Recent Developments of Tin (II) Sulfide/Carbon Composites for Achieving High-Performance Lithium Ion Batteries: A Critical Review
Abstract
:1. Introduction
2. Working Mechanisms of SnS2-Based Anodes in LIBs
3. Pure SnS2
4. SnS2/Carbon Composites
4.1. Amorphous Carbon/SnS2 Composites
4.2. CNTs/SnS2 Composites
4.3. Graphene/SnS2 Composites
5. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, D.; Luo, L.; Zhu, J.; Qin, H.; Liu, P.; Sun, Z.; Lei, Y.; Jiang, M. A hybrid lithium sulfonated polyoxadiazole derived single-ion conducting gel polymer electrolyte enabled effective suppression of dendritic lithium growth. Chin. Chem. Lett. 2022, 33, 1025–1031. [Google Scholar] [CrossRef]
- Li, D.; Wang, H.; Luo, L.; Zhu, J.; Li, J.; Liu, P.; Yu, Y.; Jiang, M. Electrospun Separator Based on Sulfonated Polyoxadiazole with Outstanding Thermal Stability and Electrochemical Properties for Lithium-Ion Batteries. ACS Appl. Energy Mater. 2021, 4, 879–887. [Google Scholar] [CrossRef]
- Yu, Y.; Zhu, J.; Zeng, K.; Jiang, M. Mechanically robust and superior conductive n-type polymer binders for high-performance micro-silicon anodes in lithium-ion batteries. J. Mater. Chem. A 2021, 9, 3472–3481. [Google Scholar] [CrossRef]
- Han, L.; Lehmann, M.L.; Zhu, J.; Liu, T.; Zhou, Z.; Tang, X.; Heish, C.-T.; Sokolov, A.P.; Cao, P.; Chen, X.C. Recent Developments and Challenges in Hybrid Solid Electrolytes for Lithium-Ion Batteries. Front. Energy Res. 2020, 8, 202. [Google Scholar] [CrossRef]
- Gao, H.; Mao, J.; Li, D.; Yu, Y.; Yang, C.; Qi, S.; Liu, Q.; Zhu, J.; Jiang, M. Communication—Lithium sulfonated polyoxadiazole as a novel single-ion polymer electrolyte in lithium-ion batteries. J. Electrochem. Soc. 2020, 167, 070518. [Google Scholar] [CrossRef]
- Yang, C.; Li, D.; Gao, H.; Liu, Q.; Zhu, J.; Wang, F.; Jiang, M. Constructing High-Energy-Density Aqueous Supercapacitors with Potassium Iodide-Doped Electrolytes by a Precharging Method. ACS Appl. Energy Mater. 2020, 3, 2674–2681. [Google Scholar] [CrossRef]
- Huang, Z.X.; Wang, Y.; Liu, B.; Kong, D.; Zhang, J.; Chen, T.; Yang, H.Y. Unlocking the potential of SnS2: Transition metal catalyzed utilization of reversible conversion and alloying reactions. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef]
- Whitesides, G.M.; Mathias, J.P.; Seto, C.T. Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures. Science 1991, 254, 1312–1319. [Google Scholar] [CrossRef]
- Liu, W.; Huang, X.; Wang, Z.; Li, H.; Chen, L. Studies of stannic oxide as an anode material for lithium-ion batteries. J. Electrochem. Soc. 1998, 145, 59. [Google Scholar] [CrossRef]
- Palacin, M.R. Recent advances in rechargeable battery materials: A chemist’s perspective. Chem. Soc. Rev. 2009, 38, 2565–2575. [Google Scholar] [CrossRef]
- Carny, O.; Shalev, D.E.; Gazit, E. Fabrication of coaxial metal nanocables using a self-assembled peptide nanotube scaffold. Nano Lett. 2006, 6, 1594–1597. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Yildirim, E.; Aly, K.; Shen, J.; Chen, C.; Lu, Y.; Jiang, M.; Kim, D.; Tonelli, A.E.; Pasquinelli, M.A. Hierarchical multi-component nanofiber separators for lithium polysulfide capture in lithium–sulfur batteries: An experimental and molecular modeling study. J. Mater. Chem. A 2016, 4, 13572–13581. [Google Scholar] [CrossRef]
- Yin, L.; Chai, S.; Ma, J.; Huang, J.; Kong, X.; Bai, P.; Liu, Y. Effects of binders on electrochemical properties of the SnS2 nanostructured anode of the lithium-ion batteries. J. Alloys Compd. 2017, 698, 828–834. [Google Scholar] [CrossRef]
- Choi, J.W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 1–16. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603. [Google Scholar] [CrossRef]
- Li, X.; Lu, Y.; Hou, Z.; Zhang, W.; Zhu, Y.; Qian, Y.; Liang, J.; Qian, Y. SnS2-compared to SnO2-stabilized S/C composites toward high-performance lithium sulfur batteries. ACS Appl. Mater. Interfaces 2016, 8, 19550–19557. [Google Scholar] [CrossRef]
- Son, I.H.; Park, J.H.; Park, S.; Park, K.; Han, S.; Shin, J.; Doo, S.-G.; Hwang, Y.; Chang, H.; Choi, J.W. Graphene balls for lithium rechargeable batteries with fast charging and high volumetric energy densities. Nat. Commun. 2017, 8, 1–11. [Google Scholar] [CrossRef]
- O’Heir, J. Building better batteries. Mech. Eng. 2017, 139, 10. [Google Scholar]
- Choi, S.; Kwon, T.-W.; Coskun, A.; Choi, J.W. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 2017, 357, 279–283. [Google Scholar] [CrossRef] [Green Version]
- Yazami, R.; Touzain, P. A reversible graphite-lithium negative electrode for electrochemical generators. J. Power Sources 1983, 9, 365–371. [Google Scholar] [CrossRef]
- Zaghib, K.; Simoneau, M.; Armand, M.; Gauthier, M. Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries. J. Power Sources 1999, 81, 300–305. [Google Scholar] [CrossRef]
- Choi, S.; Cho, Y.G.; Kim, J.; Choi, N.S.; Song, H.K.; Wang, G.; Park, S. Mesoporous Germanium Anode Materials for Lithium-Ion Battery with Exceptional Cycling Stability in Wide Temperature Range. Small 2017, 13, 1603045. [Google Scholar] [CrossRef] [PubMed]
- Meister, P.; Jia, H.; Li, J.; Kloepsch, R.; Winter, M.; Placke, T. Best practice: Performance and cost evaluation of lithium ion battery active materials with special emphasis on energy efficiency. Chem. Mater. 2016, 28, 7203–7217. [Google Scholar] [CrossRef]
- Guo, J.; Dong, D.; Wang, J.; Liu, D.; Li, D.; Yu, X.; Zheng, Y.; Wen, Z.; Lei, W.; Deng, Y.; et al. Silicon-Based Lithium Ion Battery Systems: State-of-the-Art from Half and Full Cell Viewpoint. Adv. Funct. Mater. 2021, 31, 2102546. [Google Scholar] [CrossRef]
