Research Progress on Sound Absorption of Electrospun Fibrous Composite Materials
Abstract
:1. Introduction
2. Factors Influencing Sound Absorption Performance of Electrospun Micro/Nanofibers
Materials | Fiber Diameter and Surface Density | Microstructure | Thickness of Nanofibrous Structures | SACs | Reference |
---|---|---|---|---|---|
Polyvinylidene fluoride (PVDF)/carbon nanotubes (CNTs) nanofibers and foam | 138 ± 21 nm 45.5 g/m2 | - | - | above 0.9 (1000 Hz) | [16] |
PVDF/graphene (GP) nanofibers and acoustic nonwoven | 169 ± 21 nm 45.5 g/m2 | - | - | 0.87 (1000 Hz) 0.95 (4000 Hz) | [17] |
Nylon-6 nanofibers and Polyurethane (PU) foam | 180 ± 10 nm | - | - | 0.81 (600 Hz) | [35] |
PU nanofibers and PU foam | 300 ± 10 nm | 0.59 (1700 Hz) | |||
PU nanofibers and polyethylene terephthalate (PET) nonwovens | 509.9 nm | - | 1.548 mm | 0.9 (1800 Hz) | [36] |
Polyacrylonitrile (PAN) nanofiber and spacer-knitted fabrics | 110 ± 7 nm 17 g/m2 | - | 50 μm | 0.7 (100–3200 Hz) | [37] |
PAN/cellulose nanocrystals (CNC) aerogels | - | maze-like structure | 50 mm | above 0.9 (600 Hz) | [38] |
Poly (vinyl alcohol) (PVA) nanofibers | 268 nm | Miura-ori structure | 130 ± 5 μm | max value is 1.0 | [39] |
PU nanofibers and nonwovens | 5–40 nm | nano-cobweb structure | 1.2 mm | average value is 0.57 | [40] |
Polyvinylpyrrolidone (PVP) nonwoven mats of stacked nanofibrous layers | 1.6/2.8 ± 0.5 μm 0.89 kg/m2 | - | 2.54 cm | max value is above 0.9 | [41] |
PAN nanofiber and perforated panel | 333 ± 58 nm | - | 205 ± 4 μm | max value is 0.93 | [42] |
Nylon-6 nanofibers with back cavity (30 mm) | 150–200 nm | - | 10 μm | 0.6 (2000 Hz) | [43] |
2.1. Materials
2.2. Diameter and Surface Density
2.3. Microstructure
2.4. Thickness
3. Electrospun Micro/Nanofiber-Based Porous Sound Absorption Materials
3.1. Composite of Sound Absorption Foam and Electrospun Micro/Nanofibers
3.2. Composite of Sound Absorption Fibers and Electrospun Micro/Nanofibers
3.3. Electrospun Micro/Nanofiber Based Sound Absorption Materials
4. Electrospun Micro/Nanofiber Based Resonant Sound Absorption Materials
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, T.; Hu, L.; Xiong, X.; Petrů, M.; Noman, M.T.; Mishra, R.; Militký, J. Sound Absorption Properties of Natural Fibers: A Review. Sustainability 2020, 12, 8477. [Google Scholar] [CrossRef]
- Gao, B.; Zuo, L.; Zuo, B. Sound absorption properties of spiral vane electrospun PVA/nano particle nanofiber membrane and non-woven composite material. Fibers Polym. 2016, 17, 1090–1096. [Google Scholar] [CrossRef]
- Liu, H.; Zuo, B. Structure and Sound Absorption Properties of Spiral Vane Electrospun PVA/PEO Nanofiber Membranes. Appl. Sci. 2018, 8, 296. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Fu, Q.; Si, Y.; Ding, B.; Yu, J. Porous materials for sound absorption. Compos. Commun. 2018, 10, 25–35. [Google Scholar] [CrossRef]
- Tang, X.; Yan, X. Acoustic energy absorption properties of fibrous materials: A review. Compos. Part A Appl. Sci. Manuf. 2017, 101, 360–380. [Google Scholar] [CrossRef]
