Stabilization and Dispersion of OSA Starch-Coated Titania Nanoparticles in Kappa-Carrageenan-Based Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of OSA Starch—Titania Pigment Nanoparticle (OTP)
2.3. Characterization of OTP
2.3.1. Morphology and Structure Analysis
2.3.2. TG Analysis and DSC Analysis
2.4. Dispersion of OTP in κ-CG-Based Solution or Water
2.5. Quality and Stability Test of Titania Pigment Slurry
2.5.1. Contact Angle and Surface Tension
2.5.2. Particle Size Distribution
2.5.3. Zeta Potential
2.5.4. Viscosity
2.5.5. Accelerated Stability Tests
2.6. Statistical Analysis
3. Results and Discussion
3.1. Microstructure of Titania Pigment and OTP
3.2. Particle Size Distribution
3.3. TG and DSC Analysis
3.4. Stability and Quality of Titania Pigment Slurry
3.4.1. Contact Angle and Surface Tension
3.4.2. Viscosity Measurement in OTP Suspension
3.4.3. Zeta Potentials
3.4.4. Accelerated Stability Tests
3.5. Study on the Mechanism of Particle Suspension
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Farrokhpay, S. A review of polymeric dispersant stabilisation of titania pigment. Adv. Colloid Interface Sci. 2009, 151, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Löf, D.; Hamieau, G.; Zalich, M.; Ducher, P.; Kynde, S.; Midtgaard, S.R.; Parasida, C.F.; Arleth, L.; Jensen, G.V. Dispersion state of TiO2 pigment particles studied by ultra-small-angle X-ray scattering revealing dependence on dispersant but limited change during drying of paint coating. Prog. Org. Coatings 2020, 142, 105590. [Google Scholar] [CrossRef]
- Farrokhpay, S. Rheology of titania pigment slurry. Appl. Rheol. 2012, 22, 3. [Google Scholar]
- Sharafudeen, R. A spectroscopic method for quick evaluation of tint strength and tint tone of titania (rutile) pigment and factors affecting them. Color Res. Appl. 2019, 44, 44–49. [Google Scholar] [CrossRef]
- Farrokhpay, S.; Morris, G.E.; Fornasiero, D.; Self, P. Stabilisation of titania pigment particles with anionic polymeric dispersants. Powder Technol. 2010, 202, 143–150. [Google Scholar] [CrossRef]
- Farrokhpay, S.; Morris, G.E.; Fornasiero, D.; Self, P. Influence of polymer functional group architecture on titania pigment dispersion. Colloids Surfaces A Physicochem. Eng. Asp. 2005, 253, 183–191. [Google Scholar] [CrossRef]
- Ettelaie, R.; Holmes, M.; Chen, J.; Farshchi, A. Steric stabilising properties of hydrophobically modified starch: Amylose vs. amylopectin. Food Hydrocoll. 2016, 58, 364–377. [Google Scholar] [CrossRef] [Green Version]
- Fang, S.; Zhao, X.; Liu, Y.; Liang, X.; Yang, Y. Fabricating multilayer emulsions by using OSA starch and chitosan suitable for spray drying: Application in the encapsulation of β-carotene. Food Hydrocoll. 2019, 93, 102–110. [Google Scholar] [CrossRef]
- Sweedman, M.C.; Tizzotti, M.J.; Schäfer, C.; Gilbert, R.G. Structure and physicochemical properties of octenyl succinic anhydride modified starches: A review. Carbohydr. Polym. 2013, 92, 905–920. [Google Scholar] [CrossRef]
