Thermal Transport in 2D Materials
Abstract
:1. Introduction
2. Two-Dimensional (2D) Materials
3. Thermal Conductivity
3.1. General Considerations and Solution Techniques
3.2. The Method of Separation of Variables
3.3. The Conduction Shape Factor
3.4. Thermal Transport at the Nanoscale
4. Simulation Methods
4.1. Atomistic Simulations of Thermal Transport
4.2. Introduction to Simulation Approaches
4.3. A Mento Carlo Simulation Method
4.4. First Principles Method
4.5. Molecular Dynamics Simulations Method
4.6. Equilibrium Green−Kubo Approach
4.7. Atomistic Green’s Functions
5. Experimental Measurement
5.1. Suspended Thermal Bridge Method
5.2. Electron Beam Self-Heating Method
5.3. Raman Method
5.4. Time-Domain Thermoreflectance Method
5.5. Micro-Suspended-Pad Method
6. Research Progress on 2D Thermal Conductivity
6.1. Graphene
6.2. Boron Nitride
6.3. Molybdenum Sulfide and Other Transition Metal Sulfides
6.4. Black Phosphorus, Black Arsenic
6.5. Telluride
6.6. Silicene
6.7. Other 2D Materials
7. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S.K.; Colombo, L. Electronics Based on Two-Dimensional Materials. Nat. Nanotechnol. 2014, 9, 768–779. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M. More than Moore. Kyokai Joho Imeji Zasshi/J. Inst. Image Inf. Telev. Eng. 2016, 70, 324–327. [Google Scholar] [CrossRef] [Green Version]
- Russ, B.; Glaudell, A.; Urban, J.J.; Chabinyc, M.L.; Segalman, R.A. Organic Thermoelectric Materials for Energy Harvesting and Temperature Control. Nat. Rev. Mater. 2016, 1, 16050. [Google Scholar] [CrossRef]
- Saraiva, E.F.; Milan, L.A. Clustering Gene Expression Data Using a Posterior Split-Merge-Birth Procedure. Scand. J. Stat. 2012, 39, 399–415. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, J.; Chen, J. Thermal Transport in Conductive Polymer–Based Materials. Adv. Funct. Mater. 2020, 30, 1904704. [Google Scholar] [CrossRef]
- Moore, A.L.; Shi, L. Emerging Challenges and Materials for Thermal Management of Electronics. Mater. Today 2014, 17, 163–174. [Google Scholar] [CrossRef]
- Qiu, H.; Xu, T.; Wang, Z.; Ren, W.; Nan, H.; Ni, Z.; Chen, Q.; Yuan, S.; Miao, F.; Song, F.; et al. Hopping Transport through Defect-Induced Localized States in Molybdenum Disulphide. Nat. Commun. 2013, 4, 2642. [Google Scholar] [CrossRef] [Green Version]
- Qiu, H.; Pan, L.; Yao, Z.; Li, J.; Shi, Y.; Wang, X. Electrical Characterization of Back-Gated Bi-Layer MoS2 Field-Effect Transistors and the Effect of Ambient on Their Performances. Appl. Phys. Lett. 2012, 100, 67–70. [Google Scholar] [CrossRef]
- Yu, Z.; Pan, Y.; Shen, Y.; Wang, Z.; Ong, Z.Y.; Xu, T.; Xin, R.; Pan, L.; Wang, B.; Sun, L.; et al. Towards Intrinsic Charge Transport in Monolayer Molybdenum Disulfide by Defect and Interface Engineering. Nat. Commun. 2014, 5, 5290. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wu, H.; Cheng, H.C.; Yang, S.; Zhu, E.; He, Q.; Ding, M.; Li, D.; Guo, J.; Weiss, N.O.; et al. Toward Barrier Free Contact to Molybdenum Disulfide Using Graphene Electrodes. Nano Lett. 2015, 15, 3030–3034. [Google Scholar] [CrossRef]
- Wu, S.C.; Shan, G.; Yan, B. Prediction of Near-Room-Temperature Quantum Anomalous Hall Effect on Honeycomb Materials. Phys. Rev. Lett. 2014, 113, 256401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherukara, M.J.; Narayanan, B.; Kinaci, A.; Sasikumar, K.; Gray, S.K.; Chan, M.K.Y.; Sankaranarayanan, S.K.R.S. Ab Initio-Based Bond Order Potential to Investigate Low Thermal Conductivity of Stanene Nanostructures. J. Phys. Chem. Lett. 2016, 7, 3752–3759. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Jiang, D.; Schedin, F.; Booth, T.J.; Khotkevich, V.V.; Morozov, S.V.; Geim, A.K. Two-Dimensional Atomic Crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453. [Google Scholar] [CrossRef] [Green Version]
- Butler, S.Z.; Hollen, S.M.; Cao, L.; Cui, Y.; Gupta, J.A.; Gutiérrez, H.R.; Heinz, T.F.; Hong, S.S.; Huang, J.; Ismach, A.F.; et al. Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene. ACS Nano 2013, 7, 2898–2926. [Google Scholar] [CrossRef]
- Bhimanapati, G.R.; Lin, Z.; Meunier, V.; Jung, Y.; Cha, J.; Das, S.; Xiao, D.; Son, Y.; Strano, M.S.; Cooper, V.R.; et al. Recent Advances in Two-Dimensional Materials beyond Graphene. ACS Nano 2015, 9, 11509–11539. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mounet, N.; Gibertini, M.; Schwaller, P.; Campi, D.; Merkys, A.; Marrazzo, A.; Sohier, T.; Castelli, I.E.; Cepellotti, A.; Pizzi, G.; et al. Two-Dimensional Materials from High-Throughput Computational Exfoliation of Experimentally Known Compounds. Nat. Nanotechnol. 2018, 13, 246–252. [Google Scholar] [CrossRef] [Green Version]
