A Fluorescent “Turn-On” Clutch Probe for Plasma Cell-Free DNA Identification from Lung Cancer Patients
Abstract
:1. Introduction
2. Experimental Sections
2.1. Materials and Instruments
2.2. Synthesis of the GSH-Modified CdTe QDs (GSH-CdTe QDs)
- x: GSH-CdTe QDs;
- s: Rhodamine 6G;
- : The quantum yield of GSH-CdTe QDs;
- : The quantum yield of the reference substance rhodamine 6G;
- and : The ratios of the respective integrated area of fluorescence to the maximum absorbance at the excitation wavelength of GSH-CdTe QDs and the reference substance rhodamine 6G;
- and : The refractive index of GSH-CdTe QDs and reference substance rhodamine 6G.
2.3. Preparation of the QDs-Ru and Ru-dsDNA Complexes
2.4. Denaturation of the dsDNA
2.5. Biomolecular Interference Detection
2.6. Detection of Clinical Samples
3. Results and Discussion
3.1. Preparation and Characterization of the Water-Dispersible GSH-CdTe QDs
3.2. Fluorescent “Turn-On” Properties of the Clutch Probe by Adding dsDNA
3.3. Fluorescent “Turn-On” Properties of the Clutch Probe by Successively Introducing ssDNA and Its Corresponding Complementary ssDNA
3.4. Detection of Clinic Plasma cfDNA from Lung Cancer Patients
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cline, B.; Delahunty, I.; Xie, J. Nanoparticles to mediate X-ray-induced photodynamic therapy and Cherenkov radiation photodynamic therapy. WIREs Nanomed. Nanobiotechnol. 2019, 11, e1541. [Google Scholar] [CrossRef] [PubMed]
- Fitzmaurice, C.; Abate, D.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdel-Rahman, O.; Abdelalim, A.; Abdoli, A.; Abdollahpour, I.; Abdulle, A.S.; et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived with Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol. 2019, 5, 1749–1768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tu, L.; Liao, Z.; Luo, Z.; Wu, Y.-L.; Herrmann, A.; Huo, S. Ultrasound-controlled drug release and drug activation for cancer therapy. Exploration 2021, 1, 20210023. [Google Scholar] [CrossRef]
- Fang, F.; Zhu, L.; Li, M.; Song, Y.; Sun, M.; Zhao, D.; Zhang, J. Thermally Activated Delayed Fluorescence Material: An Emerging Class of Metal-Free Luminophores for Biomedical Applications. Adv. Sci. 2021, 8, 2102970. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; Yuan, Y.; Wan, Y.; Li, J.; Song, Y.; Chen, W.-C.; Zhao, D.; Chi, Y.; Li, M.; Lee, C.-S.; et al. Near-Infrared Thermally Activated Delayed Fluorescence Nanoparticle: A Metal-Free Photosensitizer for Two-Photon-Activated Photodynamic Therapy at the Cell and Small Animal Level. Small 2022, 18, 2106215. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, F.M.; Mair, F.S.; Anderson, W.; Armory, P.; Briggs, A.; Chew, C.; Dorward, A.; Haughney, J.; Hogarth, F.; Kendrick, D.; et al. Earlier diagnosis of lung cancer in a randomised trial of an autoantibody blood test followed by imaging. Eur. Respir. J. 2020, 57, 2000670. [Google Scholar] [CrossRef]
- Lin, D.; Wu, Q.; Qiu, S.; Chen, G.; Feng, S.; Chen, R.; Zeng, H. Label-free liquid biopsy based on blood circulating DNA detection using SERS-based nanotechnology for nasopharyngeal cancer screening. Nanomedicine 2019, 22, 102100. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, L.; Zhao, J.; Jalalah, M.; Al-Assiri, M.S.; Harraz, F.A.; Cao, Y. Proximity-constructed bifunctional DNA probes for identification of stem-like biomarker in breast cancer. Sens. Actuators B Chem. 2021, 328, 129044. [Google Scholar] [CrossRef]