- Zhang, C.; Mahmood, N.; Yin, H.; Liu, F.; Hou, Y. Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv. Mater. 2013, 25, 4932–4937. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; He, X.; Li, J.; Sun, W.; Gao, J.; Guo, J.; Jiang, C. Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries. Angew. Chem. 2012, 124, 9168–9171. [Google Scholar] [CrossRef]
- Zeng, Z.; Sun, T.; Zhu, J.; Huang, X.; Yin, Z.; Lu, G.; Fan, Z.; Yan, Q.; Hng, H.H.; Zhang, H. An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew. Chem. Int. Ed. 2012, 51, 9052–9056. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Zhang, P.; Wang, X.; Li, Q.; Dong, Y.; Hua, J.; Zhou, L.; Mai, L. Antimony nanoparticles anchored in three-dimensional carbon network as promising sodium-ion battery anode. J. Power Sources 2016, 304, 340–345. [Google Scholar] [CrossRef]
- Prikhodchenko, P.V.; Gun, J.; Sladkevich, S.; Mikhaylov, A.A.; Lev, O.; Tay, Y.Y.; Batabyal, S.K.; Yu, D.Y. Conversion of hydroperoxoantimonate coated graphenes to Sb2S3@ graphene for a superior lithium battery anode. Chem. Mater. 2012, 24, 4750–4757. [Google Scholar] [CrossRef]
- Li, J.; Tang, S.; Lu, L.; Zeng, H.C. Preparation of nanocomposites of metals, metal oxides, and carbon nanotubes via self-assembly. J. Am. Chem. Soc. 2007, 129, 9401–9409. [Google Scholar] [CrossRef]
- Hayner, C.M.; Zhao, X.; Kung, H.H. Materials for rechargeable lithium-ion batteries. Annu. Rev. Chem. Biomol. Eng. 2012, 3, 445–471. [Google Scholar] [CrossRef] [PubMed]
- Tirado, J.L. Inorganic materials for the negative electrode of lithium-ion batteries: State-of-the-art and future prospects. Mater. Sci. Eng. R Rep. 2003, 40, 103–136. [Google Scholar] [CrossRef]
- Lee, W.-G.; Jang, H.S.; Raj, C.J.; Rajesh, M.; Kim, B.C.; Cho, W.-J.; Yu, K.H. Effect of proton irradiation on the structural and electrochemical properties of MnO2 nanosheets. J. Electroanal. Chem. 2018, 811, 16–25. [Google Scholar] [CrossRef]
- Gund, G.S.; Dubal, D.P.; Patil, B.H.; Shinde, S.S.; Lokhande, C.D. Enhanced activity of chemically synthesized hybrid graphene oxide/Mn3O4 composite for high performance supercapacitors. Electrochim. Acta 2013, 92, 205–215. [Google Scholar] [CrossRef]
- Li, W.; Shao, J.; Liu, Q.; Liu, X.; Zhou, X.; Hu, J. Facile synthesis of porous Mn2O3 nanocubics for high-rate supercapacitors. Electrochim. Acta 2015, 157, 108–114. [Google Scholar] [CrossRef]
- Deng, Y.; Wan, L.; Xie, Y.; Qin, X.; Chen, G. Recent advances in Mn-based oxides as anode materials for lithium ion batteries. RSC Adv. 2014, 4, 23914–23935. [Google Scholar] [CrossRef]
- Yang, L.; Hu, J.; Dong, A.; Yang, D. Novel Fe3O4-CNTs nanocomposite for Li-ion batteries with enhanced electrochemical performance. Electrochim. Acta 2014, 144, 235–242. [Google Scholar] [CrossRef]
- Balogun, M.-S.; Wu, Z.; Luo, Y.; Qiu, W.; Fan, X.; Long, B.; Huang, M.; Liu, P.; Tong, Y. High power density nitridated hematite (α-Fe2O3) nanorods as anode for high-performance flexible lithium ion batteries. J. Power Sources 2016, 308, 7–17. [Google Scholar] [CrossRef]
- Xiong, S.; Chen, J.S.; Lou, X.W.; Zeng, H.C. Mesoporous Co3O4 and CoO@C topotactically transformed from chrysanthemum-like Co(CO3)0.5(OH)·0.11 H2O and their lithium-storage properties. Adv. Funct. Mater. 2012, 22, 861–871. [Google Scholar] [CrossRef]
- Khalil, A.; Lalia, B.S.; Hashaikeh, R. Nickel oxide nanocrystals as a lithium-ion battery anode: Structure-performance relationship. J. Mater. Sci. 2016, 51, 6624–6638. [Google Scholar] [CrossRef]
- Zhao, Q.; Ma, L.; Zhang, Q.; Wang, C.; Xu, X. SnO2-based nanomaterials: Synthesis and application in lithium-ion batteries and supercapacitors. J. Nanomater. 2015, 2015, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Miao, C.; Yu, L.; Zhang, M.; Xiao, W. Novel self-assembled SnO2@ SnS2 hybrid microspheres as potential anode materials for lithium-ion batteries. Mater. Lett. 2020, 272, 127851. [Google Scholar] [CrossRef]
- Khan, Z.; Parveen, N.; Ansari, S.A.; Senthilkumar, S.T.; Park, S.; Kim, Y.; Cho, M.H.; Ko, H. Three-dimensional SnS2 nanopetals for hybrid sodium-air batteries. Electrochim. Acta 2017, 257, 328–334. [Google Scholar] [CrossRef]
- Liu, J.; Chen, X.; Zeng, L.; He, X.; Liu, J.; Huang, B.; Xiao, L.; Qian, Q.; Wei, M.; Chen, Q. SnS2 nanosheets anchored on porous carbon fibers for high performance of sodium-ion batteries. J. Electroanal. Chem. 2020, 862, 114021. [Google Scholar] [CrossRef]
- Lefebvre-Devos, I.; Olivier-Fourcade, J.; Jumas, J.; Lavela, P. Lithium insertion mechanism in SnS2. Phys. Rev. B 2000, 61, 3110. [Google Scholar] [CrossRef]
- Jiang, T.; Ozin, G.A. New directions in tin sulfide materials chemistry. J. Mater. Chem. 1998, 8, 1099–1108. [Google Scholar] [CrossRef]
- Morales, J.; Vicente, C.P.; Santos, J.; Tirado, J. Electrochemical characteristics of crystalline and amorphous SnS2 in lithium cells. J. Electrochem. Soc. 1996, 143, 2847. [Google Scholar] [CrossRef]
- Cheng, Y.; Xie, H.; Zhou, L.; Shi, B.; Guo, L.; Huang, J. In-situ liquid-phase transformation of SnS2/CNTs composite from SnO2/CNTs for high performance lithium-ion battery anode. Appl. Surf. Sci. 2021, 566, 150645. [Google Scholar] [CrossRef]
- Liu, J.; Qi, Y.; Fu, B.; Dai, J.; Wang, Q.; Zhu, X.; Shi, X. Li+ diffusion kinetics of SnS2 nanoflowers enhanced by reduced graphene oxides with excellent electrochemical performance as anode material for lithium-ion batteries. J. Alloys Compd. 2019, 794, 285–293. [Google Scholar] [CrossRef]
