Photosensitized Thermoplastic Nano-Photocatalysts Active in the Visible Light Range for Potential Applications Inside Extraterrestrial Facilities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Syntheses
2.1.1. Synthesis of the 5-(4-Methacrylamide)-10,15,20 Triphenyl Porphyrin (MAP)
2.1.2. Synthesis of the Nanocomposites and the BlendP-TiO2
2.2. Photocatalytic Experiments
2.3. Instruments
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, Y.; Ma, J.; Chen, Y.; Qian, Y.; Xu, B.; Chu, W.; An, D. Recent progress of silver-containing photocatalysts for water disinfection under visible light irradiation: A review. Sci. Total Environ. 2022, 804, 150024. [Google Scholar] [CrossRef]
- Homaeigohar, S. The Nanosized Dye Adsorbents for Water Treatment. Nanomaterials 2020, 10, 295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Wu, A.; Colombi Ciacchi, L.; Wei, G. Recent Advances in Nanoporous Membranes for Water Purification. Nanomaterials 2018, 8, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, M.; Borah, P.; Devi, P. Priority and emerging pollutants in water. In Inorganic Pollutants in Water; Elsevier: Amsterdam, The Netherlands, 2020; pp. 33–49. [Google Scholar]
- Aftab, S.; Shabir, T.; Shah, A.; Nisar, J.; Shah, I.; Muhammad, H.; Shah, N.S. Highly Efficient Visible Light Active Doped ZnO Photocatalysts for the Treatment of Wastewater Contaminated with Dyes and Pathogens of Emerging Concern. Nanomaterials 2022, 12, 486. [Google Scholar] [CrossRef] [PubMed]
- Thirsk, R.; Kuipers, A.; Mukai, C.; Williams, D. The space-flight environment: The International Space Station and beyond. Can. Med. Assoc. J. 2009, 180, 1216–1220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, C.; Singh, V.; Grandy, J.; Pawliszyn, J. Recent advances in breath analysis to track human health by new enrichment technologies. J. Sep. Sci. 2019, 43, 226–240. [Google Scholar] [CrossRef]
- Das, S.; Pal, M. Review—Non-Invasive Monitoring of Human Health by Exhaled Breath Analysis: A Comprehensive Review. J. Electrochem. Soc. 2020, 167, 037562. [Google Scholar] [CrossRef]
- Perrin, E.; Bacci, G.; Garrelly, L.; Canganella, F.; Bianconi, G.; Fani, R.; Mengoni, A. Furnishing spaceship environment: Evaluation of bacterial biofilms on different materials used inside International Space Station. Res. Microbiol. 2018, 169, 289–295. [Google Scholar] [CrossRef]
- Straub, J.E.; Plumlee, D.K.; Wallace, W.T.; Alverson, J.T.; Benoit, M.J.; Gillispie, R.L.; Hunter, D.; Kuo, M.; Rutz, J.A.; Hudson, E.K.; et al. ISS Potable Water Sampling and Chemical Analysis Results for 2016. In Proceedings of the 47th International Conference on Environmental Systems, Charleston, SC, USA, 16–20 July 2017. [Google Scholar]
- Limero, T.; Wallace, W.; James, J.T. Operational validation of the air quality monitor on the International Space Station. In Proceedings of the 44th International Conference on Environmental Systems, Tucson, AZ, USA, 13–17 July 2014. [Google Scholar]
- NASA Technical Reports Server. Available online: https://ntrs.nasa.gov/citations/20030000981 (accessed on 25 January 2022).