- Gai, X.-L.; Xing, T.; Li, X.-H.; Zhang, B.; Wang, W.-J. Sound absorption of microperforated panel mounted with helmholtz resonators. Appl. Acoust. 2016, 114, 260–265. [Google Scholar] [CrossRef]
- Sakagami, K.; Morimoto, M.; Yairi, M. A note on the relationship between the sound absorption by microperforated panels and panel/membrane-type absorbers. Appl. Acoust. 2009, 70, 1131–1136. [Google Scholar] [CrossRef] [Green Version]
- Ao, Q.; Wang, J.; Li, Y.; Ma, J.; Wu, C. Development of Lower Frequency Sound Absorption Materials. J. Funct. Mater. 2020, 51, 12045–12050. [Google Scholar] [CrossRef]
- Li, H.; Xu, H.; Chen, M.; Yang, T.; Chen, X.; Yan, H.; Yang, W. Research Progress of Noise Reduction by Nanofibers. J. Textile Res. 2020, 41, 168–173. [Google Scholar] [CrossRef]
- Passaro, J.; Russo, P.; Bifulco, A.; De Martino, M.T.; Granata, V.; Vitolo, B.; Iannace, G.; Vecchione, A.; Marulo, F.; Branda, F. Water Resistant Self-Extinguishing Low Frequency Soundproofing Polyvinylpyrrolidone Based Electrospun Blankets. Polymers 2019, 11, 1205. [Google Scholar] [CrossRef] [Green Version]
- Ciaburro, G.; Iannace, G.; Passaro, J.; Bifulco, A.; Marano, A.D.; Guida, M.; Marulo, F.; Branda, F. Artificial neural network-based models for predicting the sound absorption coefficient of electrospun poly(vinyl pyrrolidone)/silica composite. Appl. Acoust. 2020, 169, 107472. [Google Scholar] [CrossRef]
- Mishra, R.K.; Mishra, P.; Verma, K.; Mondal, A.; Chaudhary, R.G.; Abolhasani, M.M.; Loganathan, S. Electrospinning production of nanofibrous membranes. Environ. Chem. Lett. 2018, 17, 767–800. [Google Scholar] [CrossRef]
- Giannella, V.; Branda, F.; Passaro, J.; Petrone, G.; Barbarino, M.; Citarella, R. Acoustic Improvements of Aircraft Headrests Based on Electrospun Mats Evaluated Through Boundary Element Method. Appl. Sci. 2020, 10, 5712. [Google Scholar] [CrossRef]
- Giannella, V.; Colangeli, C.; Cuenca, J.; Citarella, R.; Barbarino, M. Experimental/Numerical Acoustic Assessment of Aircraft Seat Headrests Based on Electrospun Mats. Appl. Sci. 2021, 11, 6400. [Google Scholar] [CrossRef]
- Petrone, G.; Branda, F.; Marulo, F. New Polyvinylpyrrolidone (PVP) Based Soundproofing Materials through Electrospinning. In Proceedings of the INTER-NOISE and NOISE-CON Congress, Hamburg, Germany, 21–24 August 2016; pp. 5374–5384. [Google Scholar]
- Wu, C.M.; Chou, M.H. Polymorphism, piezoelectricity and sound absorption of electrospun PVDF membranes with and without carbon nanotubes. Compos. Sci. Technol. 2016, 127, 127–133. [Google Scholar] [CrossRef]
- Wu, C.M.; Chou, M.H. Sound absorption of electrospun polyvinylidene fluoride/graphene membranes. Eur. Polym. J. 2016, 82, 35–45. [Google Scholar] [CrossRef]
- Wu, C.M.; Chou, M.H. Acoustic–electric conversion and piezoelectric properties of electrospun polyvinylidene fluoride/silver nanofibrous membranes. Express Polym. Lett. 2020, 14, 103–114. [Google Scholar] [CrossRef]
- Khan, W.S.; Asmatulu, R.; Yildirim, M.B. Acoustical Properties of Electrospun Fibers for Aircraft Interior Noise Reduction. J. Aerosp. Eng. 2012, 25, 376–382. [Google Scholar] [CrossRef]