- Sharif, H.R.; Goff, H.D.; Majeed, H.; Shamoon, M.; Liu, F.; Nsor-Atindana, J.; Haider, J.; Liang, R.; Zhong, F. Physicochemical properties of β-carotene and eugenol co-encapsulated flax seed oil powders using OSA starches as wall material. Food Hydrocoll. 2017, 73, 274–283. [Google Scholar] [CrossRef]
- Geonzon, L.C.; Zhuang, X.; Santoya, A.M.; Bacabac, R.G.; Xie, J.; Matsukawa, S. Gelation mechanism and network structure of mixed kappa carrageenan/lambda carrageenan gels studied by macroscopic and microscopic observation methods. Food Hydrocoll. 2020, 105, 105759. [Google Scholar] [CrossRef]
- Li, L.; Ni, R.; Shao, Y.; Mao, S. Carrageenan and its applications in drug delivery. Carbohydr. Polym. 2014, 103, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Campo, V.L.; Kawano, D.F.; Silva, D.B.d.; Carvalho, I. Carrageenans: Biological properties, chemical modifications and structural analysis—A review. Carbohydr. Polym. 2009, 77, 167–180. [Google Scholar] [CrossRef]
- Bakry, A.M.; Huang, J.; Zhai, Y.; Huang, Q. Myofibrillar protein with κ- or λ-carrageenans as novel shell materials for microencapsulation of tuna oil through complex coacervation. Food Hydrocoll. 2019, 96, 43–53. [Google Scholar] [CrossRef]
- Zhou, X.; Zong, X.; Wang, S.; Yin, C.; Gao, X.; Xiong, G.; Xu, X.; Qi, J.; Mei, L. Emulsified blend film based on konjac glucomannan/carrageenan/camellia oil: Physical, structural, and water barrier properties. Carbohydr Polym 2021, 251, 117100. [Google Scholar] [CrossRef]
- Hanani, Z.N.; Husna, A.A. Effect of different types and concentrations of emulsifier on the characteristics of kappa-carrageenan films. Int. J. Biol. Macromol. 2018, 114, 710–716. [Google Scholar] [CrossRef]
- Pandeya, S.; Doa, J.Y.; Kimb, J.; Kang, M. Fast and highly efficient catalytic degradation of dyes using κ -carrageenan stabilized silver nanoparticles nanocatalyst. Carbohydr. Polym. 2020, 230, 115597. [Google Scholar] [CrossRef]
- Fan, Z.P.; Cheng, P.; Zhang, P.; Gao, Y.; Zhao, Y.N.; Liu, M.; Gu, J.H.; Wang, Z.P.; Han, J. A novel multifunctional Salecan/κ-carrageenan composite hydrogel with anti-freezing properties: Advanced rheology, thermal analysis and model fitting. Int. J. Biol. Macromol. 2022, 208, 1–10. [Google Scholar] [CrossRef]
- Yuan, C.; Xu, D.; Cui, B.; Wang, Y. Gelation of κ-carrageenan/Konjac glucommanan compound gel: Effect of cyclodextrins. Food Hydrocoll. 2019, 87, 158–164. [Google Scholar] [CrossRef]
- Zheng, H.; Mao, L.; Cui, M.; Liu, J.; Gao, Y. Development of food-grade bigels based on κ-carrageenan hydrogel and monoglyceride oleogels as carriers for β-carotene: Roles of oleogel fraction. Food Hydrocoll. 2020, 105, 105855. [Google Scholar] [CrossRef]
- Samborska, K.; Jedlińska, A.; Wiktor, A.; Derewiaka, D.; Wołosiak, R.; Matwijczuk, A.; Jamróz, W.; Skwarczyńska-Maj, K.; Kiełczewski, D.; Błażowski, Ł.; et al. The Effect of Low-Temperature Spray Drying with Dehumidified Air on Phenolic Compounds, Antioxidant Activity, and Aroma Compounds of Rapeseed Honey Powders. Food Bioprocess Technol. 2019, 12, 919–932. [Google Scholar] [CrossRef] [Green Version]