- Kasirga, T.S. Thermal Conductivity Measurements in Atomically Thin Materials and Devices; Springer Nature: Gateway East, Singapore, 2020; ISBN 9811553483. [Google Scholar]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef]
- Wu, X.; Shao, Y.; Liu, H.; Feng, Z.; Wang, Y.-L.; Sun, J.-T.; Liu, C.; Wang, J.-O.; Liu, Z.-L.; Zhu, S.-Y.; et al. Epitaxial Growth and Air-Stability of Monolayer Antimonene on PdTe2. Adv. Mater. 2017, 29, 1605407. [Google Scholar] [CrossRef]
- Reis, F.; Li, G.; Dudy, L.; Bauernfeind, M.; Glass, S.; Hanke, W.; Thomale, R.; Schäfer, J.; Claessen, R. Bismuthene on a SiC Substrate: A Candidate for a High-Temperature Quantum Spin Hall Material. Science 2017, 357, 287–290. [Google Scholar] [CrossRef]
- Chen, S.C.; Wu, J.Y.; Lin, M.F. Feature-Rich Magneto-Electronic Properties of Bismuthene. New J. Phys. 2018, 20, 062001. [Google Scholar] [CrossRef]
- Wang, L.; Li, B. Phononics Gets Hot. Phys. World 2008, 21, 27–29. [Google Scholar] [CrossRef]
- Hu, B.; Yang, L.; Zhang, Y. Asymmetric Heat Conduction in Nonlinear Lattices. Phys. Rev. Lett. 2006, 97, 2–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Z.X.; Li, K.M.; Tang, L.M.; Pan, C.N.; Chen, K.Q. Nonlinear Phonon Transport and Ballistic Thermal Rectification in Asymmetric Graphene-Based Three Terminal Junctions. Appl. Phys. Lett. 2012, 100, 183110. [Google Scholar] [CrossRef]
- Lo, W.C.; Wang, L.; Li, B. Thermal Transistor: Heat Flux Switching and Modulating. J. Phys. Soc. Jpn. 2008, 77, 54402. [Google Scholar]
- Wang, L.; Li, B. Thermal Logic Gates: Computation with Phonons. Phys. Rev. Lett. 2007, 99, 177208. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Li, B. Thermal Memory: A Storage of Phononic Information. Phys. Rev. Lett. 2008, 101, 267203. [Google Scholar] [CrossRef] [Green Version]
- Madelung, O.; Klemens, P.G.; Neuer, G.; White, G.K.; Sundqvist, B.; Uher, C. Thermal Conductivity of Pure Metals and Alloys/Wärmeleitfähigkeit von Reinen Metallen Und Legierungen; Springer: Berlin/Heidelberg, Germany, 1991; Volume 3. [Google Scholar]
- Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef]
- Geick, R.; Perry, C.H.; Rupprecht, G. Normal Modes in Hexagonal Boron Nitride. Phys. Rev. 1966, 146, 543–547. [Google Scholar] [CrossRef]
- Jo, I.; Pettes, M.T.; Kim, J.; Watanabe, K.; Taniguchi, T.; Yao, Z.; Shi, L. Thermal Conductivity and Phonon Transport in Suspended Few-Layer Hexagonal Boron Nitride. Nano Lett. 2013, 13, 550–554. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Reddy, C.D.; Jiang, J.; Zhu, H.; Baimova, J.A.; Dmitriev, S.V.; Zhou, K. Thermal Conductivity of Silicene Nanosheets and the Effect of Isotopic Doping. J. Phys. D Appl. Phys. 2014, 47, 165301. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, H.; Hu, M.; Bao, H.; Yue, S.; Qin, G.; Su, G. Thermal Conductivity of Silicene Calculated Using an Optimized Stillinger-Weber Potential. Phys. Rev. B Condens. Matter Mater. Phys. 2014, 89, 054310. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Wang, Y.; Shen, Y.; Xie, G.; Xiao, H.; Zhong, J.; Zhang, G. Phonon Thermal Conductivity of Monolayer MoS2: A Comparison with Single Layer Graphene. Appl. Phys. Lett. 2014, 105, 2–7. [Google Scholar] [CrossRef]
- Peimyoo, N.; Shang, J.; Yang, W.; Wang, Y.; Cong, C.; Yu, T. Thermal Conductivity Determination of Suspended Mono- and Bilayer WS2 by Raman Spectroscopy. Nano Res. 2015, 8, 1210–1221. [Google Scholar] [CrossRef]
- Qin, G.; Zhang, X.; Yue, S.-Y.; Qin, Z.; Wang, H.; Han, Y.; Hu, M. Resonant Bonding Driven Giant Phonon Anharmonicity and Low Thermal Conductivity of Phosphorene. Phys. Rev. B 2016, 94, 165445. [Google Scholar] [CrossRef]
- Bergman, T.L.; Incropera, F.P.; DeWitt, D.P.; Lavine, A.S. Fundamentals of Heat and Mass Transfer; John Wiley & Sons: New York, NY, USA, 2011; ISBN 0470501979. [Google Scholar]
- Poulikakos, D. Conduction Heat Transfer; Prentice Hall: Englewood Cliffs, NJ, USA, 1994. [Google Scholar]
- Carslaw, H.S.; Jaeger, J.C. Conduction of Heat in Solids; Oxford University Press: London, UK, 1959. [Google Scholar]
- Kutateladze, S.S. Fundamentals of Heat Transfer; Edward Arnold: London, UK, 1964; p. 294. [Google Scholar]
- Hahne, E.; Grigull, U. Formfaktor Und Formwiderstand Der Stationären Mehrdimensionalen Wärmeleitung. Int. J. Heat Mass Transf. 1975, 18, 751–767. [Google Scholar] [CrossRef]
- General Electric Company. Research and Development Center. Heat Transfer Data Book; Heat Transfer and Fluid Flow Data Books; General Electric Company: New York, NY, USA, 1980. [Google Scholar]