- Bagdigian, R.M.; Dake, J.; Gentry, G.; Gault, M. International Space Station Environmental Control and Life Support System Mass and Crewtime Utilization in Comparison to a Long Duration Human Space Exploration Mission. In Proceedings of the 45th International Conference on Environmental Systems, Seattle, WA, USA, 13–17 July 2015. [Google Scholar]
- Barta, D.J.; Wheeler, R.; Jackson, W.; Pickering, K.; Meyer, C.; Pensinger, S.; Vega, L.; Flynn, M. An Alternative Water Processor for Long Duration Space Missions. In Proceedings of the 40th COSPAR Scientific Assembly, Moscow, Russia, 2–10 August 2014. Abstract id. F4.2-2-14 2014. [Google Scholar]
- Trojanowicz, M.; Bojanowska-Czajka, A.; Bartosiewicz, I.; Kulisa, K. Advanced Oxidation/Reduction Processes treatment for aqueous perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS)—A review of recent advances. Chem. Eng. J. 2018, 336, 170–199. [Google Scholar] [CrossRef]
- Huling, S.G.; Pivetz, B.E. In-Situ Chemical Oxidation; EPA/600/R-06/072, 2007; Environmental Protection Agency: Washington, DC, USA, 2006. [Google Scholar]
- Chen, D.; Cheng, Y.; Zhou, N.; Chen, P.; Wang, Y.; Li, K.; Huo, S.; Cheng, P.; Peng, P.; Zhang, R.; et al. Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review. J. Clean. Prod. 2020, 268, 121725. [Google Scholar] [CrossRef]
- Cardoso, I.M.F.; Cardoso, R.M.F.; da Silva, J.C.G.E. Advanced Oxidation Processes Coupled with Nanomaterials for Water Treatment. Nanomaterials 2021, 11, 2045. [Google Scholar] [CrossRef] [PubMed]
- Nosaka, Y.; Nosaka, A.Y. Generation and Detection of Reactive Oxygen Species in Photocatalysis. Chem. Rev. 2017, 117, 11302–11336. [Google Scholar] [CrossRef] [PubMed]
- Bougarrani, S.; Sharma, P.K.; Hamilton, J.W.J.; Singh, A.; Canle, M.; El Azzouzi, M.; Byrne, J.A. Enhanced Photocatalytic Degradation of the Imidazolinone Herbicide Imazapyr upon UV/Vis Irradiation in the Presence of CaxMnOy-TiO2 Hetero-Nanostructures: Degradation Pathways and Reaction Intermediates. Nanomaterials 2020, 10, 896. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Nanayakkara, C.E.; Grassian, V.H. Titanium Dioxide Photocatalysis in Atmospheric Chemistry. Chem. Rev. 2012, 112, 5919–5948. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Zhou, C.; Ma, Z.; Yang, X. Fundamentals of TiO2 Photocatalysis: Concepts, Mechanisms, and Challenges. Adv. Mater. 2019, 31, 1901997. [Google Scholar] [CrossRef] [PubMed]
- Casals, M.; Gangolells, M.; Forcada, N.; Macarulla, M.; Giretti, A. A breakdown of energy consumption in an underground station. Energy Build. 2014, 78, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Casals, M.; Gangolells, M.; Forcada, N.; Macarulla, M.; Giretti, A.; Vaccarini, M. SEAM4US: An intelligent energy management system for underground stations. Appl. Energy 2016, 166, 150–164. [Google Scholar] [CrossRef]
- Carillo, P.; Morrone, B.; Fusco, G.M.; De Pascale, S.; Rouphael, Y. Challenges for a Sustainable Food Production System on Board of the International Space Station: A Technical Review. Agronomy 2020, 10, 687. [Google Scholar] [CrossRef]
- Brainard, G.C.; Barger, L.K.; Soler, R.R.; Hanifin, J.P. The development of lighting countermeasures for sleep disruption and circadian misalignment during spaceflight. Curr. Opin. Pulm. Med. 2016, 22, 535–544. [Google Scholar] [CrossRef]