- Shou, D.H. Preparation and Applications of Electrospun Fibers. Master’s Thesis, Donghua University, Shanghai, China, December 2008. [Google Scholar]
- Rabbi, A.; Bahrambeygi, H.; Nasouri, K.; Shoushtari, A.M.; Babaei, M.R. Manufacturing of PAN or PU Nanofiber Layers/PET Nonwoven Composite as Highly Effective Sound Absorbers. Adv. Polym. Technol. 2014, 33. [Google Scholar] [CrossRef]
- Jia, W.; Qin, X. Acoustic Absorption Property of Electrospun PU Nanofibers Membrane. J. Donghua Univ. (Nat. Sci.) 2014, 40, 509–514. [Google Scholar]
- Zhang, W.T. Absorption Coefficient and Structure of High Performance Sound Absorption Materials. Master’s Thesis, South China University of Technology, Guangzhou, China, January 2017. [Google Scholar]
- Bertocchi, M.J.; Vang, P.; Balow, R.B.; Wynne, J.H.; Lundin, J.G. Enhanced Mechanical Damping in Electrospun Polymer Fibers with Liquid Cores: Applications to Sound Damping. ACS Appl. Polym. Mater. 2019, 1, 2068–2076. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, R. Preparation and properties of automotive sound absorbing nonwovens. Shanghai Textile Sci. Technol. 2020, 48, 29–32. [Google Scholar] [CrossRef]
- Chen, Y.; Shafiq, M.; Liu, M.; Morsi, Y.; Mo, X. Advanced fabrication for electrospun three-dimensional nanofiber aerogels and scaffolds. Bioact. Mater. 2020, 5, 963–979. [Google Scholar] [CrossRef]
- Chang, G.; Zhu, X.; Li, A.; Kan, W.; Warren, R.; Zhao, R.; Wang, X.; Xue, G.; Shen, J.; Lin, L. Formation and self-assembly of 3D nanofibrous networks based on oppositely charged jets. Mater. Des. 2016, 97, 126–130. [Google Scholar] [CrossRef]
- Ding, B. Functional Polymeric Micro/Nano-fibrous Materials. Acta Polym. Sin. 2019, 50, 764–774. [Google Scholar] [CrossRef]
- Liu, H.; Wang, D.; Zhao, N.; Ma, J.; Gong, J.; Yang, S.; Xu, J. Application of electrospinning fibres on sound absorption in low and medium frequency range. Mater. Res. Innov. 2014, 18, S4-888–S4-891. [Google Scholar] [CrossRef]
- Ma, S.; Liu, X.; Xie, C.; Su, X. Sound Absorption Properties of Polyacrylonitrile Electrospinning Nanofiber Membrane and Its Laminated Materials. J. Silk 2020, 57, 13–19. [Google Scholar] [CrossRef]
- Utkarsh, U. Development of Polymeric Nano-Composite Fiber Based Structures for Acoustics and Filtration Applications. Ph.D. Thesis, University of Ontario Institute of Technology, Oshawa, ON, Canada, August 2021. [Google Scholar]
- Koenig, K.; Beukenberg, K.; Langensiepen, F.; Seide, G. A new prototype melt-electrospinning device for the production of biobased thermoplastic sub-microfibers and nanofibers. Biomater. Res. 2019, 23, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahim, Y.S.; Hussein, E.A.; Zagho, M.M.; Abdo, G.G.; Elzatahry, A.A. Melt Electrospinning Designs for Nanofiber Fabrication for Different Applications. Int. J. Mol. Sci. 2019, 20, 2455. [Google Scholar] [CrossRef] [Green Version]
- Utkarsh, U.; Hegab, H.; Tariq, M.; Syed, N.A.; Rizvi, G.; Pop-Iliev, R. Towards Analysis and Optimization of Electrospun PVP (Polyvinylpyrrolidone) Nanofibers. Adv. Polym. Technol. 2020, 2020, 1–9. [Google Scholar] [CrossRef]
