement nanocomposites for smart cement-based materials. Compos. Part B Eng. 2019, 175, 107128. [Google Scholar] [CrossRef]
- ASTM C109/C109M; Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International: West Conshohocken, PA, USA, 2013.
- Xu, G.; Zhong, J.; Shi, X. Influence of graphene oxide in a chemically activated fly ash. Fuel 2018, 226, 644–657. [Google Scholar] [CrossRef]
- Ranjbar, N.; Mehrali, M.; Mehrali, M.; Alengaram, U.J.; Jumaat, M.Z. Graphene nanoplatelet-fly ash based geopolymer composites. Cem. Concr. Res. 2015, 76, 222–231. [Google Scholar] [CrossRef]
- Saafi, M.; Tang, L.; Fung, J.; Rahman, M.; Liggat, J. Enhanced properties of graphene/fly ash geopolymeric composite cement. Cem. Concr. Res. 2015, 67, 292–299. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wu, Y.; Li, M.; Jiang, J.; Guo, L.; Wang, W.; Duan, P. Effects of graphene oxide on microstructure and mechanical properties of graphene oxide-geopolymer composites. Constr. Build. Mater. 2020, 247, 118544. [Google Scholar] [CrossRef]
- Jittabut, P.; Horpibulsuk, S. Physical and microstructure properties of geopolymer nanocomposite reinforced with carbon nanotubes. Mater. Today Proc. 2019, 17, 1682–1692. [Google Scholar] [CrossRef]
- Katz, A.; Li, V.C. Inclination angle effect of carbon fibers in cementitious composites. J. Eng. Mech. 1995, 121, 1340–1348. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Li, V.C. Effect of inclination angle on fiber rupture load in fiber reinforced cementitious composites. Compos. Sci. Technol. 2002, 62, 775–781. [Google Scholar] [CrossRef]
- Choi, J.I.; Lee, B.Y. Bonding properties of basalt fiber and strength reduction according to fiber orientation. Materials 2015, 8, 6719–6727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bentur, A.; Mindess, S.; Banthia, N. The behaviour of concrete under impact loading: Experimental procedures and method of analysis. Mater. Struct. 1986, 19, 371–378. [Google Scholar] [CrossRef]
- Sukontasukkul, P.; Nimityongskul, P.; Mindess, S. Effect of loading rate on damage of concrete. Cem. Concr. Res. 2004, 34, 2127–2134. [Google Scholar] [CrossRef]
- Bindiganavile, V.; Banthia, N. Polymer and steel fiber-reinforced cementitious composites under impact loading—Part 2: Flexural toughness. Mater. J. 2001, 98, 17–24. [Google Scholar]
- Sukontasukkul, P.; Mindess, S.; Banthia, N. Properties of confined fibre-reinforced concrete under uniaxial compressive impact. Cem. Concr. Res. 2005, 35, 11–18. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Oh, T.; Chun, B.; Chu, S.-H.; Sukontasukkul, P.; Yoo, D.-Y. Surface refinement of steel fiber using nanosilica and silver and its effect on static and dynamic pullout resistance of reactive powder concrete. J. Build. Eng. 2022, 51, 104269. [Google Scholar] [CrossRef]
- Sukontasukkul, P.; Lam, F.; Mindess, S. Fracture of parallel strand lumber (PSL) under impact loading. Mater. Struct. 2000, 33, 445–449. [Google Scholar] [CrossRef]
- Limkatanyu, S.; Sae-Long, W.; Mohammad-Sedighi, H.; Rungamornrat, J.; Sukontasukkul, P.; Prachasaree, W.; Imjai, T. Strain-Gradient Bar-Elastic Substrate Model with Surface-Energy Effect: Virtual-Force Approach. Nanomaterials 2022, 12, 375. [Google Scholar] [CrossRef]
- Sukontasukkul, P.; Mindess, S.; Banthia, N.; Mikami, T. Impact resistance of laterally confined fibre reinforced concrete plates. Mater. Struct. 2001, 34, 612–618. [Google Scholar] [CrossRef]
- Babafemi, A.J.; Boshoff, W.P. Pull-out response of macro synthetic fibre from concrete matrix: Effect of loading rate and embedment length. Constr. Build. Mater. 2017, 135, 590–599. [Google Scholar] [CrossRef]
- Bindiganavile, V.; Banthia, N. Polymer and steel fiber-reinforced cementitious composites under impact loading—Part 1: Bond-slip response. Mater. J. 2001, 98, 10–16. [Google Scholar]