- Hwangbo, S.; Kwak, M.; Kim, J.; Lee, T. Novel Surfactant-Free Water Dispersion Technique of TiO2 NPs Using Focused Ultrasound System. Nanomaterials 2021, 11, 427. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Xiang, C.; Li, Y.; Wang, L.; Zhang, Y.; Song, Z.; Ma, X.; Lu, X.; Lei, Q.; Fang, W. Fabrication of ovalbumin/κ-carrageenan complex nanoparticles as a novel carrier for curcumin delivery. Food Hydrocoll. 2019, 89, 111–121. [Google Scholar] [CrossRef]
- Agostinho, D.A.S.; Paninho, A.I.; Cordeiro, T.; Nunes, A.V.; Fonseca, I.M.F.L.; Pereira, C.; Matias, A.; Ventura, M.G. Properties of κ-carrageenan aerogels prepared by using different dissolution media and its application as drug delivery systems. Mater. Chem. Phys. 2020, 253, 123290. [Google Scholar] [CrossRef]
- Lertsuphotvanit, N.; Tuntarawongsa, S.; Mahadlek, J.; Phaechamud, T. Surface Tension/Contact Angle Characters of Aprotic Binary Borneol-Dimethyl Sulphoxide Mixture. Key Eng. Mater. 2020, 859, 74–80. [Google Scholar] [CrossRef]
- Wu, Y.; Francis, L.F. Effect of particle size distribution on stress development and microstructure of particulate coatings. J. Coatings Technol. Res. 2017, 14, 455–465. [Google Scholar] [CrossRef]
- De Oliveira, E.M.; Valadão, I.C.R.P.; de Castro, J.A.; da Silval, L.M.; da Silva, D.S.; Paresque, M.C.d.C. Impact of ZnO Concentration on the Stability of Agglomerates of TiO2 Engineered Nanoparticles: Effects of the pH, Ionic Strength and Zeta Potential. Mater. Sci. Forum 2020, 1012, 167–172. [Google Scholar] [CrossRef]
- Zielinska, A.; Martins-Gomes, C.; Ferreira, N.R.; Silva, A.M.; Nowak, I.; Souto, E.B. Anti-inflammatory and anti-cancer activity of citral: Optimization of citral-loaded solid lipid nanoparticles (SLN) using experimental factorial design and LUMiSizer(R). Int. J. Pharm. 2018, 553, 428–440. [Google Scholar] [CrossRef]
- Rahman, A.A. Accelerated Stability Testing of Anti-Aging Cream: Formation of Myristic Acid and Stearic Acid as Degradation Products. Int. J. Appl. Pharm. 2018, 10, 1–5. [Google Scholar]
- Bulychev, N.; Dirnberger, K.; Arutunov, I.; Kopold, P.; Schauer, T.; Zubov, V.; Eisenbach, C. Effect of ultrasonic treatment on structure and properties of ethylhydroxyethylcellulose polymer adsorption layer on inorganic pigments in aqueous dispersion. Prog. Org. Coatings 2008, 62, 299–306. [Google Scholar] [CrossRef]
- Kiil, S. Mathematical modeling of pigment dispersion taking into account the full agglomerate particle size distribution. J. Coatings Technol. Res. 2016, 14, 69–84. [Google Scholar] [CrossRef] [Green Version]
- Feng, T.; Wu, K.; Xu, J.; Hu, Z.; Zhang, X. Low Molecular Weight Kappa-Carrageenan Based Microspheres for Enhancing Stability and Bioavailability of Tea Polyphenols. Processes 2021, 9, 1240. [Google Scholar] [CrossRef]
- Arshad, H.; Ali, T.M.; Hasnain, A. Comparative study on efficiency of nutmeg microencapsulation (freeze-drying method) using native and OSA sorghum starch as wall materials in combination with gum arabic. Cereal Chem. 2020, 97, 589–600. [Google Scholar] [CrossRef]
- Moo-Huchin, V.; Cabrera-Sierra, M.; Estrada-León, R.; Ríos-Soberanis, C.; Betancur-Ancona, D.; Chel-Guerrero, L.; Ortiz-Fernández, A.; Estrada-Mota, I.; Pérez-Pacheco, E. Determination of some physicochemical and rheological characteristics of starch obtained from Brosimum alicastrum swartz seeds. Food Hydrocoll. 2020, 45, 48–54. [Google Scholar] [CrossRef]