- Hamfjord, J.; Guren, T.K.; Dajani, O.; Johansen, J.S.; Glimelius, B.; Sorbye, H.; Pfeiffer, P.; Lingjærde, O.C.; Tveit, K.M.; Kure, E.H.; et al. Total circulating cell-free DNA as a prognostic biomarker in metastatic colorectal cancer before first-line oxaliplatin-based chemotherapy. Ann. Oncol. 2019, 30, 1088–1095. [Google Scholar] [CrossRef] [Green Version]
- Haseltine, J.; Offin, M.; Myers, M.L.; Makhnin, A.; Adamski, A.; Li, H.; Li, M.; Shaffer, T.; Henderson, S.; Shen, R.; et al. Tumor volumetric correlation with plasma cell free DNA (cfDNA) mutation detection in metastatic lung cancers. J. Clin. Oncol. 2019, 37, e14610. [Google Scholar] [CrossRef]
- Luo, H.; Wei, W.; Ye, Z.; Zheng, J.; Xu, R.-H. Liquid Biopsy of Methylation Biomarkers in Cell-Free DNA. Trends Mol. Med. 2021, 27, 482–500. [Google Scholar] [CrossRef] [PubMed]
- Barault, L.; Amatu, A.; Siravegna, G.; Ponzetti, A.; Moran, S.; Cassingena, A.; Mussolin, B.; Falcomatà, C.; Binder, A.M.; Cristiano, C.; et al. Discovery of methylated circulating DNA biomarkers for comprehensive non-invasive monitoring of treatment response in metastatic colorectal cancer. Gut 2017, 67, 1995–2005. [Google Scholar] [CrossRef] [PubMed]
- Warton, K.; Samimi, G. Methylation of cell-free circulating DNA in the diagnosis of cancer. Front. Mol. Biosci. 2015, 2, 13. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Zhang, S.; Zhou, D.C.; Wang, D.; He, X.; Yuan, D.; Li, R.; He, J.; Duan, X.; Wendl, M.C.; et al. MSIsensor-ct: Microsatellite instability detection using cfDNA sequencing data. Brief. Bioinform. 2021, 22, bbaa402. [Google Scholar] [CrossRef] [PubMed]
- Gainetdinov, I.V.; Kapitskaya, K.Y.; Rykova, E.Y.; Ponomaryova, A.A.; Cherdyntseva, N.V.; Vlassov, V.V.; Laktionov, P.P.; Azhikina, T.L. Hypomethylation of human-specific family of LINE-1 retrotransposons in circulating DNA of lung cancer patients. Lung Cancer 2016, 99, 127–130. [Google Scholar] [CrossRef] [PubMed]
- Howell, J.A.; Khan, S.A.; Knapp, S.; Thursz, M.R.; Sharma, R. The clinical role of circulating free tumor DNA in gastrointestinal malignancy. Transl. Res. 2016, 183, 137–154. [Google Scholar] [CrossRef]
- Caneira, C.R.F.; Soares, R.R.G.; Pinto, I.F.; Mueller-Landau, H.S.; Azevedo, A.M.; Chu, V.; Conde, J.P. Development of a rapid bead-based microfluidic platform for DNA hybridization using single- and multi-mode interactions for probe immobilization. Sens. Actuators B Chem. 2019, 286, 328–336. [Google Scholar] [CrossRef]
- Santos, E.S.; Talebi, T.N.; Raez, L.E.; Quintero, C.A.; Walker, G.; Farias, M.; Ramachandran, K.; Gordian, E.; Gomez, J.; Singal, R. Free circulating DNA by RT-PCR as predictor for chemotherapy response in newly diagnosed patients (pts) with advanced non-small cell lung cancer (NSCLC). J. Clin. Oncol. 2010, 25, e18107. [Google Scholar] [CrossRef]
- Das, J.; Ivanov, I.; Sargent, E.H.; Kelley, S.O. DNA Clutch Probes for Circulating Tumor DNA Analysis. J. Am. Chem. Soc. 2016, 138, 11009–11016. [Google Scholar] [CrossRef]