- Brainard, G.C.; Coyle, W.; Ayers, M.; Kemp, J.; Warfield, B.; Maida, J.; Bowen, C.; Bernecker, C.; Lockley, S.W.; Hanifin, J.P. Solid-state lighting for the International Space Station: Tests of visual performance and melatonin regulation. Acta Astronaut. 2013, 92, 21–28. [Google Scholar] [CrossRef]
- Li, R.; Li, T.; Zhou, Q. Impact of Titanium Dioxide (TiO2) Modification on Its Application to Pollution Treatment—A Review. Catalysts 2020, 10, 804. [Google Scholar] [CrossRef]
- Di Valentin, C.; Pacchioni, G. Trends in non-metal doping of anatase TiO2: B, C, N and F. Catal. Today 2013, 206, 12–18. [Google Scholar] [CrossRef]
- Rehman, S.; Ullah, R.; Butt, A.M.; Gohar, N.D. Strategies of making TiO2 and ZnO visible light active. J. Hazard. Mater. 2009, 170, 560–569. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Fan, H.; Bai, F. Porphyrin-based photocatalysts for hydrogen production. MRS Bull. 2020, 45, 49–56. [Google Scholar] [CrossRef]
- Li, K.; Lu, X.; Zhang, Y.; Liu, K.; Huang, Y.; Liu, H. Bi3TaO7/Ti3C2 heterojunctions for enhanced photocatalytic removal of water-borne contaminants. Environ. Res. 2020, 185, 109409. [Google Scholar] [CrossRef] [PubMed]
- Prakash, J.; Sun, S.; Swart, H.C.; Gupta, R.K. Noble metals-TiO2 nanocomposites: From fundamental mechanisms to photocatalysis, surface enhanced Raman scattering and antibacterial applications. Appl. Mater. Today 2018, 11, 82–135. [Google Scholar] [CrossRef]
- Basavarajappa, P.S.; Patil, S.B.; Ganganagappa, N.; Reddy, K.R.; Raghu, A.V.; Reddy, C.V. Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. Int. J. Hydrogen Energy 2020, 45, 7764–7778. [Google Scholar] [CrossRef]
- Fiorenza, R.; Balsamo, S.A.; Condorelli, M.; D’Urso, L.; Compagnini, G.; Scirè, S. Solar photocatalytic H2 production over CeO2-based catalysts: Influence of chemical and structural modifications. Catal. Today 2021, 380, 187–198. [Google Scholar] [CrossRef]
- Li, J.-J.; Weng, B.; Cai, S.-C.; Chen, J.; Jia, H.-P.; Xu, Y.-J. Efficient promotion of charge transfer and separation in hydrogenated TiO2/WO3 with rich surface-oxygen-vacancies for photodecomposition of gaseous toluene. J. Hazard. Mater. 2018, 342, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Fiorenza, R.; Bellardita, M.; D’Urso, L.; Compagnini, G.; Palmisano, L.; Scirè, S. Au/TiO2-CeO2 Catalysts for Photocatalytic Water Splitting and VOCs Oxidation Reactions. Catalysts 2016, 6, 121. [Google Scholar] [CrossRef] [Green Version]
- Bellardita, M.; Fiorenza, R.; D’Urso, L.; Spitaleri, L.; Gulino, A.; Compagnini, G.; Scirè, S.; Palmisano, L. Exploring the Photothermo-Catalytic Performance of Brookite TiO2-CeO2 Composites. Catalysts 2020, 10, 765. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, H.; Yang, H.; Lin, Y.; Liu, H.; Tong, Y. Efficient Charges Separation Using Advanced BiOI-Based Hollow Spheres Decorated with Palladium and Manganese Dioxide Nanoparticles. ACS Sustain. Chem. Eng. 2018, 6, 2751–2757. [Google Scholar] [CrossRef]
- Murcia, J.; Ávila-Martínez, E.; Rojas, H.; Cubillos, J.; Ivanova, S.; Penkova, A.; Laguna, O. Powder and Nanotubes Titania Modified by Dye Sensitization as Photocatalysts for the Organic Pollutants Elimination. Nanomaterials 2019, 9, 517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youssef, Z.; Colombeau, L.; Yesmurzayeva, N.; Baros, F.; Vanderesse, R.; Hamieh, T.; Toufaily, J.; Frochot, C.; Roques-Carmes, T.; Acherar, S. Dye-sensitized nanoparticles for heterogeneous photocatalysis: Cases studies with TiO2, ZnO, fullerene and graphene for water purification. Dyes Pigment. 2018, 159, 49–71. [Google Scholar] [CrossRef]
