Synthesis and Fluorescent Properties of Multi-Functionalized C70 Derivatives of C70(OCH3)10[C(COOEt)2] and C70(OCH3)10[C(COOEt)2]2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Synthesis
2.2. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Negri, F.; Orlandi, G.; Zerbetto, F. Interpretation of the vibrational structure of the emission and absorption spectra of C60. J. Chem. Phys. 1992, 97, 6496–6503. [Google Scholar] [CrossRef]
- Van den Heuvel, D.J.; van den Berg, G.J.B.; Groenen, E.J.J.; Schmidt, J.; Holleman, I.; Meijer, G. Lowest Excited Singlet State of C60: A Vibronic Analysis of the Fluorescence. J. Phys. Chem. 1995, 99, 11644–11649. [Google Scholar] [CrossRef] [Green Version]
- Diehl, M.; Degen, J.; Schmidtke, H.-H. Vibronic structure and resonance effects in the optical spectra of the fullerenes C60 and C70. J. Phys. Chem. 1995, 99, 10092–10096. [Google Scholar] [CrossRef]
- Lin, S.-K.; Shiu, L.-L.; Chien, K.-M.; Luh, T.-Y.; Lin, T.-I. Fluorescence of fullerene derivatives at room temperature. J. Phys. Chem. 1995, 99, 105–111. [Google Scholar] [CrossRef]
- Guldi, D.M.; Asmus, K.-D. Photophysical Properties of Mono- and Multiply-Functionalized Fullerene Derivatives. J. Phys. Chem. A 1997, 101, 1472–1481. [Google Scholar] [CrossRef]
- Ma, B.; Bunker, C.E.; Guduru, R.; Zhang, X.-F.; Sun, Y.-P. Quantitative Spectroscopic Studies of the Photoexcited State Properties of Methano- and Pyrrolidino-[60]fullerene Derivatives. J. Phys. Chem. A 1997, 101, 5626–5632. [Google Scholar] [CrossRef]
- Sun, Y.-P.; Lawson, G.E.; Riggs, J.E.; Ma, B.; Wang, N.; Moton, D.K. Photophysical and Nonlinear Optical Properties of [60]Fullerene Derivatives. J. Phys. Chem. A 1998, 102, 5520–5528. [Google Scholar] [CrossRef]
- Sun, Y.-P.; Ma, B.; Bunker, C.E. Photoinduced Intramolecular n−π* Electron Transfer in Aminofullerene Derivatives. J. Phys. Chem. A 1998, 102, 7580–7590. [Google Scholar] [CrossRef]
- Williams, R.M.; Zwier, J.M.; Verhoeven, J.W. Photoinduced Intramolecular Electron Transfer in a Bridged C60 (Acceptor)-Aniline (Donor) System; Photophysical Properties of the First “Active” Fullerene Diad. J. Am. Chem. Soc. 1995, 117, 4093–4099. [Google Scholar] [CrossRef] [Green Version]
- Guldi, D.M.; Prato, M. Excited-State Properties of C60 Fullerene Derivatives. Acc. Chem. Res. 2000, 33, 695–703. [Google Scholar] [CrossRef]
- Giuffreda, M.G.; Negri, F.; Orlandi, G. Quantum-Chemical Modeling and Analysis of the Vibrational Structure in the Phosphorescence Spectrum of C60. J. Phys. Chem. A 2001, 105, 9123–9129. [Google Scholar] [CrossRef]
- Wang, L.; Liu, B.; Yu, S.; Yao, M.; Liu, D.; Hou, Y.; Cui, T.; Zou, G.; Sundqvist, B.; You, H.; et al. Highly Enhanced Luminescence from Single-Crystalline C60·1m-xylene Nanorods. Chem. Mater. 2006, 18, 4190–4194. [Google Scholar] [CrossRef]
- Accorsi, G.; Armaroli, N. Taking Advantage of the Electronic Excited States of [60]-Fullerenes. J. Phys. Chem. C 2010, 114, 1385–1403. [Google Scholar] [CrossRef]