- Park, M.; Park, H.K.; Shin, H.K.; Kang, D.; Pant, B.; Kim, H.; Song, J.-K.; Kim, H.Y. Sound Absorption and Insulation Properties of a Polyurethane Foam Mixed with Electrospun Nylon-6 and Polyurethane Nanofibre Mats. J. Nanosci. Nanotechnol. 2019, 19, 3558–3563. [Google Scholar] [CrossRef] [PubMed]
- Özkal, A.; Çallıoğlu, F.C. Effect of nanofiber spinning duration on the sound absorption capacity of nonwovens produced from recycled polyethylene terephthalate fibers. Appl. Acoust. 2020, 169, 107468. [Google Scholar] [CrossRef]
- Öztürk, M.K.; Ozden-Yenigun, E.; Nergis, B.; Candan, C. Nanofiber-enhanced lightweight composite textiles for acoustic applications. J. Ind. Text. 2016, 46, 1498–1510. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Yu, X.; Yin, X.; Si, Y.; Yu, J.; Ding, B. Hierarchically maze-like structured nanofiber aerogels for effective low-frequency sound absorption. J. Colloid Interface Sci. 2021, 597, 21–28. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, J.; Fang, Y.; Zhang, X.; Yu, H. Ultralight Metamaterial for Sound Absorption Based on Miura-Ori Tessellation Structures. Adv. Eng. Mater. 2021, 23, 2100563. [Google Scholar] [CrossRef]
- Zhao-Xuan, D.; Ying, W. Optimization and Characterization of Polyurethane Electro-Spun Nano-Membranes Used for the Surfaces of Sound Absorbent Multi-Layer Sheets. J. Macromol. Sci. Part B 2021, 1–16. [Google Scholar] [CrossRef]
- Avossa, J.; Branda, F.; Marulo, F.; Petrone, G.; Guido, S.; Tomaiuolo, G.; Costantini, A. Light Electrospun Polyvinylpyrrolidone Blanket for Low Frequencies Sound Absorption. Chin. J. Polym. Sci. 2018, 36, 1368–1374. [Google Scholar] [CrossRef] [Green Version]
- Xiang, H.-F.; Tan, S.-X.; Yu, X.-L.; Long, Y.-H.; Zhang, X.-L.; Zhao, N.; Xu, J. Sound absorption behavior of electrospun polyacrylonitrile nanofibrous membranes. Chin. J. Polym. Sci. 2011, 29, 650–657. [Google Scholar] [CrossRef]
- Iannace, G. Acoustic Properties of Nanofibers. Noise Vib. Worldw. 2014, 45, 29–33. [Google Scholar] [CrossRef]
- Akasaka, S.; Kato, T.; Azuma, K.; Konosu, Y.; Matsumoto, H.; Asai, S. Structure-sound absorption property relationships of electrospun thin silica fiber sheets: Quantitative analysis based on acoustic models. Appl. Acoust. 2019, 152, 13–20. [Google Scholar] [CrossRef]
- Delany, M.; Bazley, E. Acoustical properties of fibrous absorbent materials. Appl. Acoust. 1970, 3, 105–116. [Google Scholar] [CrossRef]
- Liang, M.; Wu, H.; Liu, J.; Shen, Y.; Wu, G. Improved sound absorption performance of synthetic fiber materials for industrial noise reduction: A review. J. Porous Mater. 2022, 1–24. [Google Scholar] [CrossRef]
- Miki, Y. Acoustical properties of porous materials. Modifications of Delany-Bazley models. J. Acoust. Soc. Jpn. (E) 1990, 11, 19–24. [Google Scholar] [CrossRef]
- Miki, Y. Acoustical properties of porous materials. Generalizations of empirical models. J. Acoust. Soc. Jpn. (E) 1990, 11, 25–28. [Google Scholar] [CrossRef] [Green Version]
