Single- and Twin-Photons Emitted from Fiber-Coupled Quantum Dots in a Distributed Bragg Reflector Cavity
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Electron Level Coupling and Stress-Induced lh Levels
3.2. High-Rate Photon Pairs and Polarization Correlation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nurfern Fibers. Available online: https://coherentinc.force.com/Coherent/specialty-optical-fibers/single-mode (accessed on 30 December 2021).
- Ates, S.; Agha, I.; Gulinatti, A.; Rech, I.; Badolato, A. Improving the performance of bright quantum dot single photon sources using temporal filtering via amplitude modulation. Sci. Rep. 2013, 3, 1397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flagg, E.B.; Muller, A.; Polyakov, S.V.; Ling, A.; Migdall, A.; Solomon, G.S. Interference of Single Photons from Two Separate Semiconductor Quantum Dots. Phys. Rev. Lett. 2010, 104, 137401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, B.-H.; Lee, C.-M.; Lim, H.-J.; Schlereth, T.W.; Kamp, M.; Höfling, S.; Lee, Y.-H. Direct fiber-coupled single photon source based on a photonic crystal waveguide. Appl. Phys. Lett. 2015, 107, 081113. [Google Scholar] [CrossRef] [Green Version]
- Daveau, R.S.; Balram, K.C.; Pregnolato, T.; Liu, J.; Lee, E.H.; Song, J.D.; Verma, V.; Mirin, R.; Nam, S.W.; Midolo, L.; et al. Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide. Optica 2017, 4, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Muller, A.; Flagg, E.B.; Metcalfe, M.; Lawall, J.; Solomon, G.S. Coupling an epitaxial quantum dot to a fiber-based external-mirror microcavity. Appl. Phys. Lett. 2009, 95, 173101. [Google Scholar] [CrossRef] [Green Version]
- Cadeddu, D.; Teissier, J.; Braakman, F.R.; Gregersen, N.; Stepanov, P.; Gérard, J.-M.; Claudon, J.; Warburton, R.J.; Poggio, M.; Munsch, M. A fiber-coupled quantum-dot on a photonic tip. Appl. Phys. Lett. 2016, 108, 011112. [Google Scholar] [CrossRef] [Green Version]
- Zolnacz, K.; Musial, A.; Srocja, N.; Große, J.; Schlosinger, M.J.; Schneider, P.-I.; Kravets, O.; Mikulicz, M.; Olszewski, J.; Poturaj, K.; et al. Method for direct coupling of a semiconductor quantum dot to an optical fiber for single-photon source applications. Opt. Express 2019, 27, 26772–26785. [Google Scholar] [CrossRef]
- Ma, B.; Chen, Z.-S.; Wei, S.-H.; Shang, X.-J.; Ni, H.-Q.; Niu, Z.-C. Single photon extraction from self-assembled quantum dots via stable fiber array coupling. Appl. Phys. Lett. 2017, 110, 142104. [Google Scholar] [CrossRef]
- Chen, Y.; Li, S.-L.; Shang, X.-J.; Su, X.-B.; Hao, H.-M.; Shen, J.-X.; Zhang, Y.; Ni, H.-Q.; Ding, Y.; Niu, Z.-C. Fiber coupled high count-rate single-photon generated from InAs quantum dots. J. Semicond. 2021, 42, 072901. [Google Scholar] [CrossRef]
- Shang, X.-J.; Li, S.-L.; Liu, H.-Q.; Ma, B.; Su, X.-B.; Chen, Y.; Shen, J.-X.; Hao, H.-M.; Liu, B.; Dou, X.-M.; et al. Symmetric Excitons in an (001)-Based InAs/GaAs Quantum Dot Near Si Dopant for Photon-Pair Entanglement. Crystal 2021, 11, 1194. [Google Scholar] [CrossRef]
- Shang, X.-J.; Ma, B.; Ni, H.-Q.; Chen, Z.-S.; Li, S.-L.; Chen, Y.; He, X.-W.; Su, X.-L.; Shi, Y.-J.; Niu, Z.-C. C2v and D3h symmetric InAs quantum dots on GaAs (001) substrate: Exciton emission and a defect field influence. AIP Adv. 2020, 10, 085126. [Google Scholar] [CrossRef]
- Li, M.-F.; Yu, Y.; He, J.-F.; Wang, L.-J.; Zhu, Y.; Shang, X.-J.; Ni, H.-Q.; Niu, Z.-C. In situ accurate control of 2D-3D transition parameters for growth of low-density InAs/GaAs self-assembled quantum dots. Nanoscale Res. Lett. 2013, 8, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, H.S.; Sallen, G.; Abbarchi, M.; Ferreira, R.; Voisin, C.; Roussignol, P.; Cassabois, G.; Diederichs, C. Photoneutralization and slow capture of carriers in quantum dots probed by resonant excitation spectroscopy. Phys. Rev. B 2013, 87, 115305. [Google Scholar] [CrossRef] [Green Version]
- Li, S.-L.; Shang, X.-J.; Chen, Y.; Su, X.-B.; Hao, H.-M.; Liu, H.-Q.; Zhang, Y.; Ni, H.-Q.; Niu, Z.-C. Wet-etched microlens array for 200 nm spatial isolation of epitaxial single QDs and 80 nm broadband enhancement of their quantum light extraction. Nanomaterials 2021, 11, 1136. [Google Scholar] [CrossRef]