- Kim, T.-J.; Kim, C.; Son, D.; Choi, M.; Park, B. Novel SnS2-nanosheet anodes for lithium-ion batteries. J. Power Sources 2007, 167, 529–535. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, J.; Wu, J.; Chen, F.; Li, P.; Han, N.; Huang, W.; Liu, Y.; Ye, H.; Zhao, F.; et al. Engineering SnS2 nanosheet assemblies for enhanced electrochemical lithium and sodium ion storage. J. Mater. Chem. A 2017, 5, 25618–25624. [Google Scholar] [CrossRef]
- Cui, Z.; He, S.; Liu, Q.; Guan, G.; Zhang, W.; Xu, C.; Zhu, J.; Feng, P.; Hu, J.; Zou, R.; et al. Graphene-Like Carbon Film Wrapped Tin (II) Sulfide Nanosheet Arrays on Porous Carbon Fibers with Enhanced Electrochemical Kinetics as High-Performance Li and Na Ion Battery Anodes. Adv. Sci. 2020, 7, 1903045. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Xin, H.L.; Kuykendall, T.R.; Wu, S.-L.; Zheng, H.; Rao, M.; Cairns, E.J.; Battaglia, V.; Zhang, Y. SnS2 nanoparticle loaded graphene nanocomposites for superior energy storage. Phys. Chem. Chem. Phys. 2012, 14, 6981–6986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, C.; Ma, L.; Zheng, M.; Zhao, B.; Qiu, D.; Pan, L.; Cao, J.; Shi, Y. Synthesis and electrochemical properties of graphene-SnS2 nanocomposites for lithium-ion batteries. J. Solid State Electrochem. 2012, 16, 1999–2004. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, X.-Y.; Fang, Y.; Zhu, X.; Bao, J.; Zhou, X.; Lou, X.W.D. Confining SnS2 ultrathin nanosheets in hollow carbon nanostructures for efficient capacitive sodium storage. Joule 2018, 2, 725–735. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zhao, H.; Du, Z.; Chang, X.; Zhao, L.; Du, X.; Li, Z.; Teng, Y.; Fang, J.; Świerczek, K. (101) Plane-oriented SnS2 nanoplates with carbon coating: A high-rate and cycle-stable anode material for lithium ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 35880–35887. [Google Scholar] [CrossRef]
- Cui, J.; Yao, S.; Lu, Z.; Huang, J.; Chong, W.G.; Ciucci, F.; Kim, J. Revealing Pseudocapacitive Mechanisms of Meta Dichalcogenide SnS2/Graphene-CNT Aerogels for High-Energy Na Hybrid Capacitors. Adv. Energy Mater. 2018, 8, 1702488. [Google Scholar] [CrossRef]
- Hwang, S.; Yao, Z.; Zhang, L.; Fu, M.; He, K.; Mai, L.; Wolverton, C.; Su, D. Multistep lithiation of tin sulfide: An investigation using in situ electron microscopy. ACS Nano 2018, 12, 3638–3645. [Google Scholar] [CrossRef]
- Liang, C.; Gao, M.; Pan, H.; Liu, Y.; Yan, M. Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries. J. Alloys Compd. 2013, 575, 246–256. [Google Scholar] [CrossRef]
- Gao, C.; Li, L.; Raji, A.R.; Kovalchuk, A.; Peng, Z.; Fei, H.; He, Y.; Kim, N.D.; Zhong, Q.; Xie, E.; et al. Tin Disulfide Nanoplates on Graphene Nanoribbons for Full Lithium Ion Batteries. ACS Appl. Mater. Interfaces 2015, 7, 26549–26556. [Google Scholar] [CrossRef]
- Bala, M.; Masarrat, A.; Bhogra, A.; Meena, R.; Lu, Y.-R.; Huang, Y.-C.; Chen, C.-L.; Dong, C.-L.; Ojha, S.; Avasthi, D. Structure and Transport Properties of Nickel-Implanted CoSb3 Skutterudite Thin Films Synthesized via Pulsed Laser Deposition. ACS Appl. Energy Mater. 2018, 1, 5879–5886. [Google Scholar] [CrossRef]
- Liu, Z.; Deng, H.; Mukherjee, P.P. Evaluating pristine and modified SnS2 as a lithium-ion battery anode: A first-principles study. ACS Appl. Mater. Interfaces 2015, 7, 4000–4009. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, J.M.; Oleynik, I.I. Layer-dependent properties of SnS2 and SnSe2 two-dimensional materials. Phys. Rev. B 2016, 94, 125443. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Fang, C.; Chen, G. The developments of SnO2/graphene nanocomposites as anode materials for high performance lithium ion batteries: A review. J. Power Sources 2016, 304, 81–101. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.M.; Yakobson, B.I.; Wood, B.C. Assessing carbon-based anodes for lithium-ion batteries: A universal description of charge-transfer binding. Phys. Rev. Lett. 2014, 113, 028304. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Yin, X.; Chen, L.; Li, Q.; Wang, T. Synthesis of self-assembled 3D flowerlike SnS2 nanostructures with enhanced lithium ion storage property. Solid State Sci. 2010, 12, 712–718. [Google Scholar] [CrossRef]
- Mukaibo, H.; Yoshizawa, A.; Momma, T.; Osaka, T. Particle size and performance of SnS2 anodes for rechargeable lithium batteries. J. Power Sources 2003, 119, 60–63. [Google Scholar] [CrossRef]
- Zuo, Y.; Xu, X.; Zhang, C.; Li, J.; Du, R.; Wang, X.; Han, X.; Arbiol, J.; Llorca, J.; Liu, J. SnS2/g-C3N4/graphite nanocomposites as durable lithium-ion battery anode with high pseudocapacitance contribution. Electrochim. Acta 2020, 349, 136369. [Google Scholar] [CrossRef]
- Liu, H.; Wei, C.; Ai, Z.; Li, M.; Xu, M.; Ma, C.; Shi, J. The positive effect of 3D interpenetrating network porous structure by carbon membranes on alleviating the volume expansion of SnS2 nanosheets for enhancing lithium and sodium storage. Colloids Surf. A Physicochem. Eng. Asp. 2021, 610, 125937. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y.; Li, Y.; Zhang, Y.; Dong, Y.; Li, D.; Zhang, J. Construction of uniform SnS2/ZnS heterostructure nanosheets embedded in graphene for advanced lithium-ion batteries. J. Alloys Compd. 2020, 820, 153147. [Google Scholar] [CrossRef]
- Hao, Y.; Wang, S.; Shao, Y.; Wu, Y.; Miao, S. High-Energy Density Li-Ion Capacitor with Layered SnS2/Reduced Graphene Oxide Anode and BCN Nanosheet Cathode. Adv. Energy Mater. 2020, 10, 1902836. [Google Scholar] [CrossRef]
- Sun, D.; Wang, M.; Li, Z.; Fan, G.; Fan, L.-Z.; Zhou, A. Two-dimensional Ti3C2 as anode material for Li-ion batteries. Electrochem. Commun. 2014, 47, 80–83. [Google Scholar] [CrossRef]