- Chen, X.K.; Zeng, Y.J.; Chen, K.Q. Thermal Transport in Two-Dimensional Heterostructures. Front. Mater. 2020, 7, 578791. [Google Scholar] [CrossRef]
- Goddard, W.A., III; Brenner, D.; Lyshevski, S.E.; Iafrate, G.J. Handbook of Nanoscience, Engineering, and Technology, 1st ed.; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar] [CrossRef]
- Chen, Y.; Li, D.; Lukes, J.R.; Majumdar, A. Monte Carlo Simulation of Silicon Nanowire Thermal Conductivity. J. Heat Transf. 2005, 127, 1129–1137. [Google Scholar] [CrossRef] [Green Version]
- Lacroix, D.; Joulain, K.; Lemonnier, D. Monte Carlo Transient Phonon Transport in Silicon and Germanium at Nanoscales. Phys. Rev. B Condens. Matter Mater. Phys. 2005, 72, 064305. [Google Scholar] [CrossRef] [Green Version]
- Mazumder, S.; Majumdar, A. Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization. J. Heat Transf. 2001, 123, 749–759. [Google Scholar] [CrossRef]
- Aksamija, Z.; Knezevic, I. Anisotropy and Boundary Scattering in the Lattice Thermal Conductivity of Silicon Nanomembranes. Phys. Rev. B Condens. Matter Mater. Phys. 2010, 82, 045319. [Google Scholar] [CrossRef]
- Ramayya, E.B.; Maurer, L.N.; Davoody, A.H.; Knezevic, I. Thermoelectric Properties of Ultrathin Silicon Nanowires. Phys. Rev. B Condens. Matter Mater. Phys. 2012, 86, 115328. [Google Scholar] [CrossRef] [Green Version]
- Jeng, M.-S.; Yang, R.; Song, D.; Chen, G. Modeling the Thermal Conductivity and Phonon Transport in Nanoparticle Composites Using Monte Carlo Simulation. J. Heat Transf. 2008, 130, 042410. [Google Scholar] [CrossRef]
- Seol, J.H.; Jo, I.; Moore, A.L.; Lindsay, L.; Aitken, Z.H.; Pettes, M.T.; Li, X.; Yao, Z.; Huang, R.; Broido, D.; et al. Two-Dimensional Phonon Transport in Supported Graphene. Science 2010, 328, 213–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindsay, L.; Broido, D.A.; Mingo, N. Flexural Phonons and Thermal Transport in Graphene. Phys. Rev. B Condens. Matter Mater. Phys. 2010, 82, 2–7. [Google Scholar] [CrossRef]
- Zhu, J.; Park, H.; Chen, J.Y.; Gu, X.; Zhang, H.; Karthikeyan, S.; Wendel, N.; Campbell, S.A.; Dawber, M.; Du, X.; et al. Revealing the Origins of 3D Anisotropic Thermal Conductivities of Black Phosphorus. Adv. Electron. Mater. 2016, 2, 1600040. [Google Scholar] [CrossRef] [Green Version]
- Jang, H.; Wood, J.D.; Ryder, C.R.; Hersam, M.C.; Cahill, D.G. Anisotropic Thermal Conductivity of Exfoliated Black Phosphorus. Adv. Mater. 2015, 27, 8017–8022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, R.; Simpson, J.R.; Bertolazzi, S.; Brivio, J.; Watson, M.; Wu, X.; Kis, A.; Luo, T.; Hight Walker, A.R.; Xing, H.G. Thermal Conductivity of Monolayer Molybdenum Disulfide Obtained from Temperature-Dependent Raman Spectroscopy. ACS Nano 2014, 8, 986–993. [Google Scholar] [CrossRef]
- Gu, X.; Li, B.; Yang, R. Layer Thickness-Dependent Phonon Properties and Thermal Conductivity of MoS2. J. Appl. Phys. 2016, 119, 085106. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.; Hu, M.; Bao, H. Thermal Conductivity of Silicene from First-Principles. Appl. Phys. Lett. 2014, 104, 131906. [Google Scholar] [CrossRef]
- Narayanan, B.; Kinaci, A.; Sen, F.G.; Davis, M.J.; Gray, S.K.; Chan, M.K.Y.; Sankaranarayanan, S.K.R.S. Describing the Diverse Geometries of Gold from Nanoclusters to Bulk—A First-Principles-Based Hybrid Bond-Order Potential. J. Phys. Chem. C 2016, 120, 13787–13800. [Google Scholar] [CrossRef] [Green Version]
- Schelling, P.K.; Phillpot, S.R.; Keblinski, P. Comparison of Atomic-Level Simulation Methods for Computing Thermal Conductivity. Phys. Rev. B Condens. Matter Mater. Phys. 2002, 65, 144306. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.X.; Chen, S.Z.; Zeng, Y.; Feng, Y.; Zhou, W.X.; Tang, L.M.; Chen, K.Q. Spin Gapless Semiconductor and Half-Metal Properties in Magnetic Penta-Hexa-Graphene Nanotubes. Org. Electron. 2018, 63, 310–317. [Google Scholar] [CrossRef]
- Rowe, P.; Csányi, G.; Alfè, D.; Michaelides, A. Development of a Machine Learning Potential for Graphene. Phys. Rev. B 2018, 97, 054303. [Google Scholar] [CrossRef] [Green Version]
- Sellan, D.P.; Landry, E.S.; Turney, J.E.; McGaughey, A.J.H.; Amon, C.H. Size Effects in Molecular Dynamics Thermal Conductivity Predictions. Phys. Rev. B Condens. Matter Mater. Phys. 2010, 81, 214305. [Google Scholar] [CrossRef] [Green Version]