- Hutchison, K.; Gao, J.; Schick, G.; Rubin, Y.; Wudl, F. Bucky Light Bulbs: White Light Electroluminescence from a Fluorescent C60 Adduct—Single Layer Organic LED. J. Am. Chem. Soc. 1999, 121, 5611–5612. [Google Scholar] [CrossRef]
- Matsuo, Y.; Sato, Y.; Hashiguchi, M.; Matsuo, K.; Nakamura, E. Synthesis, Electrochemical and Photophysical Properties, and Electroluminescent Performance of the Octa- and Deca(aryl)[60]fullerene Derivatives. Adv. Funct. Mater. 2009, 19, 2224–2229. [Google Scholar] [CrossRef]
- Echegoyen, L.; Echegoyen, L.E. Electrochemistry of Fullerenes and Their Derivatives. Acc. Chem. Res. 1998, 31, 593–601. [Google Scholar] [CrossRef]
- Hiroshi, I.; Kiyoshi, H.; Tsuyoshi, A.; Masanori, A.; Seiji, T.; Tadashi, O.; Masahiro, S.; Yoshiteru, S. The small reorganization energy of C60 in electron transfer. Chem. Phys. Lett. 1996, 263, 545–550. [Google Scholar] [CrossRef]
- Orlandi, G.; Negri, F. Electronic states and transitions in C60 and C70 fullerenes. Photochem. Photobiol. Sci. 2002, 1, 289–308. [Google Scholar] [CrossRef]
- Arbogast, J.W.; Darmanyan, A.P.; Foote, C.S.; Diederich, F.N.; Whetten, R.L.; Rubin, Y.; Alvarez, M.M.; Anz, S.J. Photophysical properties of sixty atom carbon molecule (C60). J. Phys. Chem. 1991, 95, 11–12. [Google Scholar] [CrossRef]
- Arbogast, J.W.; Foote, C.S. Photophysical properties of C70. J. Am. Chem. Soc. 1991, 113, 8886–8889. [Google Scholar] [CrossRef]
- Kim, D.; Lee, M.; Suh, Y.D.; Kim, S.K. Observation of fluorescence emission from solutions of C60 and C70 fullerenes and measurement of their excited-state lifetimes. J. Am. Chem. Soc. 1992, 114, 4429–4430. [Google Scholar] [CrossRef]
- Catalan, J.; Elguero, J. Fluorescence of fullerenes (C60 and C70). J. Am. Chem. Soc. 1993, 115, 9249–9252. [Google Scholar] [CrossRef]
- Li, Z.J.; Yang, W.W.; Gao, X. A room-temperature fluorescence study of organofullerenes: Cis-1 bisadduct with unusual blue-shifted emissions. J. Phys. Chem. A 2011, 115, 6432–6437. [Google Scholar] [CrossRef] [PubMed]
- Schick, G.; Levitus, M.; Kvetko, L.; Johnson, B.A.; Lamparth, I.; Lunkwitz, R.; Ma, B.; Khan, S.I.; Garcia-Garibay, M.A.; Rubin, Y. Unusual Luminescence of Hexapyrrolidine Derivatives of C60 with Th and Novel D3-Symmetry. J. Am. Chem. Soc. 1999, 121, 3246–3247. [Google Scholar] [CrossRef]
- Li, C.Z.; Matsuo, Y.; Nakamura, E. Luminescent Bow-Tie-Shaped Decaaryl[60]fullerene Mesogens. J. Am. Chem. Soc. 2009, 131, 17058–17059. [Google Scholar] [CrossRef]
- Matsuo, Y.; Tahara, K.; Morita, K.; Matsuo, K.; Nakamura, E. Regioselective eightfold and tenfold additions of a pyridine-modified organocopper reagent to [60]fullerene. Angew. Chem. Int. Ed. 2007, 46, 2844–2847. [Google Scholar] [CrossRef] [PubMed]
- Fujita, T.; Matsuo, Y.; Nakamura, E. Synthesis of Tetradeca- and Pentadeca(organo)[60]fullerenes Containing Unique Photo- and Electroluminescent π-Conjugated Systems. Chem. Mater. 2012, 24, 3972–3980. [Google Scholar] [CrossRef]