- Kim, D.J.; El-Tawil, S.; Naaman, A.E. Loading rate effect on pullout behavior of deformed steel fibers. ACI Mater. J. 2008, 105, 576–584. [Google Scholar]
Materials | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | Na2O | K2O | SO3 | LOI |
---|---|---|---|---|---|---|---|---|---|
FA (%) | 31.85 | 15.89 | 14.07 | 26.76 | 3.66 | 1.95 | 1.95 | 2.45 | 0.17 |
Graphene Oxide Solution (GO) | |
---|---|
Appearance | Brown/Black |
Solvent | Dispersion |
Concentration (mg/mL) | 10 |
Category | SF | PF | BF |
---|---|---|---|
Shape | Hooked end | Crimped | Twisted bundle |
Length (mm) | 35 | 55 | 43 |
Diameter (mm) | 0.55 | 0.85 | 0.72 |
Tensile strength (MPa) | 1345 | 365 | 900 |
No. | Symbols | FA (kg/m3) | RS (kg/m3) | SS (kg/m3) | SH (kg/m3) | GO (%w/w of FA) |
---|---|---|---|---|---|---|
1 | GM | 879 | 1099 | 176 | 176 | 0 |
2 | GOGM | 879 | 1099 | 176 | 176 | 0.05% |
Symbol | Type | Fiber | Number of Specimen per Loading Rate | |
---|---|---|---|---|
1 mm/s | 3 mm/s | |||
GM/SF | Geopolymer mortar (GM) | Steel | 3 | 3 |
GM/PF | Polypropylene | 3 | 3 | |
GM/BF | Basalt | 3 | 3 | |
GOGM/SF | Geopolymer mortar with graphene oxide (GOGM) | Steel | 3 | 3 |
GOGM/PF | Polypropylene | 3 | 3 | |
GOGM/BF | Basalt | 3 | 3 |
Element | Weight (%) | Atomic (%) | ||
---|---|---|---|---|
GM | GOGM | GM | GOGM | |
C | 1.19 | 2.18 | 1.97 | 3.66 |
O | 53.44 | 51.03 | 66.61 | 64.07 |
Na | 12.00 | 13.14 | 10.41 | 11.54 |
Mg | 1.04 | 1.02 | 0.89 | 0.83 |
Al | 5.73 | 6.59 | 4.24 | 4.88 |
Si | 13.51 | 14.72 | 9.60 | 9.41 |
S | 2.02 | 1.59 | 1.26 | 1.00 |
Ca | 11.10 | 12.76 | 5.57 | 6.48 |
Fe | 3.51 | 3.23 | 1.33 | 1.19 |
Specimen Type | Peak Load (N) | Slip at Peak Load (mm) | Tensile Strength (MPa) | Avg. Bond Strength (MPa) | S.D. (MPa) |
---|---|---|---|---|---|
GM/SF/1 | 258 | 1.00 | 1085 | 7.46 | 0.07 |
GM/PF/1 | 68 | 1.47 | 119 | 1.27 | 0.04 |
GM/BF/1 | 261 | 0.88 | 641 | 5.77 | 0.08 |
GOGM/SF/1 | 303 | 0.94 | 1276 | 8.77 | 0.13 |
GOGM/PF/1 | 75 | 1.46 | 132 | 1.41 | 0.03 |
GOGM/BF/1 | 297 | 1.30 | 729 | 6.56 | 0.10 |
Specimen Type | Peak Load (N) | Slip at Peak Load (mm) | Tensile Strength (MPa) | Avg. Bond Strength (MPa) | S.D. (MPa) |
---|---|---|---|---|---|
GM/SF/3 | 278 | 0.83 | 1171 | 8.05 | 0.09 |
GM/PF/3 | 74 | 1.92 | 131 | 1.39 | 0.04 |
GM/BF/3 | 273 | 1.28 | 671 | 6.04 | 0.08 |
GOGM/SF/3 | 342 | 2.06 | 1441 | 9.91 | 0.09 |
GOGM/PF/3 | 85 | 2.55 | 149 | 1.59 | 0.09 |
GOGM/BF/3 | 327 | 1.23 | 803 | 7.23 | 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Intarabut, D.; Sukontasukkul, P.; Phoo-ngernkham, T.; Zhang, H.; Yoo, D.-Y.; Limkatanyu, S.; Chindaprasirt, P. Influence of Graphene Oxide Nanoparticles on Bond-Slip Reponses between Fiber and Geopolymer Mortar. Nanomaterials 2022, 12, 943. https://doi.org/10.3390/nano12060943
Intarabut D, Sukontasukkul P, Phoo-ngernkham T, Zhang H, Yoo D-Y, Limkatanyu S, Chindaprasirt P. Influence of Graphene Oxide Nanoparticles on Bond-Slip Reponses between Fiber and Geopolymer Mortar. Nanomaterials. 2022; 12(6):943. https://doi.org/10.3390/nano12060943
Chicago/Turabian StyleIntarabut, Darrakorn, Piti Sukontasukkul, Tanakorn Phoo-ngernkham, Hexin Zhang, Doo-Yeol Yoo, Suchart Limkatanyu, and Prinya Chindaprasirt. 2022. "Influence of Graphene Oxide Nanoparticles on Bond-Slip Reponses between Fiber and Geopolymer Mortar" Nanomaterials 12, no. 6: 943. https://doi.org/10.3390/nano12060943
APA StyleIntarabut, D., Sukontasukkul, P., Phoo-ngernkham, T., Zhang, H., Yoo, D.-Y., Limkatanyu, S., & Chindaprasirt, P. (2022). Influence of Graphene Oxide Nanoparticles on Bond-Slip Reponses between Fiber and Geopolymer Mortar. Nanomaterials, 12(6), 943. https://doi.org/10.3390/nano12060943