- Wang, Q.; Huang, Y.; Miao, J.; Zhao, Y.; Wang, Y. Synthesis and electrochemical characterizations of Ce doped SnS2 anode materials for rechargeable lithium ion batteries. Electrochim. Acta 2013, 93, 120–130. [Google Scholar] [CrossRef]
- Chen, Q.; Lu, F.; Xia, Y.; Wang, H.; Kuang, X. Interlayer expansion of few-layered Mo-doped SnS2 nanosheets grown on carbon cloth with excellent lithium storage performance for lithium ion batteries. J. Mater. Chem. A 2017, 5, 4075–4083. [Google Scholar] [CrossRef]
- McNair, O.D.; Brent, D.P.; Sparks, B.J.; Patton, D.L.; Savin, D.A. Sequential thiol click reactions: Formation of ternary thiourethane/thiol–ene networks with enhanced thermal and mechanical properties. ACS Appl. Mater. Interfaces 2014, 6, 6088–6097. [Google Scholar] [CrossRef]
- Wu, Z.-S.; Zhou, G.; Yin, L.-C.; Ren, W.; Li, F.; Cheng, H.-M. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 2012, 1, 107–131. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, L.; Zhang, D.; Chen, S.; Coxon, P.R.; He, X.; Coto, M.; Kim, H.-K.; Xi, K.; Ding, S. A universal synthetic route to carbon nanotube/transition metal oxide nano-composites for lithium ion batteries and electrochemical capacitors. Sci. Rep. 2016, 6, 1–11. [Google Scholar] [CrossRef]
- Fang, H.; Zhao, L.; Yue, W.; Wang, Y.; Jiang, Y.; Zhang, Y. Facile and large-scale preparation of sandwich-structured graphene-metal oxide composites as anode materials for Li-ion batteries. Electrochim. Acta 2015, 186, 397–403. [Google Scholar] [CrossRef]
- Greenaway, D.L.; Nitsche, R. Preparation and optical properties of group IV–VI2 chalcogenides having the CdI2 structure. J. Phys. Chem. Solids 1965, 26, 1445–1458. [Google Scholar] [CrossRef]
- Deshpande, N.; Sagade, A.; Gudage, Y.; Lokhande, C.; Sharma, R. Growth and characterization of tin disulfide (SnS2) thin film deposited by successive ionic layer adsorption and reaction (SILAR) technique. J. Alloys Compd. 2007, 436, 421–426. [Google Scholar] [CrossRef]
- Huang, Y.; Ling, C.; Chen, X.; Zhou, D.; Wang, S. SnS2 nanotubes: A promising candidate for the anode material for lithium ion batteries. RSC Adv. 2015, 5, 32505–32510. [Google Scholar] [CrossRef]
- Ray, S.C.; Karanjai, M.K.; DasGupta, D. Structure and photoconductive properties of dip-deposited SnS and SnS2 thin films and their conversion to tin dioxide by annealing in air. Thin Solid Film 1999, 350, 72–78. [Google Scholar] [CrossRef]
- Hassan, A.S.; Moyer, K.; Ramachandran, B.R.; Wick, C.D. Comparison of storage mechanisms in RuO2, SnO2, and SnS2 for lithium-ion battery anode materials. J. Phys. Chem. C 2016, 120, 2036–2046. [Google Scholar] [CrossRef]
- Francis, L. Crystallography and Crystal Chemistry of Materials with Layered Structures; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1976. [Google Scholar]
- Brousse, T.; Lee, S.; Pasquereau, L.; Defives, D.; Schleich, D. Composite negative electrodes for lithium ion cells. Solid State Ion. 1998, 113, 51–56. [Google Scholar] [CrossRef]
- Marestoni, L.D.; Barud, H.D.S.; Gomes, R.J.; Catarino, R.P.F.; Hata, N.N.Y.; Ressutte, J.B.; Spinosa, W.A. Commercial and potential applications of bacterial cellulose in Brazil: Ten years review. Polímeros 2021, 30, 1–19. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, Y.; Meng, W.; Xie, Y.; Zhang, J.; He, C.; Zhao, D. Nanoplates-assembled SnS2 nanoflowers with carbon coating anchored on reduced graphene oxide for high performance Li-ion batteries. Appl. Surf. Sci. 2021, 539, 148283. [Google Scholar] [CrossRef]
- Soto, F.A.; Ma, Y.; Martinez De La Hoz, J.M.; Seminario, J.M.; Balbuena, P.B. Formation and growth mechanisms of solid-electrolyte interphase layers in rechargeable batteries. Chem. Mater. 2015, 27, 7990–8000. [Google Scholar] [CrossRef]
- Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303–4418. [Google Scholar] [CrossRef]
- He, Y.-B.; Liu, M.; Huang, Z.-D.; Zhang, B.; Yu, Y.; Li, B.; Kang, F.; Kim, J.-K. Effect of solid electrolyte interface (SEI) film on cyclic performance of Li4Ti5O12 anodes for Li ion batteries. J. Power Sources 2013, 239, 269–276. [Google Scholar] [CrossRef]
- Aurbach, D. Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources 2000, 89, 206–218. [Google Scholar] [CrossRef]
- Momma, T.; Shiraishi, N.; Yoshizawa, A.; Osaka, T.; Gedanken, A.; Zhu, J.; Sominski, L. SnS2 anode for rechargeable lithium battery. J. Power Sources 2001, 97, 198–200. [Google Scholar] [CrossRef]
- Thangavel, R.; Samuthira Pandian, A.; Ramasamy, H.V.; Lee, Y.-S. Rapidly synthesized, few-layered pseudocapacitive SnS2 anode for high-power sodium ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 40187–40196. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.w.; Jang, J.t.; Park, S.w.; Kim, C.; Park, B.; Cheon, J. Two-dimensional SnS2 nanoplates with extraordinary high discharge capacity for lithium ion batteries. Adv. Mater. 2008, 20, 4269–4273. [Google Scholar] [CrossRef]
- Zai, J.; Wang, K.; Su, Y.; Qian, X.; Chen, J. High stability and superior rate capability of three-dimensional hierarchical SnS2 microspheres as anode material in lithium ion batteries. J. Power Sources 2011, 196, 3650–3654. [Google Scholar] [CrossRef]
- Wang, L.; Zhuo, L.; Yu, Y.; Zhao, F. High-rate performance of SnS2 nanoplates without carbon-coating as anode material for lithium ion batteries. Electrochim. Acta 2013, 112, 439–447. [Google Scholar] [CrossRef]