- Hashim, N.; Thakur, S.; Patang, M.; Crapulli, F.; Ray, A.K. Solar degradation of diclofenac using Eosin-Y-activated TiO2: Cost estimation, process optimization and parameter interaction study. Environ. Technol. 2016, 38, 933–944. [Google Scholar] [CrossRef]
- Jiang, G.; Geng, K.; Wu, Y.; Han, Y.; Shen, X. High photocatalytic performance of ruthenium complexes sensitizing g-C3N4/TiO2 hybrid in visible light irradiation. Appl. Catal. B Environ. 2018, 227, 366–375. [Google Scholar] [CrossRef]
- Atta-Eyison, A.A.; Anukwah, G.D.; Zugle, R. Photocatalysis using zinc oxide-zinc phthalocyanine composite for effective mineralization of organic pollutants. Catal. Commun. 2021, 160, 106357. [Google Scholar] [CrossRef]
- Krishnan, S.; Shriwastav, A. Application of TiO2 nanoparticles sensitized with natural chlorophyll pigments as catalyst for visible light photocatalytic degradation of methylene blue. J. Environ. Chem. Eng. 2021, 9, 104699. [Google Scholar] [CrossRef]
- Yu, G.; Zhu, B.; Shao, L.; Zhou, J.; Saha, M.L.; Shi, B.; Zhang, Z.; Hong, T.; Li, S.; Chen, X.; et al. Host−guest complexation-mediated codelivery of anticancer drug and photosensitizer for cancer photochemotherapy. Proc. Natl. Acad. Sci. USA 2019, 116, 6618–6623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.M.; Lee, J.H.; Jang, W.-D. Applications of porphyrins in emerging energy conversion technologies. Coord. Chem. Rev. 2020, 407, 213157. [Google Scholar] [CrossRef]
- Villari, V.; Micali, N.; Nicosia, A.; Mineo, P. Water-Soluble Non-Ionic PEGylated Porphyrins: A Versatile Category of Dyes for Basic Science and Applications. Top. Curr. Chem. 2021, 379, 35. [Google Scholar] [CrossRef] [PubMed]
- Mineo, P.G.; Abbadessa, A.; Rescifina, A.; Mazzaglia, A.; Nicosia, A.; Scamporrino, A.A. PEGylate porphyrin-gold nanoparticles conjugates as removable pH-sensor nano-probes for acidic environments. Colloids Surf. A Physicochem. Eng. Asp. 2018, 546, 40–47. [Google Scholar] [CrossRef]
- Mineo, P.G.; Vento, F.; Abbadessa, A.; Scamporrino, E.; Nicosia, A. An optical sensor of acidity in fuels based on a porphyrin derivative. Dyes Pigment. 2019, 161, 147–154. [Google Scholar] [CrossRef]
- Villari, V.; Mineo, P.; Micali, N.; Angelini, N.; Vitalini, D.; Scamporrino, E. Uncharged water-soluble porphyrin tweezers as a supramolecular sensor for α-amino acids. Nanotechnology 2007, 18, 375503. [Google Scholar] [CrossRef]
- Gulino, A.; Lupo, F.; Condorelli, G.G.; Mineo, P.; Fragalà, I. Viable Synthetic Route for a Luminescent Porphyrin Monolayer Covalently Assembled on a Molecularly Engineered Si(100) Surface. Chem. Mater. 2007, 19, 5102–5109. [Google Scholar] [CrossRef]
- Micali, N.; Mineo, P.; Vento, F.; Nicosia, A.; Villari, V. Supramolecular Structures Formed in Water by Graphene Oxide and Nonionic PEGylated Porphyrin: Interaction Mechanisms and Fluorescence Quenching Effects. J. Phys. Chem. C 2019, 123, 25977–25984. [Google Scholar] [CrossRef]
- Nicosia, A.; Abbadessa, A.; Vento, F.; Mazzaglia, A.; Mineo, P.G. Silver Nanoparticles Decorated with PEGylated Porphyrins as Potential Theranostic and Sensing Agents. Materials 2021, 14, 2764. [Google Scholar] [CrossRef] [PubMed]