- Allard, J.-F.; Champoux, Y. New empirical equations for sound propagation in rigid frame fibrous materials. J. Acoust. Soc. Am. 1992, 91, 3346–3353. [Google Scholar] [CrossRef]
- Chevillotte, F.; Perrot, C. Effect of the three-dimensional microstructure on the sound absorption of foams: A parametric study. J. Acoust. Soc. Am. 2017, 142, 1130–1140. [Google Scholar] [CrossRef]
- Hwang, Y.J.; Choi, S.; Kim, H.S. Highly flexible all-nonwoven piezoelectric generators based on electrospun poly(vinylidene fluoride). Sens. Actuators A Phys. 2019, 300, 111672. [Google Scholar] [CrossRef]
- Wang, W.; Zheng, Y.; Jin, X.; Sun, Y.; Lu, B.; Wang, H.; Fang, J.; Shao, H.; Lin, T. Unexpectedly high piezoelectricity of electrospun polyacrylonitrile nanofiber membranes. Nano Energy 2018, 56, 588–594. [Google Scholar] [CrossRef]
- Shao, H.; Wang, H.; Cao, Y.; Ding, X.; Fang, J.; Niu, H.; Wang, W.; Lang, C.; Lin, T. Efficient conversion of sound noise into electric energy using electrospun polyacrylonitrile membranes. Nano Energy 2020, 75, 104956. [Google Scholar] [CrossRef]
- Shao, H.; Wang, H.; Cao, Y.; Ding, X.; Bai, R.; Chang, H.; Fang, J.; Jin, X.; Wang, W.; Lin, T. Single-layer piezoelectric nanofiber membrane with substantially enhanced noise-to-electricity conversion from endogenous triboelectricity. Nano Energy 2021, 89, 106427. [Google Scholar] [CrossRef]
- Rabbi, A.; Bahrambeygi, H.; Shoushtari, A.M.; Nasouri, K. Incorporation of Nanofiber Layers in Nonwoven Materials for Improving Their Acoustic Properties. J. Eng. Fibers Fabr. 2013, 8. [Google Scholar] [CrossRef]
- Du, X.Y. Study on the Composite Sound Absorption and Thermal Insulation Nonwovens with Micro/Nano Fibers. Master’s Thesis, Donghua University, Shanghai, China, May 2018. [Google Scholar]
- Kalinová, K. Nanofibrous Resonant Membrane for Acoustic Applications. J. Nanomater. 2011, 2011, 1–6. [Google Scholar] [CrossRef]
- Gao, B. Sound Absorption Properties of Electrospun PVA Nano Fiber Membrane. Master’s Thesis, Soochow University, Suzhou, China, March 2017. [Google Scholar]
- Yoon, C.K.; Park, B.K.; Lee, W.I. Characteristics of micro-glass bead/PLA porous composite prepared by electrospinning. Adv. Compos. Mater. 2017, 27, 183–193. [Google Scholar] [CrossRef]
- Zou, Y.; Shi, L.; Zhou, Y.; Yao, L. Preparation of Sound Absorption on Nano-fiber Composite Mats and Its Absorption Property. Tech. Text. 2014, 32, 22–26. [Google Scholar]
- Salehi, F.; Avanaki, M.J.; Nouri, M. An investigation into the designing of fibrous sound absorption materials incorporated with nanofibers: A case study of a multi-layered material composed of PET nonwoven and PAN nanofibers. J. Text. Inst. 2021, 1–10. [Google Scholar] [CrossRef]
- Ji, G.; Cui, J.; Fang, Y.; Yao, S.; Zhou, J.; Kim, J.-K. Nano-fibrous composite sound absorbers inspired by owl feather surfaces. Appl. Acoust. 2019, 156, 151–157. [Google Scholar] [CrossRef]
- Rahimabady, M.; Statharas, E.C.; Yao, K.; Mirshekarloo, M.S.; Chen, S.; Tay, F.E.H. Hybrid local piezoelectric and conductive functions for high performance airborne sound absorption. Appl. Phys. Lett. 2017, 111, 241601. [Google Scholar] [CrossRef]