- Sevik, C.; Kinaci, A.; Haskins, J.B.; ÇaǧIn, T. Characterization of Thermal Transport in Low-Dimensional Boron Nitride Nanostructures. Phys. Rev. B Condens. Matter Mater. Phys. 2011, 84, 085409. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Vallabhaneni, A.; Hu, J.; Qiu, B.; Chen, Y.P.; Ruan, X. Phonon Lateral Confinement Enables Thermal Rectification in Asymmetric Single-Material Nanostructures. Nano Lett. 2014, 14, 592–596. [Google Scholar] [CrossRef] [Green Version]
- Zeng, J.; Chen, K.Q.; Tong, Y.X. Covalent Coupling of Porphines to Graphene Edges: Quantum Transport Properties and Their Applications in Electronics. Carbon 2018, 127, 611–617. [Google Scholar] [CrossRef]
- Chen, T.; Xu, L.; Li, Q.; Li, X.; Long, M. Direction and Strain Controlled Anisotropic Transport Behaviors of 2D GeSe-Phosphorene VdW Heterojunctions. Nanotechnology 2019, 30, 445703. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, X.; Cheng, Z.Q.; Chen, K.Q. Current Superposition Law Realized in Molecular Devices Connected in Parallel. J. Phys. Chem. C 2019, 123, 10462–10468. [Google Scholar] [CrossRef]
- Fan, Z.Q.; Zhang, Z.H.; Yang, S.Y. High-Performance 5.1 Nm in-Plane Janus WSeTe Schottky Barrier Field Effect Transistors. Nanoscale 2020, 12, 21750–21756. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.Q.; Chen, K.Q. Negative Differential Resistance and Rectifying Behaviors in Phenalenyl Molecular Device with Different Contact Geometries. Appl. Phys. Lett. 2010, 96, 23–26. [Google Scholar] [CrossRef]
- Chen, T.; Guo, C.; Xu, L.; Li, Q.; Luo, K.; Liu, D.; Wang, L.; Long, M. Modulating the Properties of Multi-Functional Molecular Devices Consisting of Zigzag Gallium Nitride Nanoribbons by Different Magnetic Orderings: A First-Principles Study. Phys. Chem. Chem. Phys. 2018, 20, 5726–5733. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Chen, X.; Gu, B.L.; Duan, W. Intrinsic Anisotropy of Thermal Conductance in Graphene Nanoribbons. Appl. Phys. Lett. 2009, 95, 10–13. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Li, D.; Ying, Y.; Feng, C.; He, J.; Zhong, C.; Zhou, H.; Zhou, P.; Zhang, G. Orbitally Driven Giant Thermal Conductance Associated with Abnormal Strain Dependence in Hydrogenated Graphene-like Borophene. NPJ Comput. Mater. 2019, 5, 47. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.H.; Zhang, X.; Ji, C.; Liu, Z.M.; Chen, K.Q. The Length and Hydrogenation Effects on Electronic Transport Properties of Carbon-Based Molecular Wires. Org. Electron. 2017, 51, 332–340. [Google Scholar] [CrossRef]
- Peng, X.F.; Chen, K.Q. Thermal Transport for Flexural and In-Plane Phonons in Graphene Nanoribbons. Carbon 2014, 77, 360–365. [Google Scholar] [CrossRef]
- Tian, Z.; Esfarjani, K.; Chen, G. Enhancing Phonon Transmission across a Si/Ge Interface by Atomic Roughness: First-Principles Study with the Green’s Function Method. Phys. Rev. B Condens. Matter Mater. Phys. 2012, 86, 235304. [Google Scholar] [CrossRef] [Green Version]
- Peng, X.F.; Zhou, X.; Tan, S.H.; Wang, X.J.; Chen, L.Q.; Chen, K.Q. Thermal Conductance in Graphene Nanoribbons Modulated by Defects and Alternating Boron-Nitride Structures. Carbon 2017, 113, 334–339. [Google Scholar] [CrossRef]
- Yan, Z.; Chen, L.; Yoon, M.; Kumar, S. The Role of Interfacial Electronic Properties on Phonon Transport in Two-Dimensional MoS2 on Metal Substrates. ACS Appl. Mater. Interfaces 2016, 8, 33299–33306. [Google Scholar] [CrossRef]
- Ma, D.; Ding, H.; Meng, H.; Feng, L.; Wu, Y.; Shiomi, J.; Yang, N. Nano-Cross-Junction Effect on Phonon Transport in Silicon Nanowire Cages. Phys. Rev. B 2016, 94, 165434. [Google Scholar] [CrossRef] [Green Version]
- Kim, P.; Shi, L.; Majumdar, A.; McEuen, P.L. Thermal Transport Measurements of Individual Multiwalled Nanotubes. Phys. Rev. Lett. 2001, 87, 215502. [Google Scholar] [CrossRef] [Green Version]
- Hone, J.; Whitney, M.; Piskoti, C.; Zettl, A. Thermal Conductivity of Single-Walled Carbon Nanotubes. Phys. Rev. B 1999, 59, R2514–R2516. [Google Scholar] [CrossRef]
- Hochbaum, A.I.; Chen, R.; Delgado, R.D.; Liang, W.; Garnett, E.C.; Najarian, M.; Majumdar, A.; Yang, P. Enhanced Thermoelectric Performance of Rough Silicon Nanowires. Nature 2008, 451, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Huang, Y.; Wu, X.; Wang, Q.; Zhou, X.; Xu, X.; Li, B. Thickness-Dependent In-Plane Thermal Conductivity and Enhanced Thermoelectric Performance in p-Type ZrTe5 Nanoribbons. Phys. Status Solidi RRL 2019, 13, 1800529. [Google Scholar] [CrossRef]
- Shi, L.; Li, D.; Yu, C.; Jang, W.; Kim, D.; Yao, Z.; Kim, P.; Majumdar, A. Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device. J. Heat Transf. 2003, 125, 881–888. [Google Scholar] [CrossRef]