- Mazzaglia, A.; Bondì, M.L.; Scala, A.; Zito, F.; Barbieri, G.; Crea, F.; Vianelli, G.; Mineo, P.; Fiore, T.; Pellerito, C.; et al. Supramolecular Assemblies Based on Complexes of Nonionic Amphiphilic Cyclodextrins and a meso-Tetra(4-sulfonatophenyl)porphine Tributyltin(IV) Derivative: Potential Nanotherapeutics against Melanoma. Biomacromolecules 2013, 14, 3820–3829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicosia, A.; Vento, F.; Satriano, C.; Villari, V.; Micali, N.; Cucci, L.M.; Sanfilippo, V.; Mineo, P.G. Light-Triggered Polymeric Nanobombs for Targeted Cell Death. ACS Appl. Nano Mater. 2020, 3, 1950–1960. [Google Scholar] [CrossRef]
- Zhou, J.; Rao, L.; Yu, G.; Cook, T.R.; Chen, X.; Huang, F. Supramolecular cancer nanotheranostics. Chem. Soc. Rev. 2021, 50, 2839–2891. [Google Scholar] [CrossRef] [PubMed]
- Min, K.S.; Kumar, R.S.; Lee, J.H.; Kim, K.S.; Lee, S.G.; Son, Y.-A. Synthesis of new TiO2/porphyrin-based composites and photocatalytic studies on methylene blue degradation. Dyes Pigment. 2019, 160, 37–47. [Google Scholar] [CrossRef]
- Sułek, A.; Pucelik, B.; Kuncewicz, J.; Dubin, G.; Dąbrowski, J.M. Sensitization of TiO2 by halogenated porphyrin derivatives for visible light biomedical and environmental photocatalysis. Catal. Today 2019, 335, 538–549. [Google Scholar] [CrossRef]
- Lü, X.-f.; Sun, W.-j.; Li, J.; Xu, W.-x.; Zhang, F.-x. Spectroscopic investigations on the simulated solar light induced photodegradation of 4-nitrophenol by using three novel copper(II) porphyrin–TiO2 photocatalysts. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 111, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Gaeta, M.; Sanfilippo, G.; Fraix, A.; Sortino, G.; Barcellona, M.; Conti, G.O.; Fragalà, M.E.; Ferrante, M.; Purrello, R.; D’Urso, A. Photodegradation of Antibiotics by Noncovalent Porphyrin-Functionalized TiO2 in Water for the Bacterial Antibiotic Resistance Risk Management. Int. J. Mol. Sci. 2020, 21, 3775. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, G.-L.; Wang, Y.-T.; Ma, Z.; Yang, T.-Y.; Zhang, T.; Zhang, Y.-H. In-situ synthesized porphyrin polymer/TiO2 composites as high-performance Z-scheme photocatalysts for CO2 conversion. J. Colloid Interface Sci. 2021, 596, 342–351. [Google Scholar] [CrossRef]
- Rachel, A.; Subrahmanyam, M.; Boule, P. Comparison of photocatalytic efficiencies of TiO2 in suspended and immobilised form for the photocatalytic degradation of nitrobenzenesulfonic acids. Appl. Catal. B Environ. 2002, 37, 301–308. [Google Scholar] [CrossRef]
- Bettini, A. New underground laboratories: Europe, Asia and the Americas. Phys. Dark Universe 2014, 4, 36–40. [Google Scholar] [CrossRef] [Green Version]
- Ianni, A. Considerations on Underground Laboratories. J. Phys. Conf. Ser. 2020, 1342, 012003. [Google Scholar] [CrossRef]
- Carter, D.L. Challenges with Operating a Water Recovery System (WRS) in the Microgravity Environment of the International Space Station (ISS). In Proceedings of the Annual Meeting of the American Society for Gravitational and Space Research (ASGSR) 2017, Renton, WA, USA, 29 August 2017. [Google Scholar]
- Li, Y.; Zhao, H.; Yang, M. TiO2 nanoparticles supported on PMMA nanofibers for photocatalytic degradation of methyl orange. J. Colloid Interface Sci. 2017, 508, 500–507. [Google Scholar] [CrossRef]
- Klaysri, R.; Wichaidit, S.; Piticharoenphun, S.; Mekasuwandumrong, O.; Praserthdam, P. Synthesis of TiO2 -grafted onto PMMA film via ATRP: Using monomer as a coupling agent and reusability in photocatalytic application. Mater. Res. Bull. 2016, 83, 640–648. [Google Scholar] [CrossRef]