- Du, Y.; Yin, Z.; Rui, X.; Zeng, Z.; Wu, X.-J.; Liu, J.; Zhu, Y.; Zhu, J.; Huang, X.; Yan, Q. A facile, relative green, and inexpensive synthetic approach toward large-scale production of SnS2 nanoplates for high-performance lithium-ion batteries. Nanoscale 2013, 5, 1456–1459. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yin, X.; Hao, Q.; Zhang, M.; Li, L.; Chen, L.; Li, Q.; Wang, Y.; Wang, T. Chemical bath deposition of SnS2 nanowall arrays with improved electrochemical performance for lithium ion battery. Mater. Lett. 2010, 64, 2350–2353. [Google Scholar] [CrossRef]
- Zhong, H.; Yang, G.; Song, H.; Liao, Q.; Cui, H.; Shen, P.; Wang, C.-X. Vertically aligned graphene-like SnS2 ultrathin nanosheet arrays: Excellent energy storage, catalysis, photoconduction, and field-emitting performances. J. Phys. Chem. C 2012, 116, 9319–9326. [Google Scholar] [CrossRef]
- Zou, Y.; Wang, Y. Microwave solvothermal synthesis of flower-like SnS2 and SnO2 nanostructures as high-rate anodes for lithium ion batteries. Chem. Eng. J. 2013, 229, 183–189. [Google Scholar] [CrossRef]
- Guan, D.; Li, J.; Gao, X.; Xie, Y.; Yuan, C. Growth characteristics and influencing factors of 3D hierarchical flower-like SnS2 nanostructures and their superior lithium-ion intercalation performance. J. Alloys Compd. 2016, 658, 190–197. [Google Scholar] [CrossRef]
- Wu, Q.; Jiao, L.; Du, J.; Yang, J.; Guo, L.; Liu, Y.; Wang, Y.; Yuan, H. One-pot synthesis of three-dimensional SnS2 hierarchitectures as anode material for lithium-ion batteries. J. Power Sources 2013, 239, 89–93. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, H.; Pei, Y.; Chen, Y.; Zeng, Y.; Guo, H. Binder-free ultrathin SnS2 with superior reversibility of conversion reaction for high-rate lithium ion batteries. J. Alloys Compd. 2021, 873, 159623. [Google Scholar] [CrossRef]
- Qian, X.; Zhang, X.; Wang, C.; Wang, W.; Xie, Y.; Qian, Y. Solvent–thermal preparation of nanocrystalline tin chalcogenide. J. Phys. Chem. Solids 1999, 60, 415–417. [Google Scholar] [CrossRef]
- Su, H.; Xie, Y.; Xiong, Y.; Gao, P.; Qian, Y. Preparation and morphology control of rod-like nanocrystalline tin sulfides via a simple ethanol thermal route. J. Solid State Chem. 2001, 161, 190–196. [Google Scholar] [CrossRef]
- Ji, Y.; Zhang, H.; Ma, X.; Xu, J.; Yang, D. Single-crystalline SnS2 nano-belts fabricated by a novel hydrothermal method. J. Phys. Condens. Matter 2003, 15, L661. [Google Scholar] [CrossRef]
- Chen, D.; Shen, G.-Z.; Tang, K.-B.; Liu, Y.-K.; Qian, Y.-T. Aligned SnS2 nanotubes fabricated via a template-assisted solvent-relief process. Appl. Phys. A 2003, 77, 747–749. [Google Scholar] [CrossRef]
- Li, Q.; Ding, Y.; Wu, H.; Liu, X.; Qian, Y. Fabrication of layered nanocrystallites SnS and β-SnS2 via a mild solution route. Mater. Res. Bull. 2002, 37, 925–932. [Google Scholar] [CrossRef]
- Shen, G.; Chen, D.; Tang, K.; Huang, L.; Qian, Y.; Zhou, G. Novel polyol route to nanoscale tin sulfides flaky crystallines. Inorg. Chem. Commun. 2003, 6, 178–180. [Google Scholar] [CrossRef]
- Chen, D.; Shen, G.; Tang, K.; Lei, S.; Zheng, H.; Qian, Y. Microwave-assisted polyol synthesis of nanoscale SnSx (x = 1, 2) flakes. J. Cryst. Growth 2004, 260, 469–474. [Google Scholar] [CrossRef]
- Chen, X.; Lin, J.; Chen, Y.; Zhang, J.; Jiang, H.; Qiu, F.; Chu, R.; Guo, H. Binder-free and self-supported reduced graphene oxide coated Cu2SnS3/Carbon nanofibers for superior lithium storage. J. Alloys Compd. 2020, 842, 155619. [Google Scholar] [CrossRef]
- Nath, M.; Rao, C.N.R. New metal disulfide nanotubes. J. Am. Chem. Soc. 2001, 123, 4841–4842. [Google Scholar] [CrossRef] [PubMed]
- Mdleleni, M.M.; Hyeon, T.; Suslick, K.S. Sonochemical synthesis of nanostructured molybdenum sulfide. J. Am. Chem. Soc. 1998, 120, 6189–6190. [Google Scholar] [CrossRef]
- Zhou, X.; Jin, B.; Yang, M.; Schmuki, P. MoS2 Decorated on Different Metal Oxide Nanotubular Structures with a High Density of Reactive Sites for HER Reactions. In Proceedings of the ECS Meeting Abstracts, Seattle, WA, USA, 13–17 May 2018; p. 1709. [Google Scholar]
- Guo, Y.G.; Hu, J.S.; Wan, L.J. Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 2008, 20, 2878–2887. [Google Scholar] [CrossRef]
- Ma, J.; Lei, D.; Duan, X.; Li, Q.; Wang, T.; Cao, A.; Mao, Y.; Zheng, W. Designable fabrication of flower-like SnS2 aggregates with excellent performance in lithium-ion batteries. RSC Adv. 2012, 2, 3615–3617. [Google Scholar] [CrossRef]
- Hao, J.; Wang, Y.; Chi, C.; Wang, J.; Guo, Q.; Yang, Y.; Li, Y.; Liu, X.; Zhao, J. Enhanced storage capability by biomass-derived porous carbon for lithium-ion and sodium-ion battery anodes. Sustain. Energy Fuels 2018, 2, 2358–2365. [Google Scholar] [CrossRef]
- Hong, K.-l.; Qie, L.; Zeng, R.; Yi, Z.-q.; Zhang, W.; Wang, D.; Yin, W.; Wu, C.; Fan, Q.-j.; Zhang, W.-x. Biomass derived hard carbon used as a high performance anode material for sodium ion batteries. J. Mater. Chem. A 2014, 2, 12733–12738. [Google Scholar] [CrossRef]
- Wang, P.; Zhu, X.; Wang, Q.; Xu, X.; Zhou, X.; Bao, J. Kelp-derived hard carbons as advanced anode materials for sodium-ion batteries. J. Mater. Chem. A 2017, 5, 5761–5769. [Google Scholar] [CrossRef]
- Lu, P.; Sun, Y.; Xiang, H.; Liang, X.; Yu, Y. 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1702434. [Google Scholar] [CrossRef]
- Kim, H.S.; Chung, Y.H.; Kang, S.H.; Sung, Y.-E. Electrochemical behavior of carbon-coated SnS2 for use as the anode in lithium-ion batteries. Electrochim. Acta 2009, 54, 3606–3610. [Google Scholar] [CrossRef]
- Zhao, H.; Zeng, H.; Wu, Y.; Qi, W.; Zhang, S.; Li, B.; Huang, Y. Facile ball-milled synthesis of SnS2-carbon nanocomposites with superior lithium storage. Prog. Nat. Sci. Mater. Int. 2018, 28, 676–682. [Google Scholar] [CrossRef]