- Wingert, M.C.; Chen, Z.C.Y.; Kwon, S.; Xiang, J.; Chen, R. Ultra-Sensitive Thermal Conductance Measurement of One-Dimensional Nanostructures Enhanced by Differential Bridge. Rev. Sci. Instrum. 2012, 83, 24901. [Google Scholar] [CrossRef]
- Dong, L.; Xi, Q.; Chen, D.; Guo, J.; Nakayama, T.; Li, Y.; Liang, Z.; Zhou, J.; Xu, X.; Li, B. Dimensional Crossover of Heat Conduction in Amorphous Polyimide Nanofibers. Natl. Sci. Rev. 2018, 5, 500–506. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Wingert, M.C.; Dechaumphai, E.; Chen, R. Sub-Picowatt/Kelvin Resistive Thermometry for Probing Nanoscale Thermal Transport. Rev. Sci. Instrum. 2013, 84, 114901. [Google Scholar] [CrossRef]
- Mavrokefalos, A.; Pettes, M.T.; Zhou, F.; Shi, L. Four-Probe Measurements of the in-Plane Thermoelectric Properties of Nanofilms. Rev. Sci. Instrum. 2007, 78, 34901. [Google Scholar] [CrossRef]
- Alaie, S.; Goettler, D.F.; Abbas, K.; Su, M.F.; Reinke, C.M.; El-Kady, I.; Leseman, Z.C. Microfabricated Suspended Island Platform for the Measurement of In-Plane Thermal Conductivity of Thin Films and Nanostructured Materials with Consideration of Contact Resistance. Rev. Sci. Instrum. 2013, 84, 105003. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Saha, S.; Zhou, J.; Shi, L.; Cassell, A.M.; Cruden, B.A.; Ngo, Q.; Li, J. Thermal Contact Resistance and Thermal Conductivity of a Carbon Nanofiber. J. Heat Transf. 2005, 128, 234–239. [Google Scholar] [CrossRef]
- Jo, I.; Pettes, M.T.; Lindsay, L.; Ou, E.; Weathers, A.; Moore, A.L.; Yao, Z.; Shi, L. Reexamination of Basal Plane Thermal Conductivity of Suspended Graphene Samples Measured by Electro-Thermal Micro-Bridge Methods. AIP Adv. 2015, 5, 53206. [Google Scholar] [CrossRef] [Green Version]
- Sood, A.; Xiong, F.; Chen, S.; Cheaito, R.; Lian, F.; Asheghi, M.; Cui, Y.; Donadio, D.; Goodson, K.E.; Pop, E. Quasi-Ballistic Thermal Transport Across MoS2 Thin Films. Nano Lett. 2019, 19, 2434–2442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, P.; Qian, X.; Gu, X.; Yang, R. Probing Anisotropic Thermal Conductivity of Transition Metal Dichalcogenides MX2 (M = Mo, W and X = S, Se) Using Time-Domain Thermoreflectance. Adv. Mater. 2017, 29, 1701068. [Google Scholar] [CrossRef]
- Sadeghi, M.M.; Jo, I.; Shi, L. Phonon-Interface Scattering in Multilayer Graphene on an Amorphous Support. Proc. Natl. Acad. Sci. USA 2013, 110, 16321–16326. [Google Scholar] [CrossRef] [Green Version]
- Feshchenko, A.V.; Casparis, L.; Khaymovich, I.M.; Maradan, D.; Saira, O.-P.; Palma, M.; Meschke, M.; Pekola, J.P.; Zumbühl, D.M. Tunnel-Junction Thermometry Down to Millikelvin Temperatures. Phys. Rev. Appl. 2015, 4, 34001. [Google Scholar] [CrossRef] [Green Version]
- Cahill, D.G.; Braun, P.V.; Chen, G.; Clarke, D.R.; Fan, S.; Goodson, K.E.; Keblinski, P.; King, W.P.; Mahan, G.D.; Majumdar, A.; et al. Nanoscale Thermal Transport. II. 2003–2012. Appl. Phys. Rev. 2014, 1, 11305. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Pereira, L.F.C.; Wang, Y.; Wu, J.; Zhang, K.; Zhao, X.; Bae, S.; Tinh Bui, C.; Xie, R.; Thong, J.T.L.; et al. Length-Dependent Thermal Conductivity in Suspended Single-Layer Graphene. Nat. Commun. 2014, 5, 3689. [Google Scholar] [CrossRef] [Green Version]
- Pettes, M.T.; Jo, I.; Yao, Z.; Shi, L. Influence of Polymeric Residue on the Thermal Conductivity of Suspended Bilayer Graphene. Nano Lett. 2011, 11, 1195–1200. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, L.; Chen, J.; Li, B.; Thong, J.T.L. Suppressing Thermal Conductivity of Suspended Tri-Layer Graphene by Gold Deposition. Adv. Mater. 2013, 25, 6884–6888. [Google Scholar] [CrossRef]
- Wang, C.; Guo, J.; Dong, L.; Aiyiti, A.; Xu, X.; Li, B. Superior Thermal Conductivity in Suspended Bilayer Hexagonal Boron Nitride. Sci. Rep. 2016, 6, 25334. [Google Scholar] [CrossRef] [PubMed]
- Yarali, M.; Wu, X.; Gupta, T.; Ghoshal, D.; Xie, L.; Zhu, Z.; Brahmi, H.; Bao, J.; Chen, S.; Luo, T.; et al. Effects of Defects on the Temperature-Dependent Thermal Conductivity of Suspended Monolayer Molybdenum Disulfide Grown by Chemical Vapor Deposition. Adv. Funct. Mater. 2017, 27, 1704357. [Google Scholar] [CrossRef]
- Aiyiti, A.; Hu, S.; Wang, C.; Xi, Q.; Cheng, Z.; Xia, M.; Ma, Y.; Wu, J.; Guo, J.; Wang, Q.; et al. Thermal Conductivity of Suspended Few-Layer MoS2. Nanoscale 2018, 10, 2727–2734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Xie, R.; Bui, C.T.; Liu, D.; Ni, X.; Li, B.; Thong, J.T.L. Thermal Transport in Suspended and Supported Few-Layer Graphene. Nano Lett. 2011, 11, 113–118. [Google Scholar] [CrossRef]