- Heitzer, E.; Haque, I.S.; Roberts, C.E.S.; Speicher, M.R. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat. Rev. Genet. 2018, 20, 71–88. [Google Scholar] [CrossRef]
- Ahlquist, D.A. Universal cancer screening: Revolutionary, rational, and realizable. NPJ Precis. Oncol. 2018, 2, 23. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Xie, W.; Liu, W.; Wang, L.; Wang, D.; Tang, B.Z. Graphene Oxide Based Fluorescent DNA Aptasensor for Liver Cancer Diagnosis and Therapy. Adv. Funct. Mater. 2021, 31, 2102645. [Google Scholar] [CrossRef]
- Du, Y.; Lai, Y.; Liu, J.Y.; Diao, J. Epigenetic Quantification of DNA 5-Hydroxymethylcytosine Using DNA Hybridization-Based Single-Molecule Immunofluorescent Imaging. Small Methods 2021, 5, 2100061. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Mao, G.; Du, M.; Tian, S.; Niu, L.; Ji, X.; He, Z. A fluorometric turn-on aptasensor for mucin 1 based on signal amplification via a hybridization chain reaction and the interaction between a luminescent ruthenium(II) complex and CdZnTeS quantum dots. Mikrochim. Acta Mater. 2019, 186, 233. [Google Scholar] [CrossRef]
- Miao, Y.; Lv, J.; Yan, G. Hybrid detection of target sequence DNA based on phosphorescence resonance energy transfer. Biosens. Bioelectron. 2017, 94, 263–270. [Google Scholar] [CrossRef]
- Korram, J.; Dewangan, L.; Karbhal, I.; Nagwanshi, R.; Vaishanav, S.K.; Ghosh, K.K.; Satnami, M.L. CdTe QD-based inhibition and reactivation assay of acetylcholinesterase for the detection of organophosphorus pesticides. RSC Adv. 2020, 10, 24190–24202. [Google Scholar] [CrossRef]
- Yong, K.-T.; Law, W.-C.; Roy, I.; Jing, Z.; Huang, H.; Swihart, M.T.; Prasad, P.N. Aqueous phase synthesis of CdTe quantum dots for biophotonics. J. Biophotonics 2011, 4, 9–20. [Google Scholar] [CrossRef]
- Moulick, A.; Milosavljevic, V.; Vlachova, J.; Podgajny, R.; Hynek, D.; Kopel, P.; Adam, V. Using CdTe/ZnSe core/shell quantum dots to detect DNA and damage to DNA. Int. J. Nanomed. 2017, 12, 1277–1291. [Google Scholar] [CrossRef] [Green Version]
- Das, P.; Ganguly, S.; Margel, S.; Gedanken, A. Tailor made magnetic nanolights: Fabrication to cancer theranostics applications. Nanoscale Adv. 2021, 3, 6762–6796. [Google Scholar] [CrossRef]
- Wang, F.-T.; Wang, L.-N.; Xu, J.; Huang, K.-J.; Wu, X. Synthesis and modification of carbon dots for advanced biosensing application. Analyst 2021, 146, 4418–4435. [Google Scholar] [CrossRef]
- Das, P.; Ganguly, S.; Margel, S.; Gedanken, A. Immobilization of Heteroatom-Doped Carbon Dots onto Nonpolar Plastics for Antifogging, Antioxidant, and Food Monitoring Applications. Langmuir 2021, 37, 3508–3520. [Google Scholar] [CrossRef] [PubMed]
- Park, J.C.; Choi, S.Y.; Yang, M.Y.; Nan, L.; Na, H.; Lee, H.N.; Chung, H.J.; Hong, C.A.; Nam, Y.S. Subnanomolar FRET-Based DNA Assay Using Thermally Stable Phosphorothioated DNA-Functionalized Quantum Dots. ACS Appl. Mater. Interfaces 2019, 11, 33525–33534. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, D.; Liu, X.; Qiu, Y.; Peng, X.; Huang, L.; Wena, H.; Hu, J. One-pot synthesis of highly luminescent N-acetyl-l-cysteine-capped CdTe quantum dots and their size effect on the detection of glutathione. New J. Chem. 2018, 42, 15743–15749. [Google Scholar] [CrossRef]