- Ulrich, S.M.; Gies, C.; Ates, S.; Wiersig, J.; Reitzenstein, S.; Hofmann, C.; Loffler, A.; Forchel, A.; Jahnke, F.; Michler, P. Photon statistics of semiconductor microcavity lasers. Phys. Rev. Lett. 2007, 98, 043906. [Google Scholar] [CrossRef]
- Yu, S.; Wang, Y.-T.; Tang, J.-S.; Yu, Y.; Zha, G.-W.; Ni, H.-Q.; Niu, Z.-C.; Han, Y.-J.; Li, C.-F.; Guo, G.-C. Tunable-correlation phenomenon of single photons emitted from a self-assembled quantum dot. Phys. E Low-Dimens. Syst. Nanostruct. 2016, 7, 198–203. [Google Scholar] [CrossRef]
- Zhang, J.-X.; Huo, Y.-H.; Rastelli, A.; Zopf, M.; Höfer, B.; Chen, Y.; Ding, F.; Schmidt, O.G. Single photons On-demand from light-hole excitons in strain-engineered quantum dots. Nano. Lett. 2015, 15, 422–427. [Google Scholar] [CrossRef]
- Karlsson, K.F.; Oberli, D.A.; Dupertuis, M.; Troncale, V.; Byszewski, M.; Pelucchi, E.; Rudra, A.; Holtz, P.O.; Kapon, E. Spectral signatures of high-symmetry quantum dots and effects of symmetry breaking. New J. Phys. 2015, 17, 103017. [Google Scholar] [CrossRef] [Green Version]
- Stoleru, V.-G.; Pal, D.; Towe, E. Self-assembled (In, Ga)As/GaAs quantum-dot nanostructures: Strain distribution and electronic structure. Phys. E 2002, 15, 131. [Google Scholar] [CrossRef] [Green Version]
- Bennett, A.J.; Pooley, M.A.; Stevenson, R.M.; Ward, M.B.; Patel, R.B.; de la Giroday, A.B.; Sköld, N.; Farrer, I.; Nicoll, C.A.; Ritchie, D.A.; et al. Electric-field-induced coherent coupling of the exciton states in a single quantum dot. Nat. Phys. 2010, 6, 947–950. [Google Scholar] [CrossRef]
- Li, S.-L.; Chen, Y.; Shang, X.-J.; Yu, Y.; Yang, J.-W.; Huang, J.-H.; Su, X.-B.; Shen, J.-X.; Sun, B.-Q.; Ni, H.-Q.; et al. Boost of single-photon emission by perfect coupling of InAs/GaAs quantum dot and micropillar cavity mode. Nanoscale Res. Lett. 2020, 15, 145. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.-J.; Li, S.-L.; Ma, B.; Chen, Y.; He, X.-W.; Ni, H.-Q.; Niu, Z.-C. Optical fiber coupling of quantum dot single photon sources. Acta Phys. Sin. 2021, 70, 087801. [Google Scholar] [CrossRef]
- Hudson, A.J.; Stevenson, R.M.; Bennett, A.J.; Young, R.J.; Nicoll, C.A.; Atkinson, P.; Cooper, K.; Ritchie, D.A.; Shields, A.J. Coherence of an Entangled Exciton-Photon State. Phys. Rev. Lett. 2007, 99, 266802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- OZOptics Shop. Available online: https://shop.ozoptics.com/single-mode-taperedlensed-fibers (accessed on 30 December 2021).
- Thorlabs Ultra-High NA Fibers. Available online: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=340 (accessed on 30 December 2021).
Materials | GaAs | InAs | Al0.9Ga0.1As | Silica | Cured Epoxy | Copper |
---|---|---|---|---|---|---|
α (10−6/K) | 5.7 | 4.5 | 5.2 | 0.5 | 57 | 18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, X.; Li, S.; Liu, H.; Su, X.; Hao, H.; Dai, D.; Li, X.; Li, Y.; Gao, Y.; Dou, X.; et al. Single- and Twin-Photons Emitted from Fiber-Coupled Quantum Dots in a Distributed Bragg Reflector Cavity. Nanomaterials 2022, 12, 1219. https://doi.org/10.3390/nano12071219
Shang X, Li S, Liu H, Su X, Hao H, Dai D, Li X, Li Y, Gao Y, Dou X, et al. Single- and Twin-Photons Emitted from Fiber-Coupled Quantum Dots in a Distributed Bragg Reflector Cavity. Nanomaterials. 2022; 12(7):1219. https://doi.org/10.3390/nano12071219
Chicago/Turabian StyleShang, Xiangjun, Shulun Li, Hanqing Liu, Xiangbin Su, Huiming Hao, Deyan Dai, Xiaoming Li, Yuanyuan Li, Yuanfei Gao, Xiuming Dou, and et al. 2022. "Single- and Twin-Photons Emitted from Fiber-Coupled Quantum Dots in a Distributed Bragg Reflector Cavity" Nanomaterials 12, no. 7: 1219. https://doi.org/10.3390/nano12071219
APA StyleShang, X., Li, S., Liu, H., Su, X., Hao, H., Dai, D., Li, X., Li, Y., Gao, Y., Dou, X., Ni, H., & Niu, Z. (2022). Single- and Twin-Photons Emitted from Fiber-Coupled Quantum Dots in a Distributed Bragg Reflector Cavity. Nanomaterials, 12(7), 1219. https://doi.org/10.3390/nano12071219