- Lou, N.; Li, Y.; Gan, L. Synthesis of C70-Based Fluorophores through Sequential Functionalization to Form Isomerically Pure Multiadducts. Angew. Chem. Int. Ed. 2017, 56, 2403–2407. [Google Scholar] [CrossRef]
- Kornev, A.B.; Peregudov, A.S.; Martynenko, V.M.; Balzarini, J.; Hoorelbeke, B.; Troshin, P.A. Synthesis and antiviral activity of highly water-soluble polycarboxylic derivatives of [70]fullerene. Chem. Commun. 2011, 47, 8298–8300. [Google Scholar] [CrossRef] [Green Version]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef] [PubMed]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999–3094. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Hirsch, A.; Lamparth, I.; Groesser, T.; Karfunkel, H.R. Regiochemistry of Multiple Additions to the Fullerene Core: Synthesis of a Th-Symmetric Hexakis adduct of C60 with Bis(ethoxycarbonyl)methylene. J. Am. Chem. Soc. 1994, 116, 9385–9386. [Google Scholar] [CrossRef]
- Guillot, S.; Chemelli, A.; Bhattacharyya, S.; Warmont, F.; Glatter, O. Ordered Structures in Carboxymethylcellulose−Cationic Surfactants−Copper Ions Precipitated Phases: In Situ Formation of Copper Nanoparticles. J. Phys. Chem. B 2009, 113, 15–23. [Google Scholar] [CrossRef]
- Ovchinnikova, N.S.; Goryunkov, A.A.; Khavrel, P.A.; Belov, N.M.; Apenova, M.G.; Ioffe, I.N.; Yurovskaya, M.A.; Troyanov, S.I.; Sidorov, L.N.; Kemnitz, E. Unexpected fullerene dimerizationvia [5,6]-bond upon functionalization of Cs-C70(CF3)8 by the Bingel reaction. Dalton Trans. 2011, 40, 959–965. [Google Scholar] [CrossRef]
τ1 (ns) | τ2 (ns) | τ (ns) | QY (%) | |
---|---|---|---|---|
C70(OCH3)10 | 1.16 (100%) | 1.16 | 0.25 | |
C70(OCH3)10[C(COOEt)2] | 1.18 (70.9%) | 3.95 (29.1%) | 1.99 | 1.94 |
C70(OCH3)10[C(COOEt)2]2 | 1.18 (72.0%) | 3.44 (28.0%) | 1.82 | 2.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luan, K.; Wang, L.; Xie, F.-F.; Chen, B.-W.; Chen, Z.-C.; Deng, L.-L.; Xie, S.-Y.; Zheng, L.-S. Synthesis and Fluorescent Properties of Multi-Functionalized C70 Derivatives of C70(OCH3)10[C(COOEt)2] and C70(OCH3)10[C(COOEt)2]2. Nanomaterials 2022, 12, 1426. https://doi.org/10.3390/nano12091426
Luan K, Wang L, Xie F-F, Chen B-W, Chen Z-C, Deng L-L, Xie S-Y, Zheng L-S. Synthesis and Fluorescent Properties of Multi-Functionalized C70 Derivatives of C70(OCH3)10[C(COOEt)2] and C70(OCH3)10[C(COOEt)2]2. Nanomaterials. 2022; 12(9):1426. https://doi.org/10.3390/nano12091426
Chicago/Turabian StyleLuan, Ke, Lu Wang, Fang-Fang Xie, Bin-Wen Chen, Zuo-Chang Chen, Lin-Long Deng, Su-Yuan Xie, and Lan-Sun Zheng. 2022. "Synthesis and Fluorescent Properties of Multi-Functionalized C70 Derivatives of C70(OCH3)10[C(COOEt)2] and C70(OCH3)10[C(COOEt)2]2" Nanomaterials 12, no. 9: 1426. https://doi.org/10.3390/nano12091426
APA StyleLuan, K., Wang, L., Xie, F. -F., Chen, B. -W., Chen, Z. -C., Deng, L. -L., Xie, S. -Y., & Zheng, L. -S. (2022). Synthesis and Fluorescent Properties of Multi-Functionalized C70 Derivatives of C70(OCH3)10[C(COOEt)2] and C70(OCH3)10[C(COOEt)2]2. Nanomaterials, 12(9), 1426. https://doi.org/10.3390/nano12091426