- Mirhoseini, F.; Salabat, A. Ionic liquid based microemulsion method for the fabrication of poly(methyl methacrylate)–TiO2 nanocomposite as a highly efficient visible light photocatalyst. RSC Adv. 2015, 5, 12536–12545. [Google Scholar] [CrossRef]
- Cantarella, M.; Sanz, R.; Buccheri, M.A.; Ruffino, F.; Rappazzo, G.; Scalese, S.; Impellizzeri, G.; Romano, L.; Privitera, V. Immobilization of nanomaterials in PMMA composites for photocatalytic removal of dyes, phenols and bacteria from water. J. Photochem. Photobiol. A Chem. 2016, 321, 1–11. [Google Scholar] [CrossRef]
- Nicosia, A.; Vento, F.; Di Mari, G.M.; D’Urso, L.; Mineo, P.G. TiO2-Based Nanocomposites Thin Film Having Boosted Photocatalytic Activity for Xenobiotics Water Pollution Remediation. Nanomaterials 2021, 11, 400. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.W.; Tejedor-Tejedor, M.I.; Perez Moya, M.; Johnson, R.; Anderson, M.A. Photocatalyst-coated acrylic waveguides for oxidation of organic compounds. Studies Surface Sci. Catal. 2000, 130, 1925–1930. [Google Scholar] [CrossRef]
- Ali, U.; Karim, K.J.B.A.; Buang, N.A. A Review of the Properties and Applications of Poly (Methyl Methacrylate) (PMMA). Polym. Rev. 2015, 55, 678–705. [Google Scholar] [CrossRef]
- Yan, X.; Ohno, T.; Nishijima, K.; Abe, R.; Ohtani, B. Is methylene blue an appropriate substrate for a photocatalytic activity test? A study with visible-light responsive titania. Chem. Phys. Lett. 2006, 429, 606–610. [Google Scholar] [CrossRef] [Green Version]
- Vitalini, D.; Mineo, P.; Scamporrino, E. Effect of combined changes in delayed extraction time and potential gradient on the mass resolution and ion discrimination in the analysis of polydisperse polymers and polymer blends by delayed extraction matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 1999, 13, 2511–2517. [Google Scholar] [CrossRef]
- Mineo, P.; Vitalini, D.; Scamporrino, E.; Bazzano, S.; Alicata, R. Effect of delay time and grid voltage changes on the average molecular mass of polydisperse polymers and polymeric blends determined by delayed extraction matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2005, 19, 2773–2779. [Google Scholar] [CrossRef]
- Scamporrino, E.; Vitalini, D.; Mineo, P. Synthesis and MALDI-TOF MS Characterization of High Molecular Weight Poly (1,2-dihydroxybenzene phthalates) Obtained by Uncatalyzed Bulk Polymerization of O,O’-Phthalid-3-ylidenecatechol or 4-Methyl-O,O’-phthalid-3-ylidenecatechol. Macromolecules 1996, 29, 5520–5528. [Google Scholar] [CrossRef]
- Scamporrino, E.; Maravigna, P.; Vitalini, D.; Mineo, P. A new procedure for quantitative correction of matrix-assisted laser desorption/ionization time-of-flight mass spectrometric response. Rapid Commun. Mass Spectrom. 1998, 12, 646–650. [Google Scholar] [CrossRef]
- Mineo, P.G.; Foti, C.; Vento, F.; Montesi, M.; Panseri, S.; Piperno, A.; Scala, A. Salinomycin-loaded PLA nanoparticles: Drug quantification by GPC and wave voltammetry and biological studies on osteosarcoma cancer stem cells. Anal. Bioanal. Chem. 2020, 412, 4681–4690. [Google Scholar] [CrossRef]
- Menges, F. Spectragryph—Optical Spectroscopy Software. Version 1.2.11; Oberstdorf, Germany. 2019. Available online: https://www.effemm2.de/spectragryph/ (accessed on 24 February 2022).