- Zubov, V.P.; Serebryakova, N.V.; Arutyunov, I.A.; Kuz'Kina, I.F.; Bulychev, N.A.; Khrustalev, Y.A. The Effect of Mechanical Activation of the Surface of Inorganic Pigments on the Stability of Their Aqueous Dispersions in the Presence of Ethylhydroxyethyl Cellulose. Colloid J. 2004, 66, 302–310. [Google Scholar] [CrossRef]
- Shi, H.; Li, X. Monolayer Nanoparticle-Covered Liquid Marble Production with Low Surface Tension Liquids. Adv. Mater. Interfaces 2020, 7, 2001081. [Google Scholar] [CrossRef]
- Sharifi, F.; Jahangiri, M.; Nazir, I.; Asim, M.H.; Ebrahimnejad, P.; Hupfauf, A.; Gust, R.; Bernkop-Schnürch, A. Zeta potential changing nanoemulsions based on a simple zwitterion. J. Colloid Interface Sci. 2020, 585, 126–137. [Google Scholar] [CrossRef]
- Taylor, M.L.; Morris, G.E.; Smart, R.S. Influence of aluminum doping on titania pigment structural and dispersion properties. J. Colloid Interface Sci. 2003, 262, 81–88. [Google Scholar] [CrossRef]
- Derkach, S.R.; Voron’ko, N.G.; Maklakova, A.A.; Kondratyuk, Y.V. The rheological properties of gelatin gels containing κ-carrageenan. The role of polysaccharide. Colloid J. 2014, 76, 146–152. [Google Scholar] [CrossRef]
- Bui, V.T.; Nguyen, B.T.; Renou, F.; Nicolai, T. Rheology and microstructure of mixtures of iota and kappa-carrageenan. Food Hydrocoll. 2019, 89, 180–187. [Google Scholar] [CrossRef]
- Diep, T.T.; Dao, T.P.; Vu, H.T.; Phan, B.Q.; Dao, D.N.; Bui, T.H.; Truong, V.; Nguyen, V. Double emulsion oil-in water-in oil (O/W/O) stabilized by sodium caseinate and k-carrageenan. J. Dispers. Sci. Technol. 2018, 39, 1752–1757. [Google Scholar] [CrossRef]
- Xie, C.; Wang, Q.; Ying, R.; Wang, Y.; Wang, Z.; Huang, M. Binding a chondroitin sulfate-based nanocomplex with kappa-carrageenan to enhance the stability of anthocyanins. Food Hydrocoll. 2020, 100, 105448. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Wu, K.; Zeng, S.; Chen, D.; Yao, L.; Song, S.; Wang, H.; Sun, M.; Feng, T. Stabilization and Dispersion of OSA Starch-Coated Titania Nanoparticles in Kappa-Carrageenan-Based Solution. Nanomaterials 2022, 12, 1519. https://doi.org/10.3390/nano12091519
Chen X, Wu K, Zeng S, Chen D, Yao L, Song S, Wang H, Sun M, Feng T. Stabilization and Dispersion of OSA Starch-Coated Titania Nanoparticles in Kappa-Carrageenan-Based Solution. Nanomaterials. 2022; 12(9):1519. https://doi.org/10.3390/nano12091519
Chicago/Turabian StyleChen, Xingyu, Kai Wu, Sili Zeng, Da Chen, Lingyun Yao, Shiqing Song, Huatian Wang, Min Sun, and Tao Feng. 2022. "Stabilization and Dispersion of OSA Starch-Coated Titania Nanoparticles in Kappa-Carrageenan-Based Solution" Nanomaterials 12, no. 9: 1519. https://doi.org/10.3390/nano12091519
APA StyleChen, X., Wu, K., Zeng, S., Chen, D., Yao, L., Song, S., Wang, H., Sun, M., & Feng, T. (2022). Stabilization and Dispersion of OSA Starch-Coated Titania Nanoparticles in Kappa-Carrageenan-Based Solution. Nanomaterials, 12(9), 1519. https://doi.org/10.3390/nano12091519