- Li, J.; Wu, P.; Lou, F.; Zhang, P.; Tang, Y.; Zhou, Y.; Lu, T. Mesoporous carbon anchored with SnS2 nanosheets as an advanced anode for lithium-ion batteries. Electrochim. Acta 2013, 111, 862–868. [Google Scholar] [CrossRef]
- He, Y.; Xu, Z. The status and development of treatment techniques of typical waste electrical and electronic equipment in China: A review. Waste Manag. Res. 2014, 32, 254–269. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Miao, C.; Zhang, M.; Xiao, W. Novel hierarchical structural SnS2 composite supported by biochar carbonized from chewed sugarcane as enhanced anodes for lithium ion batteries. Ionics 2020, 26, 1239–1247. [Google Scholar] [CrossRef]
- Zhai, C.; Du, N.; Zhang, H.; Yu, J.; Yang, D. Multiwalled carbon nanotubes anchored with SnS2 nanosheets as high-performance anode materials of lithium-ion batteries. ACS Appl. Mater. Interfaces 2011, 3, 4067–4074. [Google Scholar] [CrossRef]
- Chen, X.; Huang, Y.; Zhang, K.; Feng, X.; Wang, M. Synthesis and high-performance of carbonaceous polypyrrole nanotubes coated with SnS2 nanosheets anode materials for lithium ion batteries. Chem. Eng. J. 2017, 330, 470–479. [Google Scholar] [CrossRef]
- Wang, Y.; Zeng, H.C.; Lee, J.Y. Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers. Adv. Mater. 2006, 18, 645–649. [Google Scholar] [CrossRef]
- Shin, H.C.; Liu, M. Three-dimensional porous copper–tin alloy electrodes for rechargeable lithium batteries. Adv. Funct. Mater. 2005, 15, 582–586. [Google Scholar] [CrossRef]
- Lou, X.W.; Wang, Y.; Yuan, C.; Lee, J.Y.; Archer, L.A. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 2006, 18, 2325–2329. [Google Scholar] [CrossRef]
- Yuan, C.; Yang, L.; Hou, L.; Li, J.; Sun, Y.; Zhang, X.; Shen, L.; Lu, X.; Xiong, S.; Lou, X.W. Flexible hybrid paper made of monolayer Co3O4 microsphere arrays on rGO/CNTs and their application in electrochemical capacitors. Adv. Funct. Mater. 2012, 22, 2560–2566. [Google Scholar] [CrossRef]
- Han, K.; Liu, Z.; Ye, H.; Dai, F. Flexible self-standing graphene–Se@ CNT composite film as a binder-free cathode for rechargeable Li–Se batteries. J. Power Sources 2014, 263, 85–89. [Google Scholar] [CrossRef]
- Sun, H.; Ahmad, M.; Luo, J.; Shi, Y.; Shen, W.; Zhu, J. SnS2 nanoflakes decorated multiwalled carbon nanotubes as high performance anode materials for lithium-ion batteries. Mater. Res. Bull. 2014, 49, 319–324. [Google Scholar] [CrossRef]
- Mia, R.; Sultana, S. Fabrication and properties of silver nanowires (AgNWs) functionalized fabric. SN Appl. Sci. 2020, 2, 1–15. [Google Scholar] [CrossRef]
- Novák, P.; Müller, K.; Santhanam, K.; Haas, O. Electrochemically active polymers for rechargeable batteries. Chem. Rev. 1997, 97, 207–282. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, X.; Qian, Y.; Wu, H.; Kan, E. First-principles study on S and N doping graphene/SnS2 heterostructure for lithium-ion battery. Chem. Phys. Lett. 2021, 769, 138391. [Google Scholar] [CrossRef]
- Zhang, M.; Lei, D.; Yu, X.; Chen, L.; Li, Q.; Wang, Y.; Wang, T.; Cao, G. Graphene oxide oxidizes stannous ions to synthesize tin sulfide–graphene nanocomposites with small crystal size for high performance lithium ion batteries. J. Mater. Chem. 2012, 22, 23091–23097. [Google Scholar] [CrossRef]
- Yin, J.; Cao, H.; Zhou, Z.; Zhang, J.; Qu, M. SnS2@reduced graphene oxide nanocomposites as anode materials with high capacity for rechargeable lithium ion batteries. J. Mater. Chem. 2012, 22, 23963–23970. [Google Scholar] [CrossRef]
- Chang, K.; Wang, Z.; Huang, G.; Li, H.; Chen, W.; Lee, J.Y. Few-layer SnS2/graphene hybrid with exceptional electrochemical performance as lithium-ion battery anode. J. Power Sources 2012, 201, 259–266. [Google Scholar] [CrossRef]
- Wei, W.; Jia, F.-F.; Wang, K.-F.; Qu, P. SnS2/graphene nanocomposite: A high rate anode material for lithium ion battery. Chin. Chem. Lett. 2017, 28, 324–328. [Google Scholar] [CrossRef]
- Wang, H.-E.; Zhao, X.; Li, X.; Wang, Z.; Liu, C.; Lu, Z.; Zhang, W.; Cao, G. rGO/SnS 2/TiO2 heterostructured composite with dual-confinement for enhanced lithium-ion storage. J. Mater. Chem. A 2017, 5, 25056–25063. [Google Scholar] [CrossRef]
- Luo, B.; Fang, Y.; Wang, B.; Zhou, J.; Song, H.; Zhi, L. Two dimensional graphene–SnS2 hybrids with superior rate capability for lithium ion storage. Energy Environ. Sci. 2012, 5, 5226–5230. [Google Scholar] [CrossRef]
- Du, N.; Wu, X.; Zhai, C.; Zhang, H.; Yang, D. Large-scale synthesis and application of SnS2–graphene nanocomposites as anode materials for lithium-ion batteries with enhanced cyclic performance and reversible capacity. J. Alloys Compd. 2013, 580, 457–464. [Google Scholar] [CrossRef]
- Ren, Y.; Lv, W.; Wen, F.; Xiang, J.; Liu, Z. Microwave synthesis of SnS2 nanoflakes anchored graphene foam for flexible lithium-ion battery anodes with long cycling life. Mater. Lett. 2016, 174, 24–27. [Google Scholar] [CrossRef]
- Zhuo, L.; Wu, Y.; Wang, L.; Yu, Y.; Zhang, X.; Zhao, F. One-step hydrothermal synthesis of SnS2/graphene composites as anode material for highly efficient rechargeable lithium ion batteries. RSC Adv. 2012, 2, 5084–5087. [Google Scholar] [CrossRef]
- Xia, J.; Liu, L.; Xie, J.; Yan, H.; Yuan, Y.; Chen, M.; Huang, C.; Zhang, Y.; Nie, S.; Wang, X. Layer-by-layered SnS2/graphene hybrid nanosheets via ball-milling as promising anode materials for lithium ion batteries. Electrochim. Acta 2018, 269, 452–461. [Google Scholar] [CrossRef]
- Sathish, M.; Mitani, S.; Tomai, T.; Honma, I. Ultrathin SnS2 nanoparticles on graphene nanosheets: Synthesis, characterization, and Li-ion storage applications. J. Phys. Chem. C 2012, 116, 12475–12481. [Google Scholar] [CrossRef]