- Liu, Y.-F.; Yu, J.-S. Selective synthesis of CdTe and high luminescence CdTe/CdS quantum dots: The effect of ligands. J. Colloid Interface Sci. 2009, 333, 690–698. [Google Scholar] [CrossRef]
- Zhang, Z.; Rogers, C.R.; Weiss, E.A. Energy Transfer from CdS QDs to a Photogenerated Pd Complex Enhances the Rate and Selectivity of a Pd-Photocatalyzed Heck Reaction. J. Am. Chem. Soc. 2020, 142, 498–501. [Google Scholar] [CrossRef]
- Medintz, I.L.; Pons, T.; Trammell, S.A.; Grimes, A.F.; English, D.S.; Blanco-Canosa, J.B.; Dawson, P.E.; Mattoussi, H. Interactions between Redox Complexes and Semiconductor Quantum Dots Coupled via a Peptide Bridge. J. Am. Chem. Soc. 2008, 130, 16745–16756. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Li, Q.; Li, H.; Li, F. pH-Response Quantum Dots with Orange-Red Emission for Monitoring the Residue, Distribution, and Variation of an Organophosphorus Pesticide in an Agricultural Crop. J. Agric. Food Chem. 2021, 69, 2689–2696. [Google Scholar] [CrossRef]
- Jia, F.; Wang, S.; Man, Y.; Kumar, P.; Liu, B. Recent Developments in the Interactions of Classic Intercalated Ruthenium Compounds: [Ru(bpy)₂dppz]2+ and [Ru(phen)₂dppz]2+ with a DNA Molecule. Molecules 2019, 24, 769. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Hu, Q.; Wu, S.; Chen, F. Selective determination of DNA based on the fluorescence recovery of carbon dots quenched by Ru(bpy)2(dppz)2+. Talanta 2020, 217, 121103. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, D.; Zhao, B.; Li, C.; Wang, X.; Xu, L.; Long, T. Ratiometric Fluorescence Detection of DNA Based on the Inner Filter Effect of Ru(bpy)2(dppx)2+ toward Silicon Nanodots. ACS Omega 2021, 6, 857–862. [Google Scholar] [CrossRef]
- Ling, L.-S.; Song, G.-W.; He, Z.-K.; Liu, H.-Z.; Zeng, Y.-E. A Novel Method to Determine DNA by Use of Molecular “Light Switch” of Ru(phen)2(dppz)2+. Microchem. J. 1999, 63, 356–364. [Google Scholar] [CrossRef]
- Zhao, D.; Chan, W.H.; He, Z.; Qiu, T. Quantum Dot−Ruthenium Complex Dyads: Recognition of Double-Strand DNA through Dual-Color Fluorescence Detection. Anal. Chem. 2009, 8, 3537–3543. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Zhou, Q.; Jiao, Z.; Zhao, H.; Huang, C.-H.; Zhu, B.-Z.; Su, H. Ultrafast excited state dynamics and light-switching of [Ru(phen)2(dppz)]2+ in G-quadruplex DNA. Chem. Comm. 2021, 4, 68. [Google Scholar] [CrossRef]
- Amintas, S.; Vendrely, V.; Dupin, C.; Buscail, L.; Laurent, C.; Bournet, B.; Merlio, J.-P.; Bedel, A.; Moreau-Gaudry, F.; Boutin, J.; et al. Next-Generation Cancer Biomarkers: Extracellular Vesicle DNA as a Circulating Surrogate of Tumor DNA. Front. Cell Dev. Biol. 2021, 8, 1806. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.; Yang, W.; Wang, Q.; Luo, F.; Guo, L.; Qiu, B.; Lin, Z.; Yang, H. Homogeneous and label-free electrochemiluminescence aptasensor based on the difference of electrostatic interaction and exonuclease-assisted target recycling amplification. Biosens. Bioelectron. 2018, 105, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Bian, X.; Chen, L.; Guo, L.; Qiu, B.; Lin, Z. Highly Sensitive Homogeneous Electrochemiluminescence Biosensor for Alkaline Phosphatase Detection Based on Click Chemistry-Triggered Branched Hybridization Chain Reaction. Anal. Chem. 2021, 93, 10351–10357. [Google Scholar] [CrossRef]