- Aiyiti, A.; Bai, X.; Wu, J.; Xu, X.; Li, B. Measuring the Thermal Conductivity and Interfacial Thermal Resistance of Suspended MoS2 Using Electron Beam Self-Heating Technique. Sci. Bull. 2018, 63, 452–458. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Xie, R.; Yang, N.; Li, B.; Thong, J.T.L. Profiling Nanowire Thermal Resistance with a Spatial Resolution of Nanometers. Nano Lett. 2014, 14, 806–812. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, X.; Rath, A.; Wu, J.; Li, B.; Zhou, W.X.; Xie, G.; Zhang, G.; Thong, J.T.L. Probing Thermal Transport across Amorphous Region Embedded in a Single Crystalline Silicon Nanowire. Sci. Rep. 2020, 10, 821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Liu, D.; Chen, J.; Zhu, L.; Belianinov, A.; Ovchinnikova, O.S.; Unocic, R.R.; Burch, M.J.; Kim, S.; Hao, H.; et al. Engineering the Thermal Conductivity along an Individual Silicon Nanowire by Selective Helium Ion Irradiation. Nat. Commun. 2017, 8, 15919. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Liu, C.; Chai, Y. High Thermally Conductive and Electrically Insulating 2D Boron Nitride Nanosheet for Efficient Heat Dissipation of High-Power Transistors. 2D Mater. 2016, 3, 041009. [Google Scholar] [CrossRef]
- Cai, Q.; Scullion, D.; Gan, W.; Falin, A.; Zhang, S.; Watanabe, K.; Taniguchi, T.; Chen, Y.; Santos, E.J.G.; Li, L.H. High Thermal Conductivity of High-Quality Monolayer Boron Nitride and Its Thermal Expansion. Sci. Adv. 2022, 5, eaav0129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Z.; Maassen, J.; Deng, Y.; Du, Y.; Garrelts, R.P.; Lundstrom, M.S.; Ye, P.D.; Xu, X. Anisotropic In-Plane Thermal Conductivity Observed in Few-Layer Black Phosphorus. Nat. Commun. 2015, 6, 8572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.; Minhaj, T.; Huang, L.; Yu, Y.; Cao, L. In-Plane and Interfacial Thermal Conduction of Two-Dimensional Transition-Metal Dichalcogenides. Phys. Rev. Appl. 2020, 13, 034059. [Google Scholar] [CrossRef]
- Sahoo, S.; Gaur, A.P.S.; Ahmadi, M.; Guinel, M.J.F.; Katiyar, R.S. Temperature-Dependent Raman Studies and Thermal Conductivity of Few-Layer MoS2. J. Phys. Chem. C 2013, 117, 9042–9047. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Zhu, J.; Liu, Z.; Yan, Z.; Fan, X.; Lin, J.; Wang, G.; Yan, Q.; Yu, T.; Ajayan, P.M.; et al. High Thermal Conductivity of Suspended Few-Layer Hexagonal Boron Nitride Sheets. Nano Res. 2014, 7, 1232–1240. [Google Scholar] [CrossRef]
- Balandin, A.A. Thermal Properties of Graphene and Nanostructured Carbon Materials. Nat. Mater. 2011, 10, 569–581. [Google Scholar] [CrossRef] [Green Version]
- Camassel, J.; Falkovsky, L.A.; Planes, N. Strain Effect in Silicon-on-Insulator Materials: Investigation with Optical Phonons. Phys. Rev. B Condens. Matter Mater. Phys. 2001, 63, 353091–3530911. [Google Scholar] [CrossRef] [Green Version]
- Campbell, I.H.; Fauchet, P.M. The Effects of Microcrystal Size and Shape on the One Phonon Raman Spectra of Crystalline Semiconductors. Solid State Commun. 1986, 58, 739–741. [Google Scholar] [CrossRef]
- Chávez, E.; Fuentes, S.; Zarate, R.A.; Padilla-Campos, L. Structural Analysis of Nanocrystalline BaTiO3. J. Mol. Struct. 2010, 984, 131–136. [Google Scholar] [CrossRef]
- Mishra, P.; Jain, K.P. Temperature-Dependent Raman Scattering Studies in Nanocrystalline Silicon and Finite-Size Effects. Phys. Rev. B Condens. Matter Mater. Phys. 2000, 62, 14790–14795. [Google Scholar] [CrossRef]
- Yuan, P.; Wang, R.; Tan, H.; Wang, T.; Wang, X. Energy Transport State Resolved Raman for Probing Interface Energy Transport and Hot Carrier Diffusion in Few-Layered MoS2. ACS Photonics 2017, 4, 3115–3129. [Google Scholar] [CrossRef]
- Tripp, R.; Ferro-Luzzi, M.; Glashow, S.; Rosenfeld, A. Physical Review Letters. Nature 1958, 182, 227–228. [Google Scholar] [CrossRef] [Green Version]
- Islam, A.; Van Den Akker, A.; Feng, P.X.L. Anisotropic Thermal Conductivity of Suspended Black Phosphorus Probed by Opto-Thermomechanical Resonance Spectromicroscopy. Nano Lett. 2018, 18, 7683–7691. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Qian, X.; Yang, R. Tutorial: Time-Domain Thermoreflectance (TDTR) for Thermal Property Characterization of Bulk and Thin Film Materials. J. Appl. Phys. 2018, 124, 161103. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, A.J.; Collins, K.C.; Minnich, A.J.; Chen, G. Thermal Conductance and Phonon Transmissivity of Metal-Graphite Interfaces. J. Appl. Phys. 2010, 107, 104907. [Google Scholar] [CrossRef]
- Costescu, R.M.; Cahill, D.G.; Fabreguette, F.H.; Sechrist, Z.A.; George, S.M. Ultra-Low Thermal Conductivity in W/Al2O3 Nanolaminates. Science 2004, 303, 989–990. [Google Scholar] [CrossRef]