- Sung, G.; Kim, S.K.; Kim, J.W.; Kim, J.H. Effect of isocyanate molecular structures in fabricating flexible polyurethane foams on sound absorption behavior. Polym. Test. 2016, 53, 156–164. [Google Scholar] [CrossRef]
- Choe, H.; Sung, G.; Kim, J.H. Chemical treatment of wood fibers to enhance the sound absorption coefficient of flexible polyurethane composite foams. Compos. Sci. Technol. 2018, 156, 19–27. [Google Scholar] [CrossRef]
- Rastegar, N.; Ershad-Langroudi, A.; Parsimehr, H.; Moradi, G. Sound-absorbing porous materials: A review on polyurethane-based foams. Iran. Polym. J. 2022, 31, 83–105. [Google Scholar] [CrossRef]
- Bahrambeygi, H.; Sabetzadeh, N.; Rabbi, A.; Nasouri, K.; Shoushtari, A.M.; Babaei, M.R. Nanofibers (PU and PAN) and nanoparticles (Nanoclay and MWNTs) simultaneous effects on polyurethane foam sound absorption. J. Polym. Res. 2013, 20, 1–10. [Google Scholar] [CrossRef]
- Ulrich, T.; Arenas, J.P. Sound Absorption of Sustainable Polymer Nanofibrous Thin Membranes Bonded to a Bulk Porous Material. Sustainability 2020, 12, 2361. [Google Scholar] [CrossRef] [Green Version]
- Xiang, H.; Zhang, L.; Wang, Z.; Yu, X.; Long, Y.; Zhang, X.; Zhao, N.; Xu, J. Multifunctional polymethylsilsesquioxane (PMSQ) surfaces prepared by electrospinning at the sol–gel transition: Superhydrophobicity, excellent solvent resistance, thermal stability and enhanced sound absorption property. J. Colloid Interface Sci. 2011, 359, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Si, Y.; Yin, X.; Yu, J.; Ding, B. Ultralight and Resilient Electrospun Fiber Sponge with a Lamellar Corrugated Microstructure for Effective Low-Frequency Sound Absorption. ACS Appl. Mater. Interfaces 2019, 11, 35333–35342. [Google Scholar] [CrossRef] [PubMed]
- Mazrouei-Sebdani, Z.; Khoddami, A.; Hadadzadeh, H.; Zarrebini, M. Synthesis and performance evaluation of the aerogel-filled PET nanofiber assemblies prepared by electro-spinning. RSC Adv. 2015, 5, 12830–12842. [Google Scholar] [CrossRef]
- Farahani, M.D.; Avanaki, M.J.; Jeddi, A.A. Sound absorption of warp knitted spacer fabrics based on knit structure and nanofiber enhancement. J. Ind. Text. 2020. [Google Scholar] [CrossRef]
- Tang, X.; Tang, X.; Yan, X.; Yan, X. Multi-layer fibrous structures for noise reduction. J. Text. Inst. 2017, 108, 2096–2106. [Google Scholar] [CrossRef]
- Peng, M.; Zhao, X.M. Advances in the fiber-based sound-absorbing materials. Mater. Rep. 2019, 33, 3669–3677. [Google Scholar]
- Selvaraj, S.; Jeevan, V.; Jonnalagadda, R.R.; Fathima, N.N. Conversion of tannery solid waste to sound absorbing nanofibrous materials: A road to sustainability. J. Clean. Prod. 2019, 213, 375–383. [Google Scholar] [CrossRef]
- Na, Y.; Agnhage, T.; Cho, G. Sound absorption of multiple layers of nanofiber webs and the comparison of measuring methods for sound absorption coefficients. Fibers Polym. 2012, 13, 1348–1352. [Google Scholar] [CrossRef]
- Öztürk, M.K.; Nergis, F.B.; Candan, C. Design of electrospun polyacrylonitrile nanofiber-coated nonwoven structure for sound absorption. Polym. Adv. Technol. 2017, 29, 1255–1260. [Google Scholar] [CrossRef]
- Kucukali-Ozturk, M.; Nergis, B.; Candan, C. Design of layered structure with nanofibrous resonant membrane for acoustic applications. J. Ind. Text. 2017, 47, 1739–1756. [Google Scholar] [CrossRef]
- Velayutham, T.; Manickam, R.K.; Sundararajan, P.; Chung, I.-M.; Prabakaran, M. A Study on the Effect of Natural Regenerated and Synthetic Non-woven Fabric Properties on Acoustic Applications. J. Nat. Fibers 2021, 1–11. [Google Scholar] [CrossRef]
- Liu, H.; Zuo, B. Sound absorption property of PVA/PEO/GO nanofiber membrane and non-woven composite material. J. Ind. Text. 2019, 50, 512–525. [Google Scholar] [CrossRef]
- Özkal, A.; Çallıoğlu, F.C.; Akduman, C. Development of a new nanofibrous composite material from recycled nonwovens to improve sound absorption ability. J. Text. Inst. 2019, 111, 189–201. [Google Scholar] [CrossRef]
- Karaca, N.; Yüksek, I.; Uçar, N.; Önen, A.; Baydoğan, M.; Kirbaş, C. Experimental analysis of sound absorption effect of specially developed elastomeric thin thermoplastic polyurethane sub-micron fibre web layers placed on rigid layer and flexible layers. Plast. Rubber Compos. 2021, 50, 507–515. [Google Scholar] [CrossRef]
- Selvaraj, S.; Ramalingam, S.; Parida, S.; Rao, J.R.; Nishter, N.F. Chromium containing leather trimmings valorization: Sustainable sound absorber from collagen hydrolysate intercalated electrospun nanofibers. J. Hazard. Mater. 2021, 405, 124231. [Google Scholar] [CrossRef]
- Zong, D.; Cao, L.; Li, Y.; Yin, X.; Si, Y.; Yu, J.; Ding, B. Interlocked Dual-Network and Superelastic Electrospun Fibrous Sponges for Efficient Low-Frequency Noise Absorption. Small Struct. 2020, 1. [Google Scholar] [CrossRef]
- Feng, Y.; Zong, D.; Hou, Y.; Yin, X.; Zhang, S.; Duan, L.; Si, Y.; Jia, Y.; Ding, B. Gradient structured micro/nanofibrous sponges with superior compressibility and stretchability for broadband sound absorption. J. Colloid Interface Sci. 2021, 593, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Elkasaby, M.A.; Utkarsh, U.; Syed, N.A.; Rizvi, G.; Mohany, A.; Pop-Iliev, R. Evaluation of electro-spun polymeric nanofibers for sound absorption applications. AIP Conf. Proc. 2020, 2205, 020042. [Google Scholar] [CrossRef]
- Del Sorbo, G.R.; Truda, G.; Bifulco, A.; Passaro, J.; Petrone, G.; Vitolo, B.; Ausanio, G.; Vergara, A.; Marulo, F.; Branda, F. Non Monotonous Effects of Noncovalently Functionalized Graphene Addition on the Structure and Sound Absorption Properties of Polyvinylpyrrolidone (1300 kDa) Electrospun Mats. Materials 2018, 12, 108. [Google Scholar] [CrossRef] [Green Version]
- Mazrouei-Sebdani, Z.; Begum, H.; Schoenwald, S.; Horoshenkov, K.V.; Malfait, W.J. A review on silica aerogel-based materials for acoustic applications. J. Non-Cryst. Solids 2021, 562, 120770. [Google Scholar] [CrossRef]
- Venkataraman, M.; Mishra, R.; Militky, J.; Xiong, X.; Marek, J.; Yao, J.; Zhu, G. Electrospun nanofibrous membranes embedded with aerogel for advanced thermal and transport properties. Polym. Adv. Technol. 2018, 29, 2583–2592. [Google Scholar] [CrossRef]
- Si, Y.; Yu, J.; Tang, X.; Ge, J.; Ding, B. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat. Commun. 2014, 5, 5802. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Si, Y.; Wu, Y.; Wang, X.; Yu, J.; Ding, B. Ultralight, superelastic and bendable lashing-structured nanofibrous aerogels for effective sound absorption. Nanoscale 2019, 11, 2289–2298. [Google Scholar] [CrossRef] [PubMed]
- Ding, L. Characteristics and Application of Resonant Sound Absorbing Materials in Audio Engineering. Audio Eng. 2019, 43, 12–18. [Google Scholar] [CrossRef]
- Liu, X.; Yu, C.; Xin, F. Gradually perforated porous materials backed with Helmholtz resonant cavity for broadband low-frequency sound absorption. Compos. Struct. 2021, 263, 113647. [Google Scholar] [CrossRef]
- Guo, L.J.; Zhao, Z.; Zhou, X.Y.; Fan, X. Research of Sound Absorption Characteristics for Micro-Perforated Panel Decorated by PVP Nanofiber. Mater. Prot. 2016, 49, 40–41. [Google Scholar] [CrossRef]
- Mohrova, J.; Kalinova, K. Different Structures of PVA Nanofibrous Membrane for Sound Absorption Application. J. Nanomater. 2012, 2012, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Ozturk, M.K.; Kalinova, K.; Nergis, B.; Candan, C. Comparison of resonance frequency of a nanofibrous membrane and a homogeneous membrane structure. Text. Res. J. 2013, 83, 2204–2210. [Google Scholar] [CrossRef]
- Ulrich, T.; Arenas, J.P. Role of porosity on nanofibrous membrane sound absorption properties. In Proceedings of the 26th International Congress on Sound and Vibration (ICSV 2019), Montreal, QC, Canada, 7–11 July 2019. [Google Scholar]
- Kalinova, K. A sound absorptive element comprising an acoustic resonance nanofibrous membrane. Recent Pat. Nanotechnol. 2015, 9, 61–69. [Google Scholar] [CrossRef]
- Xu, L.; Liu, F.; Faraz, N. Theoretical model for the electrospinning nanoporous materials process. Comput. Math. Appl. 2012, 64, 1017–1021. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Lee, H.P.; Yan, X. Sound absorption performance and mechanism of flexible PVA microperforated membrane. Appl. Acoust. 2021, 185, 108420. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Peng, Y.; He, Y.; Zhang, C.; Zhang, D.; Liu, Y. Research Progress on Sound Absorption of Electrospun Fibrous Composite Materials. Nanomaterials 2022, 12, 1123. https://doi.org/10.3390/nano12071123
Li X, Peng Y, He Y, Zhang C, Zhang D, Liu Y. Research Progress on Sound Absorption of Electrospun Fibrous Composite Materials. Nanomaterials. 2022; 12(7):1123. https://doi.org/10.3390/nano12071123
Chicago/Turabian StyleLi, Xiuhong, Yujie Peng, Youqi He, Chupeng Zhang, Daode Zhang, and Yong Liu. 2022. "Research Progress on Sound Absorption of Electrospun Fibrous Composite Materials" Nanomaterials 12, no. 7: 1123. https://doi.org/10.3390/nano12071123
APA StyleLi, X., Peng, Y., He, Y., Zhang, C., Zhang, D., & Liu, Y. (2022). Research Progress on Sound Absorption of Electrospun Fibrous Composite Materials. Nanomaterials, 12(7), 1123. https://doi.org/10.3390/nano12071123