- Spellane, P.; Gouterman, M.; Antipas, A.; Kim, S.; Liu, Y. Porphyrins. 40. Electronic spectra and four-orbital energies of free-base, zinc, copper, and palladium tetrakis (perfluorophenyl) porphyrins. Inorg. Chem. 1980, 19, 386–391. [Google Scholar] [CrossRef]
- Nicosia, A.; Vento, F.; Marletta, G.; Messina, G.; Satriano, C.; Villari, V.; Micali, N.; De Martino, M.; Schotman, M.; Mineo, P. Porphyrin-Based Supramolecular Flags in the Thermal Gradients’ Wind: What Breaks the Symmetry, How and Why. Nanomaterials 2021, 11, 1673. [Google Scholar] [CrossRef]
- Chowdhury, P.; Gomaa, H.; Ray, A.K. Dye-Sensitized Photocatalyst: A Breakthrough in Green Energy and Environmental Detoxification. In Sustainable Nanotechnology and the Environment: Advances and Achievements; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2013; pp. 231–266. [Google Scholar]
- Davis, E.A.; Mott, N.F. Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 1970, 22, 0903–0922. [Google Scholar] [CrossRef]
- Fiorenza, R.; Sciré, S.; D’Urso, L.; Compagnini, G.; Bellardita, M.; Palmisano, L. Efficient H2 production by photocatalytic water splitting under UV or solar light over variously modified TiO2-based catalysts. Int. J. Hydrogen Energy 2019, 44, 14796–14807. [Google Scholar] [CrossRef]
- Beltrán, A.; Gracia, L.; Andrés, J. Density Functional Theory Study of the Brookite Surfaces and Phase Transitions between Natural Titania Polymorphs. J. Phys. Chem. B 2006, 110, 23417–23423. [Google Scholar] [CrossRef]
- Serpone, N. Is the Band Gap of Pristine TiO2 Narrowed by Anion- and Cation-Doping of Titanium Dioxide in Second-Generation Photocatalysts? J. Phys. Chem. B 2006, 110, 24287–24293. [Google Scholar] [CrossRef]
- Hanaor, D.A.H.; Sorrell, C.C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2010, 46, 855–874. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Cao, Z.; Jiang, S.; Huang, H.; Deng, L.; Liu, Y.; Shen, P.; Zhao, B.; Tan, S.; Zhang, X. Porphyrins modified with a low-band-gap chromophore for dye-sensitized solar cells. Org. Electron. 2012, 13, 560–569. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Chen, Z.; Li, P.; Chen, R.; Peng, X. Molecular engineering of narrow bandgap porphyrin derivatives for highly efficient photothermal conversion. Dyes Pigment. 2021, 192, 109460. [Google Scholar] [CrossRef]
- Xu, Z.J.; Gao, S.L.; Lu, X.Q.; Li, Y.Y.; Li, Y.M.; Wei, S.X. Theoretical analysis of the absorption spectrum, electronic structure, excitation, and intramolecular electron transfer of D-A′-pi-A porphyrin dyes for dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2020, 22, 14846–14856. [Google Scholar] [CrossRef]