- Koh, Y.K.; Bae, M.H.; Cahill, D.G.; Pop, E. Heat Conduction across Monolayer and Few-Layer Graphenes. Nano Lett. 2010, 10, 4363–4368. [Google Scholar] [CrossRef]
- Cahill, D.G. Thermal-Conductivity Measurement by Time-Domain Thermoreflectance. MRS Bull. 2018, 43, 768–774. [Google Scholar] [CrossRef]
- Li, D.; Wu, Y.; Kim, P.; Shi, L.; Yang, P.; Majumdar, A. Thermal Conductivity of Individual Silicon Nanowires. Appl. Phys. Lett. 2003, 83, 2934–2936. [Google Scholar] [CrossRef]
- Lee, S.; Yang, F.; Suh, J.; Yang, S.; Lee, Y.; Li, G.; Choe, H.S.; Suslu, A.; Chen, Y.; Ko, C.; et al. Anisotropic In-Plane Thermal Conductivity of Black Phosphorus Nanoribbons at Temperatures Higher than 100 K. Nat. Commun. 2015, 6, 8573. [Google Scholar] [CrossRef]
- Jo, I.; Pettes, M.T.; Ou, E.; Wu, W.; Shi, L. Basal-Plane Thermal Conductivity of Few-Layer Molybdenum Disulfide. Appl. Phys. Lett. 2014, 104, 201902. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Tan, Y.W.; Stormer, H.L.; Kim, P. Experimental Observation of the Quantum Hall Effect and Berry’s Phase in Graphene. Nature 2005, 438, 201–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-Dimensional Gas of Massless Dirac Fermions in Graphene. Nature 2005, 438, 197–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, S.; Calizo, I.; Teweldebrhan, D.; Pokatilov, E.P.; Nika, D.L.; Balandin, A.A.; Bao, W.; Miao, F.; Lau, C.N. Extremely High Thermal Conductivity of Graphene: Prospects for Thermal Management Applications in Nanoelectronic Circuits. Appl. Phys. Lett. 2008, 92, 151911. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.; Moore, A.L.; Zhu, Y.; Li, X.; Chen, S.; Shi, L.; Ruoff, R.S. Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition. Nano Lett. 2010, 10, 1645–1651. [Google Scholar] [CrossRef]
- Chen, S.; Moore, A.L.; Cai, W.; Suk, J.W.; An, J.; Mishra, C.; Amos, C.; Magnuson, C.W.; Kang, J.; Shi, L.; et al. Raman Measurements of Thermal Transport in Suspended Monolayer Graphene of Variable Sizes in Vacuum and Gaseous Environments. ACS Nano 2011, 5, 321–328. [Google Scholar] [CrossRef]
- Faugeras, C.; Faugeras, B.; Orlita, M.; Potemski, M.; Nair, R.R.; Geim, A.K. Thermal Conductivity of Graphene in Corbino Membrane Geometry. ACS Nano 2010, 4, 1889–1892. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.U.; Yoon, D.; Kim, H.; Lee, S.W.; Cheong, H. Thermal Conductivity of Suspended Pristine Graphene Measured by Raman Spectroscopy. Phys. Rev. B Condens. Matter Mater. Phys. 2011, 83, 081419. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.Y.; Xia, K.; Zhang, J.; Zhang, Y.; Li, Q.; Takahashi, K.; Zhang, X. Measurement of Specific Heat and Thermal Conductivity of Supported and Suspended Graphene by a Comprehensive Raman Optothermal Method. Nanoscale 2017, 9, 10784–10793. [Google Scholar] [CrossRef]
- Xu, X.; Wang, Y.; Zhang, K.; Zhao, X.; Bae, S.; Heinrich, M.; Bui, C.T.; Xie, R.; Thong, J.T.L.; Hong, B.H. Phonon Transport in Suspended Single Layer Graphene. arXiv 2010, arXiv:1012.2937. [Google Scholar]
- Yoon, K.; Hwang, G.; Chung, J.; Kim, H.G.; Kwon, O.; Kihm, K.D.; Lee, J.S. Measuring the Thermal Conductivity of Residue-Free Suspended Graphene Bridge Using Null Point Scanning Thermal Microscopy. Carbon 2014, 76, 77–83. [Google Scholar] [CrossRef]
- Nika, D.L.; Ghosh, S.; Pokatilov, E.P.; Balandin, A.A. Lattice Thermal Conductivity of Graphene Flakes: Comparison with Bulk Graphite. Appl. Phys. Lett. 2009, 94, 203103. [Google Scholar] [CrossRef] [Green Version]
- Mei, S.; Maurer, L.N.; Aksamija, Z.; Knezevic, I. Full-Dispersion Monte Carlo Simulation of Phonon Transport in Micron-Sized Graphene Nanoribbons. J. Appl. Phys. 2014, 116, 164307. [Google Scholar] [CrossRef] [Green Version]
- Feng, T.; Lindsay, L.; Ruan, X. Four-Phonon Scattering Significantly Reduces Intrinsic Thermal Conductivity of Solids. Phys. Rev. B 2017, 96, 161201. [Google Scholar] [CrossRef] [Green Version]
- Gu, X.; Fan, Z.; Bao, H.; Zhao, C.Y. Revisiting Phonon-Phonon Scattering in Single-Layer Graphene. Phys. Rev. B 2019, 100, 64306. [Google Scholar] [CrossRef] [Green Version]
- Jang, W.; Chen, Z.; Bao, W.; Lau, C.N.; Dames, C. Thickness-Dependent Thermal Conductivity of Encased Graphene and Ultrathin Graphite. Nano Lett. 2010, 10, 3909–3913. [Google Scholar] [CrossRef]
- Duclaux, L.; Nysten, B.; Issi, J.-P.; Moore, A.W. Structure and Low-Temperature Thermal Conductivity of Pyrolytic Boron Nitride. Phys. Rev. B 1992, 46, 3362–3367. [Google Scholar] [CrossRef]