- Tang, H.; Qi, X.; Han, W.; Ren, L.; Liu, Y.; Wang, X.; Zhong, J. SnS2 nanoplates embedded in 3D interconnected graphene network as anode material with superior lithium storage performance. Appl. Surf. Sci. 2015, 355, 7–13. [Google Scholar] [CrossRef]
- Jiang, Y.; Song, D.; Wu, J.; Wang, Z.; Huang, S.; Xu, Y.; Chen, Z.; Zhao, B.; Zhang, J. Sandwich-like SnS2/graphene/SnS2 with expanded interlayer distance as high-rate lithium/sodium-ion battery anode materials. ACS Nano 2019, 13, 9100–9111. [Google Scholar] [CrossRef]
- Jiang, X.; Yang, X.; Zhu, Y.; Shen, J.; Fan, K.; Li, C. In situ assembly of graphene sheets-supported SnS2 nanoplates into 3D macroporous aerogels for high-performance lithium ion batteries. J. Power Sources 2013, 237, 178–186. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, Y.; Zhang, X.; Guo, J. 3D architecture constructed by 2D SnS2-graphene hybrids towards large and fast lithium storage. Mater. Lett. 2016, 185, 311–314. [Google Scholar] [CrossRef]
- Zhang, X.; Xiang, J.; Mu, C.; Wen, F.; Yuan, S.; Zhao, J.; Xu, D.; Su, C.; Liu, Z. SnS2 nanoflakes anchored graphene obtained by liquid phase exfoliation and MoS2 nanosheet composites as lithium and sodium battery anodes. Electrochim. Acta 2017, 227, 203–209. [Google Scholar] [CrossRef]
- Wang, Q.; Nie, Y.-X.; He, B.; Xing, L.-L.; Xue, X.-Y. SnS2–graphene nanocomposites as anodes of lithium-ion batteries. Solid State Sci. 2014, 31, 81–84. [Google Scholar] [CrossRef]
- Jiang, J.; Feng, Y.; Mahmood, N.; Liu, F.; Hou, Y. SnS2/graphene composites: Excellent anode materials for lithium ion battery and photolysis catalysts. Sci. Adv. Mater. 2013, 5, 1667–1675. [Google Scholar] [CrossRef]
- Liu, S.; Lu, X.; Xie, J.; Cao, G.; Zhu, T.; Zhao, X. Preferential c-axis orientation of ultrathin SnS2 nanoplates on graphene as high-performance anode for Li-ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 1588–1595. [Google Scholar] [CrossRef]
- Mei, L.; Xu, C.; Yang, T.; Ma, J.; Chen, L.; Li, Q.; Wang, T. Superior electrochemical performance of ultrasmall SnS2 nanocrystals decorated on flexible RGO in lithium-ion batteries. J. Mater. Chem. A 2013, 1, 8658–8664. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, B.; Zhang, J.; Yu, W.; Zheng, J.; Ding, Z.; Li, H.; Ming, L.; Bengono, D.; Chen, S. In-situ grown SnS2 nanosheets on rGO as an advanced anode material for lithium and sodium ion batteries. Front. Chem. 2018, 6, 629. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; He, H.; Song, Q.; Wang, B.; Yang, Q.-H.; Zhi, L. A novel SnS₂@ graphene nanocable network for high-performance lithium storage. RSC Adv. 2014, 4, 23372–23376. [Google Scholar] [CrossRef]
- Li, X.; Sun, X.; Gao, Z.; Hu, X.; Ling, R.; Cai, S.; Zheng, C.; Hu, W. A Simple One-Pot Strategy for Synthesizing Ultrafine SnS2 Nanoparticle/Graphene Composites as Anodes for Lithium/Sodium-Ion Batteries. ChemSusChem 2018, 11, 1549–1557. [Google Scholar] [CrossRef]
- Yao, J.; Shen, X.; Wang, B.; Liu, H.; Wang, G. In situ chemical synthesis of SnO2–graphene nanocomposite as anode materials for lithium-ion batteries. Electrochem. Commun. 2009, 11, 1849–1852. [Google Scholar] [CrossRef]
- Zhao, B.; Song, D.; Ding, Y.; Li, W.; Wang, Z.; Jiang, Y.; Zhang, J. Size-tunable SnS2 nanoparticles assembled on graphene as anodes for high performance lithium/sodium-ion batteries. Electrochim. Acta 2020, 354, 136730. [Google Scholar] [CrossRef]
- Wu, Y.-Q.; Yang, Y.; Pu, H.; Gao, R.-Z.; Meng, W.-J.; Yang, H.-X.; Zhao, D.-L. SnS2 nanoparticle-integrated graphene nanosheets as high-performance and cycle-stable anodes for lithium and sodium storage. J. Alloys Compd. 2020, 822, 153686. [Google Scholar] [CrossRef]
- Cheng, M.; Hu, Q.; Du, C.; Li, J.; Liao, W.; Li, J.; Huang, X. An ionic liquid-assisted route towards SnS2 nanoparticles anchored on reduced graphene oxide for lithium-ion battery anode. J. Solid State Chem. 2021, 296, 122022. [Google Scholar] [CrossRef]
- Zhong, Y.; Mahmud, S.; He, Z.; Yang, Y.; Zhang, Z.; Guo, F.; Chen, Z.; Xiong, Z.; Zhao, Y. Graphene oxide modified membrane for highly efficient wastewater treatment by dynamic combination of nanofiltration and catalysis. J. Hazard. Mater. 2020, 397, 122774. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.T.; Al Mamun, M.A.; Rony, M.; Anchang, X.; Rashid, M.M. Effect of Different Solvent Systems on Fiber Morphology and Property of Electrospun PCL Nano Fibers. Tekst. Mühendis 2021, 28, 61–76. [Google Scholar] [CrossRef]
- Li, Y.-F.; Wang, S.-G.; Shi, Y.-H.; Fan, C.-Y.; Lin, J.; Wu, X.-L.; Sun, H.-Z.; Zhang, J.-P.; Xie, H.-M. In situ chemically encapsulated and controlled SnS2 nanocrystal composites for durable lithium/sodium-ion batteries. Dalton Trans. 2020, 49, 15874–15882. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Sheng, K.; Li, C.; Shi, G. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 2010, 4, 4324–4330. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Li, Y.; Huang, L.; Li, C.; Shi, G. Three-dimensional porous graphene/polyaniline composites for high-rate electrochemical capacitors. J. Mater. Chem. A 2014, 2, 17489–17494. [Google Scholar] [CrossRef]
- Tang, Z.; Shen, S.; Zhuang, J.; Wang, X. Noble-metal-promoted three-dimensional macroassembly of single-layered graphene oxide. Angew. Chem. 2010, 122, 4707–4711. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, Y.; Zhang, Y.; Fan, W.; Liu, T. Three-dimensional nanoporous graphene-carbon nanotube hybrid frameworks for confinement of SnS2 nanosheets: Flexible and binder-free papers with highly reversible lithium storage. ACS Appl. Mater. Interfaces 2015, 7, 27823–27830. [Google Scholar] [CrossRef]