- Topkaya, S.N.; Serindere, G.; Ozder, M. Determination of DNA Hypermethylation Using Anti-cancer Drug-Temozolomide. Electroanalysis 2015, 28, 1052–1059. [Google Scholar] [CrossRef]
- Yan, X.-L.; Xue, X.-X.; Deng, X.-M.; Jian, Y.-T.; Luo, J.; Jiang, M.-M.; Zheng, X.-J. Chemiluminescence strategy induced by HRP-sandwich structure based on strand displacement for sensitive detection of DNA methyltransferase. Microchem. J. 2020, 158, 105183. [Google Scholar] [CrossRef]
- Iqbal, H.; Yang, T.; Li, T.; Zhang, M.; Ke, H.; Ding, D.; Deng, Y.; Chen, H. Serum protein-based nanoparticles for cancer diagnosis and treatment. J. Control. Release 2020, 329, 997–1022. [Google Scholar] [CrossRef]
- Bergant, M.; Ščančar, J.; Milačič, R. Kinetics of interaction of Cr(VI) and Cr(III) with serum constituents and detection of Cr species in human serum at physiological concentration levels. Talanta 2020, 218, 121199. [Google Scholar] [CrossRef]
- Goetsch, H.E.; Zhao, L.; Gnegy, M.; Imperiale, M.J.; Love, N.G.; Wigginton, K.R. Fate of the Urinary Tract Virus BK Human Polyomavirus in Source-Separated Urine. Appl. Environ. Microbiol. 2018, 84, e02374-17. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Gan, N.; Wu, Y.; Hu, F.; Lin, J.; Cao, Y.; Wu, D. Multiplex detection of quality indicator molecule targets in urine using programmable hairpin probes based on a simple double-T type microchip electrophoresis platform and isothermal polymerase-catalyzed target recycling. Analyst 2018, 143, 2696–2704. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; Asuquo, I.; Hong, L.; Gao, J.; Dong, Z.; Pang, L.; Jiang, T.; Meng, M.; Fan, J.; Wen, J.; et al. Catalog of Lung Cancer Gene Mutations Among Chinese Patients. Front. Oncol. 2020, 10, 1251. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, H.; Zhang, W.; Zhang, H.; Chen, H.; Zhou, G.; Gu, Y. Endonuclease-assisted hydrogel bead array for digital analysis of circulating tumor DNA methylation. Sens. Actuators B Chem. 2019, 305, 127381. [Google Scholar] [CrossRef]
- Ohira, T.; Sakai, K.; Matsubayashi, J.; Kajiwara, N.; Kakihana, M.; Hagiwara, M.; Hibi, M.; Yoshida, K.; Maeda, J.; Ohtani, K.; et al. Tumor volume determines the feasibility of cell-free DNA sequencing for mutation detection in non-small cell lung cancer. Cancer Sci. 2016, 107, 1660–1666. [Google Scholar] [CrossRef] [PubMed]
- Pécuchet, N.; Zonta, E.; Didelot, A.; Combe, P.; Thibault, C.; Gibault, L.; Lours, C.; Rozenholc, Y.; Taly, V.; Laurent-Puig, P.; et al. Base-Position Error Rate Analysis of Next-Generation Sequencing Applied to Circulating Tumor DNA in Non-Small Cell Lung Cancer: A Prospective Study. PLoS Med. 2016, 13, e1002199. [Google Scholar] [CrossRef] [PubMed]
0.5 ng/mL | 5 ng/mL | 10 ng/mL | 20 ng/mL | 40 ng/mL | 60 ng/mL | 80 ng/mL | |
---|---|---|---|---|---|---|---|
Short dsDNA (33 bp) | 151,900 ± 6883.5 | 157,790 ± 3680.9 | 173,570 ± 9251.5 | 209,880 ± 5014.1 | 273,980 ± 8090.8 | 323,070 ± 4491.8 | 424,740 ± 5339.4 |