- Simpson, A.; Stuckes, A.D. The Thermal Conductivity of Highly Oriented Pyrolytic Boron Nitride. J. Phys. C Solid State Phys. 1971, 4, 1710–1718. [Google Scholar] [CrossRef]
- Alem, N.; Erni, R.; Kisielowski, C.; Rossell, M.D.; Gannett, W.; Zettl, A. Atomically Thin Hexagonal Boron Nitride Probed by Ultrahigh-Resolution Transmission Electron Microscopy. Phys. Rev. B 2009, 80, 155425. [Google Scholar] [CrossRef]
- Lindsay, L.; Broido, D.A. Theory of Thermal Transport in Multilayer Hexagonal Boron Nitride and Nanotubes. Phys. Rev. B 2012, 85, 35436. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.T.; Bresnehan, M.S.; Robinson, J.A.; Haque, M.A. Thermal Conductivity of Ultra-Thin Chemical Vapor Deposited Hexagonal Boron Nitride Films. Appl. Phys. Lett. 2014, 104, 13113. [Google Scholar] [CrossRef]
- Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010, 105, 2–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Zhang, G.; Pei, Q.X.; Zhang, Y.W. Phonon Thermal Conductivity of Monolayer MoS2 Sheet and Nanoribbons. Appl. Phys. Lett. 2013, 103, 133113. [Google Scholar] [CrossRef]
- Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-Layer MoS2 Transistors. Nat. Nanotechnol. 2011, 6, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, Y.W. Thermal Properties of Transition-Metal Dichalcogenide. Chin. Phys. B 2018, 27, 034402. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, D.; Li, Y.; Lee, G.H.; Cui, X.; Chenet, D.; You, Y.; Heinz, T.F.; Hone, J.C. Measurement of Lateral and Interfacial Thermal Conductivity of Single- and Bilayer MoS2 and MoSe2 Using Refined Optothermal Raman Technique. ACS Appl. Mater. Interfaces 2015, 7, 25923–25929. [Google Scholar] [CrossRef] [Green Version]
- Bae, J.J.; Jeong, H.Y.; Han, G.H.; Kim, J.; Kim, H.; Kim, M.S.; Moon, B.H.; Lim, S.C.; Lee, Y.H. Thickness-Dependent in-Plane Thermal Conductivity of Suspended MoS2 Grown by Chemical Vapor Deposition. Nanoscale 2017, 9, 2541–2547. [Google Scholar] [CrossRef]
- Zhao, Y.; Zheng, M.; Wu, J.; Huang, B.; Thong, J.T.L. Studying Thermal Transport in Suspended Monolayer Molybdenum Disulfide Prepared by a Nano-Manipulator-Assisted Transfer Method. Nanotechnology 2020, 31, 225702. [Google Scholar] [CrossRef]
- Taube, A.; Judek, J.; Łapińska, A.; Zdrojek, M. Temperature-Dependent Thermal Properties of Supported MoS2 Monolayers. ACS Appl. Mater. Interfaces 2015, 7, 5061–5065. [Google Scholar] [CrossRef]
- Yuan, P.; Wang, R.; Wang, T.; Wang, X.; Xie, Y. Nonmonotonic Thickness-Dependence of in-Plane Thermal Conductivity of Few-Layered MoS2: 2.4 to 37.8 Nm. Phys. Chem. Chem. Phys. 2018, 20, 25752–25761. [Google Scholar] [CrossRef]
- Muratore, C.; Varshney, V.; Gengler, J.J.; Hu, J.J.; Bultman, J.E.; Smith, T.M.; Shamberger, P.J.; Qiu, B.; Ruan, X.; Roy, A.K.; et al. Cross-Plane Thermal Properties of Transition Metal Dichalcogenides. Appl. Phys. Lett. 2013, 102, 5–9. [Google Scholar] [CrossRef]
- Liu, J.; Choi, G.M.; Cahill, D.G. Measurement of the Anisotropic Thermal Conductivity of Molybdenum Disulfide by the Time-Resolved Magneto-Optic Kerr Effect. J. Appl. Phys. 2014, 116, 233107. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Wang, T.; Zobeiri, H.; Yuan, P.; Deng, C.; Yue, Y.; Xu, S.; Wang, X. Measurement of the Thermal Conductivities of Suspended MoS2 and MoSe2 by Nanosecond ET-Raman without Temperature Calibration and Laser Absorption Evaluation. Nanoscale 2018, 10, 23087–23102. [Google Scholar] [CrossRef] [PubMed]
- Zobeiri, H.; Wang, R.; Wang, T.; Lin, H.; Deng, C.; Wang, X. Frequency-Domain Energy Transport State-Resolved Raman for Measuring the Thermal Conductivity of Suspended Nm-Thick MoSe2. Int. J. Heat Mass Transf. 2019, 133, 1074–1085. [Google Scholar] [CrossRef]
- Yan, Z.; Jiang, C.; Pope, T.R.; Tsang, C.F.; Stickney, J.L.; Goli, P.; Renteria, J.; Salguero, T.T.; Balandin, A.A. Phonon and Thermal Properties of Exfoliated TaSe2 Thin Films. J. Appl. Phys. 2013, 114, 204301. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Gao, Y.; Easy, E.; Yang, E.H.; Xu, B.; Zhang, X. Thermal Conductivities and Interfacial Thermal Conductance of 2D WSe2. In Proceedings of the 15th IEEE International Conference on Nano/Micro Engineered and Molecular System, NEMS 2020, San Diego, CA, USA, 27–30 September 2020; pp. 575–579. [Google Scholar] [CrossRef]
- Zhou, Y.; Jang, H.; Woods, J.M.; Xie, Y.; Kumaravadivel, P.; Pan, G.A.; Liu, J.; Liu, Y.; Cahill, D.G.; Cha, J.J. Direct Synthesis of Large-Scale WTe2 Thin Films with Low Thermal Conductivity. Adv. Funct. Mater. 2017, 27, 1605928. [Google Scholar] [CrossRef]
- Chen, Y.; Peng, B.; Cong, C.; Shang, J.; Wu, L.; Yang, W.; Zhou, J.; Yu, P.; