Analytical Investigation of the Time-Dependent Stagnation Point Flow of a CNT Nanofluid over a Stretching Surface
Abstract
:1. Introduction
2. Mathematical Formulation
The Skin Friction and Nusselt Number
3. Method of Solution
4. Results and Discussion
5. Conclusions
- 1.
- Increasing the value of the dimensionless nanoparticle volume fraction parameter reduces velocity.
- 2.
- Increasing the value of the magnetic field parameter reduces velocity
- 3.
- Increasing the value of the unsteady parameter reduces velocity
- 4.
- Increasing the value of the Prandtl number reduces the temperature profile
- 5.
- Increasing the value of the Eckert number increases the temperature profile
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
x, y, | Cartesian coordinates |
u, v, | Velocity components |
Uw, Vw | Velocities of the stretching sheet |
S | Time dependent parameter |
T | Local Temperature |
M | Magnetic field |
Nux | Local Nusselt number |
pr | Prandtl number |
Tw | Surface temperature |
B0 | Constant magnetic field |
T∞ | Ambient temperature- |
Ec | Eckert number |
Cfx | Skin friction coefficient in x− direction- |
θ | Dimensionless temperature |
Density of the fluid | |
Fluid viscosity | |
Independent variable | |
Spatial scale parameter | |
Thermal conductivity | |
Specific heat |
References
- Pop, I.; Postelnicu, A.; Grosan, T. Thermo-solutal Marangoni forced convection boundarylayers. Meccanica 2001, 36, 555–571. [Google Scholar]
- Al-Mudhaf, A.; Chamkha, A.J. Similarity solutions for MHD thermo-solutal Marangoni convection over a flat surface in the presence of heat generation or absorption effects. Heat Mass Transf. 2005, 42, 112–121. [Google Scholar]
- Wang, C.Y. Liquid film sprayed on a stretching surface. Chem. Eng. Commun. 2006, 193, 869–878. [Google Scholar]
- Chen, C.-H. Marangoni effects on forced convection of power-law liquids in a thin film over a stretching surface. Phys. Lett. A 2007, 370, 51–57. [Google Scholar] [CrossRef]
- Magyari, E.; Chamkha, A.J. Exact analytical solutions for thermo-solutal Marangoni convection in the presence of heat and mass generation or consumption. Heat Mass Transf. 2007, 43, 965–974. [Google Scholar]
- Lin, Y.; Zheng, L.; Zhang, X. Magneto-hydrodynamics thermo-capillary Marangoni convection heat transfer of power-law fluids driven by temperature gradient. J. Heat Transf. 2013, 135, 051702. [Google Scholar]
- Lin, Y.; Zheng, L.; Zhang, X. Radiation effects on Marangoni convection flow and heat transfer in pseudo-plastic non-Newtonian nanofluids with variable thermal conductivity. Int. J. Heat Mass Transf. 2014, 77, 708–716. [Google Scholar] [CrossRef]
- Aly, E.; Ebaid, A. Exact analysis for the effect of heat transfer on MHD and radiation Marangoni boundary layer nanofluid flow past a surface embedded in a porous medium. J. Mol. Liq. 2016, 215, 625–639. [Google Scholar] [CrossRef]
- Ellahi, R.; Zeeshan, A.; Hassan, M. Particle shape effects on Marangoni convection boundary layer flow of a nanofluid. Int. J. Numer. Methods Heat Fluid Flow 2016, 26, 2160–2174. [Google Scholar] [CrossRef]
- Jiao, C.; Zheng, L.; Lin, Y.; Ma, L.; Chen, G. Marangoni abnormal convection heat transfer of power-law fluid driven by temperature gradient in porous medium with heat generation. Int. J. Heat Mass Transf. 2016, 92, 700–707. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Chamkha, A.J. Influence of Lorentz forces on nanofluid forced convection considering Marangoni convection. J. Mol. Liq. 2017, 225, 750–757. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Ganji, D.D. Influence of magnetic field on CuOeH2O nanofluid flow considering Marangoni boundary layer. Int. J. Hydrog. Energy 2017, 42, 2748–2755. [Google Scholar]
- Mahanthesh, B.; Gireesha, B.J.; PrasannaKumara, B.C.; Shashikumar, N.S. Marangoni convection radiative flow of dusty nanoliquid with exponential space dependent heat source. Nucl. Eng. Technol. 2017, 49, 1660–1668. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Ganji, D.D. Analytical investigation for Lorentz forces effect on nanofluid Marangoni boundary layer hydrothermal behavior using HAM. Indian J. Phys. 2017, 91, 1581–1587. [Google Scholar] [CrossRef]
- Mahanthesh, B.; Gireesha, B. Thermal Marangoni convection in two-phase flow of dusty Casson fluid. Results Phys. 2018, 8, 537–544. [Google Scholar] [CrossRef]
- Mahanthesh, B.; Gireesha, B.J. Scrutinization of thermal radiation, viscous dissipation and Joule heating effects on Ma-rangoni convective two-phase flow of Casson fluid with fluid particle suspension. Results Phys. 2018, 8, 869–878. [Google Scholar]
- Choi, S.U.S. Enhancing thermal conductivity of fluids with nanoparticles. ASME-Publ. Fed 1995, 231, 99–106. [Google Scholar]
- Eastman, J.A.; Choi, S.U.S.; Li, S.; Yu, W.L.; Thompson, J. Anomalously increased effective thermal conductivities of ethylene glycol-based nano-fluids containing copper nanoparticles. Appl. Phys. 2001, 78, 718–720. [Google Scholar]
- Khamis, S.; Makinde, O.D.; Nkansah-Gyekye, Y. Unsteady flow of variable viscosity Cu-water and Al2O3-water nanofluids in a porous pipe with buoyancy force. Int. J. Numer. Methods Heat Fluid Flow 2015, 25, 1638–1657. [Google Scholar] [CrossRef]
- Malvandi, A.; Ganji, D.D. Mixed Convection of Alumina/Water Nanofluid in Microchannels using Modified Buongiorno’s Model in Presence of Heat Source/Sink. J. Appl. Fluid Mech. 2016, 9, 2277–2289. [Google Scholar] [CrossRef]
- Reddy, S.; Chamkha, A.J. Heat and mass transfer characteristics of Al2O3-water and Ag-water nanofluid through porous media over a vertical cone with heat generation/absorption. J. Porous Media 2017, 20, 1–17. [Google Scholar] [CrossRef]
- Barnoon, P.; Toghraie, D. Numerical investigation of laminar flow and heat transfer of non-Newtonian nanofluid within a porous medium. Powder Technol. 2018, 325, 78–91. [Google Scholar] [CrossRef]
- Hosseini, S.; Sheikholeslami, M.; Ghasemian, M.; Ganji, D. Nanofluid heat transfer analysis in a microchannel heat sink (MCHS) under the effect of magnetic field by means of KKL model. Powder Technol. 2018, 324, 36–47. [Google Scholar] [CrossRef]
- Xie, H.; Lee, H.; Youn, W.; Choi, M. Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities. J. Appl. Phys. 2003, 94, 4967. [Google Scholar] [CrossRef]
- Ding, Y.; Alias, H.; Wen, D.; Williams, R.A. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int. J. Heat Mass Transf. 2006, 49, 240–250. [Google Scholar] [CrossRef]
- Haq, R.U.; Khan, Z.H.; Khan, W.A. Thermo-physical effects of carbon nanotubes on MHD flow over a stretching surface. Phys. E Low-Dimens. Syst. Nanostruct. 2014, 63, 215–222. [Google Scholar]
- Ueki, Y.; Aoki, T.; Ueda, K.; Shibahara, M. Thermophysical properties of carbon-based material nanofluid. Int. J. Heat Mass Transf. 2017, 113, 1130–1134. [Google Scholar] [CrossRef]
- Rehman, A.; Mehmood, R.; Nadeem, S.; Akbar, N.S.; Motsa, S.S. Effects of single and multi-walled carbon nanotubes on water and engine oil based rotating fluids with internal heating. Adv. Powder Technol. 2017, 28, 1991–2002. [Google Scholar]
- Sreedevi, P.; Reddy, P.S.; Chamkha, A.J. Magneto-hydrodynamics heat and mass transfer analysis of single and multi-wall carbon nanotubes over vertical cone with convective boundary condition. Int. J. Mech. Sci. 2018, 135, 646–655. [Google Scholar] [CrossRef]
- Jyothi, K.; Reddy, P.S.; Reddy, M.S. Influence of magnetic field and thermal radiation on convective flow of SWCNTs-water and MWCNTs-water nanofluid between rotating stretchable disks with convective boundary conditions. Powder Technol. 2018, 331, 326–337. [Google Scholar] [CrossRef]
- Rahmati, A.; Reiszadeh, M. An experimental study on the effects of the use of multi-walled carbon nanotubes in ethylene glycol/water-based fluid with indirect heaters in gas pressure reducing stations. Appl. Therm. Eng. 2018, 134, 107–117. [Google Scholar] [CrossRef]
- Muhammad, T.; Lu, D.-C.; Mahanthesh, B.; Eid, M.R.; Ramzan, M.; Dar, A. Significance of Darcy-Forchheimer Porous Medium in Nanofluid Through Carbon Nanotubes. Commun. Theor. Phys. 2018, 70, 361. [Google Scholar] [CrossRef]
- Gau, H.; Herminghaus, S.; Lenz, P.; Lipowsky, R. Liquid morphologies on structured surfaces: From microchannels to mi-crochips. Science 1999, 283, 46–49. [Google Scholar] [PubMed] [Green Version]
- Binda, M.; Natali, D.; Iacchetti, A.; Sampietro, M. Integration of an organic photo-detector onto a plastic optical fiber by means of spray coating technique. Adv. Mater. 2013, 25, 4335–4339. [Google Scholar]
- Kundan, A.; Nguyen, T.T.T.; Plawsky, J.L.; Wayner, J.P.C.; Chao, D.F.; Sicker, R.J. Condensation on Highly Superheated Surfaces: Unstable Thin Films in a Wickless Heat Pipe. Phys. Rev. Lett. 2017, 118, 094501. [Google Scholar] [CrossRef] [Green Version]
- Frenkel, A.L. Nonlinear Theory of Strongly Undulating Thin Films Flowing Down Vertical Cylinders. Eur. Lett. 1992, 18, 583–588. [Google Scholar] [CrossRef]
- Chang, H.-C.; Demekhin, E.A. Mechanism for drop formation on a coated vertical fibre. J. Fluid Mech. 1999, 380, 233–255. [Google Scholar] [CrossRef]
- Kliakhandler, I.L.; Davis, S.H.; Bankoff, S.G. Viscous beads on vertical fibre. J. Fluid Mech. 2001, 429, 381–390. [Google Scholar] [CrossRef]
- Duprat, C.; Giorgiutti-Dauphiné, F.; Tseluiko, D.; Saprykin, S.; Kalliadasis, S. Liquid film coating a fiber as a model system for the formation of bound states in active dispersive-dissipative noninear media. Phys. Rev. Lett. 2009, 103, 234501. [Google Scholar]
- Ding, Z.; Wong, T.N. Three-dimensional dynamics of thin liquid films on vertical cylinders with Marangoni effect. Phys. Fluids 2017, 29, 011701. [Google Scholar] [CrossRef]
- Alshomrani, A.S.; Gul, T. A convective study of Al2O3-H2O and Cu-H2Onano-liquid films sprayed over a stretching cyl-inder with viscous dissipation. Eur. Phys. J. Plus 2017, 132, 1–16. [Google Scholar]
- AlSagri, A.S.; Nasir, S.; Gul, T.; Islam, S.; Nisar, K.; Shah, Z.; Khan, I. MHD Thin Film Flow and Thermal Analysis of Blood with CNTs Nanofluid. Coatings 2019, 9, 175. [Google Scholar] [CrossRef] [Green Version]
- Chao, Y.; Ding, Z.; Liu, R. Dynamics of thin liquid films flowing down the non-isothermal cylinder with wall slippage. Chem. Eng. Sci. 2018, 175, 354–364. [Google Scholar]
- Liao, S.-J. A kind of approximate solution technique which does not depend upon small parameters—II. An application in fluid mechanics. Int. J. Non-Linear Mech. 1997, 32, 815–822. [Google Scholar] [CrossRef]
- Liao, S. On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 2004, 147, 499–513. [Google Scholar] [CrossRef]
- Liao, S.J. Homotopy Analysis Method in Non-Linear Differential Equations; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Gul, T.; Ferdous, K. The experimental study to examine the stable dispersion of the graphene nanoparticles and to look at the GO–H2O nanofluid flow between two rotating disks. Appl. Nanosci. 2018, 8, 1711–1728. [Google Scholar]
- Gul, T.; Nasir, S.; Islam, S.; Shah, Z.; Khan, M.A. Effective Prandtl Number Model Influences on the γAl2O3–AH2O and γAl2O3–C2H6O2 Nanofluids Spray Along a Stretching Cylinder. Arab. J. Sci. Eng. 2018, 44, 1–16. [Google Scholar]
- Gohar, T.; Gul, W.; Khan, M.; Shuaib, M.; Khan, M.; Bonyah, E. MWCNTs/SWCNTs Nanofluid Thin Film Flow over a Non-linear Extending Disc: OHAM Solution. J. Therm. Sci. 2019, 28, 115–122. [Google Scholar]
- Gul, T.; Haleem, I.; Ullah, I.; Khan, M.A.; Bonyah, E.; Khan, I.; Shuaib, M. The study of the entropy generation in a thin film flow with variable fluid properties past over a stretching sheet. Adv. Mech. Eng. 2018, 10, 1687814018789522. [Google Scholar] [CrossRef] [Green Version]
- Khan, W.; Idress, M.; Gul, T.; Khan, A.M.; Bonyah, E. Three non-Newtonian fluids flow considering thin film over an un-steady stretching surface with variable fluid properties. Adv. Mech. Eng. 2018, 10, 1687814018807361. [Google Scholar]
5 | ||
10 | ||
15 | ||
20 | ||
25 |
5 | ||
10 | ||
15 | ||
20 | ||
25 |
Numerical | OHAM | ||
---|---|---|---|
1 | 1.00…. | 1.00…. | 0.0…. |
2 | 1.72…. | 1.70…. | …. |
3 | 1.71…. | 1.69…. | …. |
4 | 1.96…. | 1.94…. | …. |
5 | 0.87…. | 0.83…. | …. |
6 | 0.23…. | 0.21…. | …. |
7 | 0.29…. | 0.27…. | …. |
8 | 0.39…. | 0.38…. | …. |
9 | 0.42…. | 0.37…. | …. |
10 | 0.92…. | 0.90…. | …. |
Numerical | OHAM | ||
---|---|---|---|
1 | 1.00…. | 1.00…. | 0.0…. |
2 | 1.31…. | 1.29…. | …. |
3 | 1.12…. | 1.10…. | …. |
4 | 1.70…. | 1.65…. | …. |
5 | 1.44…. | 1.41…. | …. |
6 | 1.34…. | 1.30…. | …. |
7 | 1.95…. | 1.90…. | …. |
8 | 1.90…. | 1.80…. | …. |
9 | 1.54…. | 1.50…. | …. |
10 | 1.35…. | 1.30…. | …. |
Physical Properties | Thermal Conduct | |||
---|---|---|---|---|
Solid particles | SWCNTs | 6600 | 2600 | 2600 |
MWCNTs | 3000 | 1600 | 1600 |
0.0 | 0.01 | 0.02 | 0.03 | 0.04 | |
---|---|---|---|---|---|
0.145 | 0.147 | 0.204 | 0.235 | 0.266 | |
0.145 | 0.172 | 0.2 | 0.228 | 0.2257 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, A.; Saeed, A.; Salleh, Z.; Jan, R.; Kumam, P. Analytical Investigation of the Time-Dependent Stagnation Point Flow of a CNT Nanofluid over a Stretching Surface. Nanomaterials 2022, 12, 1108. https://doi.org/10.3390/nano12071108
Rehman A, Saeed A, Salleh Z, Jan R, Kumam P. Analytical Investigation of the Time-Dependent Stagnation Point Flow of a CNT Nanofluid over a Stretching Surface. Nanomaterials. 2022; 12(7):1108. https://doi.org/10.3390/nano12071108
Chicago/Turabian StyleRehman, Ali, Anwar Saeed, Zabidin Salleh, Rashid Jan, and Poom Kumam. 2022. "Analytical Investigation of the Time-Dependent Stagnation Point Flow of a CNT Nanofluid over a Stretching Surface" Nanomaterials 12, no. 7: 1108. https://doi.org/10.3390/nano12071108
APA StyleRehman, A., Saeed, A., Salleh, Z., Jan, R., & Kumam, P. (2022). Analytical Investigation of the Time-Dependent Stagnation Point Flow of a CNT Nanofluid over a Stretching Surface. Nanomaterials, 12(7), 1108. https://doi.org/10.3390/nano12071108