Materials | Morphology | Size/Thickness (nm) | Initial CE | Specific Capacity (mAh/g) | Rate Performance (mAh/g) | Ref. |
---|---|---|---|---|---|---|
SnS2 | Nanoparticle | N/A | <50% | 400/50 mA/g, 25th cycle | N/A | [83] |
SnS2 | Nanoparticle | 30 | N/A | 404/50 mA/g, 30th cycle | N/A | [67] |
SnS2 | Nanosheet | 2–26 | 43% | 500/323 mA/g, 50th cycle | ~368/3.2 A/g | [50] |
SnS2 (3D) | Microsphere | 10 | 34% | 570/650 mA/g, 100th cycle | 264/6.5 A/g | [95] |
SnS2 (2D) | Nanoplate | 10 | 36% | 521/100 mA/g, 50th cycle | 340/3 A/g | [96] |
SnS2 (2D) | Nanoplate | 35 | 73% | 935/200 mA/g, 30th cycle | 370/5 A/g | [97] |
SnS2 (2D) | Nanoplate | 16 | ~50% | 583/323 mA/g, 30th cycle | N/A | [94] |
SnS2 (NW) | Nanowall | <50 | 36% | 700/0.3 C, 40th cycle | 400/1.2 C | [98] |
SnS2 | Nanosheet | 1–3 | ~44% | 900/1 C, 10th cycle | 360/5 C | [99] |
SnS2 (3D) | Nanoflower | 5–10 | ~32% | 502/200 mA/g, 50th cycle | N/A | [66] |
SnS2 (3D) | Nanoflower | 30 | ~30% | 519/100 mA/g, 50th cycle | 297/0.8 A/g | [101] |
SnS2 (3D) | Nanoflower | 50 | N/A | 549/100 mA/g, 100th cycle | 210/1 A/g | [102] |
Materials | Morphology | Size/Thickness nm | Initial CE | Specific Capacity (mAh/g) | Rate Performance (mAh/g) | Ref. |
---|---|---|---|---|---|---|
C-SnS2 | Nanoparticle | 80 | 41% | 668/50 mA/g, 50th cycle | 600/645 mA/g | [121] |
SnS2/C-x | Nanoparticle | 60 | 80.8% | 540/100 mA/g, 100th cycle | 300/2 A/g | [122] |
MC-SnS2 NS | Nanoplate | 5–15 | N/A | 428.8/100 mA/g, 50th cycle | 150/1 A/g | [123] |
C-SnS2 | Nanoplate | 75 | 78% | 800/500 mA/g, 300th cycle | 796/2 A/g | [56] |
SnS2@MWCNT | Nanosheet | 80–100 | 37.2% | 420/100 mA/g, 50th cycle | 310/500 mA/g | [126] |
SnS2@MWCNT | Nanoflake | N/A | 37% | 510/100 mA/g, 50th cycle | 329/500 mA/g | [133] |
CPN@SnS2 | Nanosheet | N/A | 89.8% | 699.2/60 mA/g, 100th cycle | 553.5/1.5 A/g | [127] |
Materials | Morphology | Size/Thickness nm | Initial CE | Specific Capacity (mAh/g) | Rate Performance (mAh/g) | Ref. |
---|---|---|---|---|---|---|
G/SnS2 | Nanoparticle | 30 | 29.6% | 351/200 mA/g, 50th cycle | N/A | [54] |
RGO-SnS2 | Nanoparticle | 100 | 63.44% | 405/0.5 C, 80th cycle | 200/5 C | [53] |
SnSx-G,1 < x < 2 | Nanoparticle | 5 | 69% | 860/0.2 C, 150th cycle | 450/2 C | [137] |
SnS2/graphene | Nanocrystal | 3–5 | 71.5% | 564/0.2 C, 60th cycle | 242/5 C | [138] |
SnS2-graphene | Nanoparticle | 5–20 | 63.2% | 903/200 mA/g, 50th cycle | 500/1.6 A/g | [143] |
SnS2/GNS | Nanoparticle | 2–3 | ~69.9% | 577/59.1 mA/g, 50th cycle | 200/591 mA/g | [147] |
SnS2/RGO | Nanocrystal | 10–40 | 35% | 644/500 mA/g, 50th cycle | 430/1 A/g | [154] |
SnS2/RGO | Nanocrystal | 3–4 | 78.7% | 1034/0.1C, 200th cycle | 415/5 C | [156] |
SnS2 NP/GNs | Nanoparticle | 4 | 49% | 631.4/100 mA/g, 150th cycle | 378/20 A/g | [140] |
RGO/SnS2/TiO2 | Nanoparticle | ~10 | 64.3% | 485/0.5 A/g, 200th cycle | 303/2 A/g | [141] |
SnS2/graphene | Nanoparticle | 3 | 74.4% | 1480/0.2 A/g, 50th cycle | 666/10 A/g | [159] |
G-SnS2 | Nanoplate | 7 | 38% | 650/50 mA/g, 30th cycle | 230/6.4 A/g | [142] |
SnS2/graphene | Nanoplate | 2–5 | 69% | 704/387 mA/g, 100th cycle | 303/6.45 A/g | [155] |
SnS2-G | Nanoplate | ~3.6 | 73% | 826/500 mA/g, 200th cycle | 498/8 A/g | [151] |
SnS2/G | Nanoplate | N/A | 42.4% | 920/100 mA/g, 50th cycle | 600/1 A/g | [139] |
SnS2/GAs | Nanoplate | 200 | 37% | 656/50 mA/g, 30th cycle | 240/1 A/g | [150] |
SnS2/graphene | Nanoplate | 300 | 69% | 1060/100 mA/g, 200th cycle | 670/2 A/g | [148] |
SnS2/G-CNT | Nanosheet | 10–30 | 63% | 1017/100 mA/g, 100th cycle | 634.6/2 A/g | [170] |
SnS2/GNS | Nanosheet | 20–25 | 83.7% | 1114/100 mA/g, 30th cycle | 870/1 A/g | [145] |
L-SnS2/G | Nanosheet | 5 | 74.16% | 773/200 mA/g, 180th cycle | 567/2 A/g | [146] |
SnS2-graphene | Nanosheet | N/A | ~71% | 570/0.2 C, 30th cycle | N/A | [153] |
SnS2/RGO | Nanosheet | 10 | 55.6% | 514/1.2 A/g, 300th cycle | 447/8 C | [157] |
SnS2/RGO/SnS2 | Nanosheet | 4.43 | 81% | 1357/100 mA/g, 200th cycle | 844/10 A/g | [151] |
SnS2@GT | Nanorod | 10 | 57.3% | 720/0.2 A/g, 350th cycle | 247/5 A/g | [158] |
SnS2@GF | Nanoflakes | N/A | 69.6% | 818.4/1 A/g, 500th cycle | 160.9 /5 A/g | [144] |
GNS@MoS2@SnS2 | Nanoflakes | 20 | 66% | 743/80 mA/g, 100th cycle | 710/320 mA/g | [152] |
SnS2NF@RGO | Nanoflower | N/A | ~78% | 525/615.5 mA/g, 360th cycle | 412.5/2462 mA/g | [49] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmud, S.T.; Mia, R.; Mahmud, S.; Sha, S.; Zhang, R.; Deng, Z.; Yanilmaz, M.; Luo, L.; Zhu, J. Recent Developments of Tin (II) Sulfide/Carbon Composites for Achieving High-Performance Lithium Ion Batteries: A Critical Review. Nanomaterials 2022, 12, 1246. https://doi.org/10.3390/nano12081246
Mahmud ST, Mia R, Mahmud S, Sha S, Zhang R, Deng Z, Yanilmaz M, Luo L, Zhu J. Recent Developments of Tin (II) Sulfide/Carbon Composites for Achieving High-Performance Lithium Ion Batteries: A Critical Review. Nanomaterials. 2022; 12(8):1246. https://doi.org/10.3390/nano12081246
Chicago/Turabian StyleMahmud, Sharif Tasnim, Rony Mia, Sakil Mahmud, Sha Sha, Ruquan Zhang, Zhongmin Deng, Meltem Yanilmaz, Lei Luo, and Jiadeng Zhu. 2022. "Recent Developments of Tin (II) Sulfide/Carbon Composites for Achieving High-Performance Lithium Ion Batteries: A Critical Review" Nanomaterials 12, no. 8: 1246. https://doi.org/10.3390/nano12081246
APA StyleMahmud, S. T., Mia, R., Mahmud, S., Sha, S., Zhang, R., Deng, Z., Yanilmaz, M., Luo, L., & Zhu, J. (2022). Recent Developments of Tin (II) Sulfide/Carbon Composites for Achieving High-Performance Lithium Ion Batteries: A Critical Review. Nanomaterials, 12(8), 1246. https://doi.org/10.3390/nano12081246