Methylene Blue | ||||||
---|---|---|---|---|---|---|
Polymer (%w) | a Sensitizer (%w) | b TiO2 (%w) | k (×10−3 min−1) | TiO2 (mg/100 mL) | c norm.k (min−1×g−1) | |
NC | 95.3 | / | 4.7 | 2.9 | 0.72 | 4.1 ± 0.20 |
NCPA | 95.2 | 0.5 | 4.3 | 2.8 | 0.65 | 4.3 ± 0.22 |
NCPB | 92.1 | 1.7 | 6.2 | 4.9 | 0.96 | 5.1 ± 0.26 |
NCPC | 87.1 | 7.9 | 5 | 5.6 | 0.7 | 8 ± 0.4 |
BlendP-TiO2 | 94.5 | 0.5 | 5 | 2.5 | 0.79 | 3.1 ± 0.16 |
Rhodamine B | ||||||
NC | 95.3 | / | 4.7 | 2.2 | 0.72 | 3.1 ± 0.16 |
NCPA | 95.2 | 0.5 | 4.3 | 2.3 | 0.65 | 3.5 ± 0.18 |
NCPB | 92.1 | 1.7 | 6.2 | 4.4 | 0.96 | 4.6 ± 0.23 |
NCPC | 87.1 | 7.9 | 5 | 5.3 | 0.7 | 7.6 ± 0.4 |
BlendP-TiO2 | 94.5 | 0.5 | 5 | 1.1 | 0.79 | 1.4 ± 0.1 |
Polymer (%w) | a Sensitizer (%w) | b TiO2 (%w) | k (×10−3 min−1) | TiO2 (mg/100 mL) | c norm.k (min−1×g−1) | |
---|---|---|---|---|---|---|
TiO2 slurry | 0 | / | 100 | 2.35 | 1.16 | 2.02 ± 0.1 |
NC | 95.3 | 0 | 4.7 | 0.85 | 0.72 | 1.18 ± 0.06 |
NCPA | 95.2 | 0.5 | 4.3 | 0.78 | 0.65 | 1.2 ± 0.06 |
NCPB | 92.1 | 1.7 | 6.2 | 1.41 | 0.96 | 1.47 ± 0.07 |
NCPC | 87.1 | 7.9 | 5 | 1.61 | 0.7 | 2.30 ± 0.1 |
BlendP-TiO2 | 94.5 | 0.5 | 5 | 0.76 | 0.79 | 1 ± 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mezzina, L.; Nicosia, A.; Vento, F.; De Guidi, G.; Mineo, P.G. Photosensitized Thermoplastic Nano-Photocatalysts Active in the Visible Light Range for Potential Applications Inside Extraterrestrial Facilities. Nanomaterials 2022, 12, 996. https://doi.org/10.3390/nano12060996
Mezzina L, Nicosia A, Vento F, De Guidi G, Mineo PG. Photosensitized Thermoplastic Nano-Photocatalysts Active in the Visible Light Range for Potential Applications Inside Extraterrestrial Facilities. Nanomaterials. 2022; 12(6):996. https://doi.org/10.3390/nano12060996
Chicago/Turabian StyleMezzina, Lidia, Angelo Nicosia, Fabiana Vento, Guido De Guidi, and Placido Giuseppe Mineo. 2022. "Photosensitized Thermoplastic Nano-Photocatalysts Active in the Visible Light Range for Potential Applications Inside Extraterrestrial Facilities" Nanomaterials 12, no. 6: 996. https://doi.org/10.3390/nano12060996
APA StyleMezzina, L., Nicosia, A., Vento, F., De Guidi, G., & Mineo, P. G. (2022). Photosensitized Thermoplastic Nano-Photocatalysts Active in the Visible Light Range for Potential Applications Inside Extraterrestrial Facilities. Nanomaterials, 12(6), 996. https://doi.org/10.3390/nano12060996