Long plasmid dsDNA (6932 bp) | 151,180 ± 7485.4 | 151,790 ± 5923.3 | 171,740 ± 5895.5 | 203,090 ± 7346.2 | 273,090 ± 5808.3 | 306,078 ± 3851.5 | 424,190 ± 3246.2 |
Sample Number | Fluorescence Intensity of Plasma Samples from Lung Cancer Patients (Value CP) | Mean Fluorescence Intensity of 10 Plasma Samples from Heathy Person (Value HP) | (Value CP-Value HP)/Value HP (%) | Significance Test (p) |
---|---|---|---|---|
1 | 2,331,856.66 | 2,393,280.33 | −2.56651 | / |
2 | 3,427,146.66 | / | 43.19871 | *** |
3 | 2,971,850 | / | 24.17476 | ** |
4 | 2,844,531 | / | 18.8549 | ** |
5 | 2,932,493.33 | / | 22.53029 | ** |
6 | 2,265,600 | / | −5.33495 | / |
7 | 2,274,700 | / | −4.95472 | / |
8 | 2,714,736.66 | / | 13.43162 | * |
9 | 2,108,196.66 | / | −11.9118 | / |
10 | 2,309,500 | / | −3.50065 | / |
11 | 3,049,036.66 | / | 27.3999 | *** |
12 | 2,250,156.66 | / | −5.98023 | / |
13 | 2,708,510 | / | 13.17145 | * |
14 | 3,096,290 | / | 29.37431 | *** |
15 | 2,266,550 | / | −5.29526 | / |
16 | 2,265,250 | / | −5.34958 | / |
17 | 2,036,547 | / | −14.9056 | / |
18 | 2,755,478.66 | / | 15.13397 | * |
19 | 2,318,096.66 | / | −3.14145 | / |
20 | 2,325,440 | / | −2.83462 | / |
Sample Number | Fluorescence Intensity of Plasma Samples from Lung Cancer Patients (Value CP) | Mean Fluorescence Intensity of 10 Plasma Samples from Heathy Person (Value HP) | (Value CP-Value HP)/Value HP (%) | Significance Test (p) |
---|---|---|---|---|
1 | 2,285,445.66 | 2,205,912.698 | 3.605445 | / |
2 | 2,255,669.33 | / | 2.255603 | / |
3 | 2,011,476 | / | −8.81434 | / |
4 | 2,698,380 | / | 22.32488 | *** |
5 | 2,232,551 | / | 1.207586 | / |
6 | 2,144,325 | / | −2.79194 | / |
7 | 2,210,035 | / | 0.186875 | / |
8 | 2,019,885.33 | / | −8.43312 | / |
9 | 1,977,845 | / | −10.3389 | / |
10 | 2,144,789.66 | / | −2.77087 | / |
11 | 2,254,776 | / | 2.215106 | / |
12 | 2,155,698 | / | −2.27637 | / |
13 | 2,144,478.66 | / | −2.78497 | / |
14 | 2,236,698.33 | / | 1.395596 | / |
15 | 2,166,458 | / | −1.78859 | / |
16 | 2,215,936.33 | / | 0.454398 | / |
17 | 2,622,463.33 | / | 18.88337 | *** |
18 | 2,780,916.66 | / | 26.06649 | *** |
19 | 2,155,638 | / | −2.27909 | / |
20 | 2,286,542 | / | 3.655145 | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.; Zhao, D.; Xu, L.; Sun, M.; Song, Y.; Liu, M.; Li, M.; Zhang, J. A Fluorescent “Turn-On” Clutch Probe for Plasma Cell-Free DNA Identification from Lung Cancer Patients. Nanomaterials 2022, 12, 1262. https://doi.org/10.3390/nano12081262
Zhu L, Zhao D, Xu L, Sun M, Song Y, Liu M, Li M, Zhang J. A Fluorescent “Turn-On” Clutch Probe for Plasma Cell-Free DNA Identification from Lung Cancer Patients. Nanomaterials. 2022; 12(8):1262. https://doi.org/10.3390/nano12081262
Chicago/Turabian StyleZhu, Lin, Dongxu Zhao, Lixin Xu, Meng Sun, Yueyue Song, Mingrui Liu, Menglin Li, and Jinfeng Zhang. 2022. "A Fluorescent “Turn-On” Clutch Probe for Plasma Cell-Free DNA Identification from Lung Cancer Patients" Nanomaterials 12, no. 8: 1262. https://doi.org/10.3390/nano12081262
APA StyleZhu, L., Zhao, D., Xu, L., Sun, M., Song, Y., Liu, M., Li, M., & Zhang, J. (2022). A Fluorescent “Turn-On” Clutch Probe for Plasma Cell-Free DNA Identification from Lung Cancer Patients. Nanomaterials, 12(8), 1262. https://doi.org/10.3390/nano12081262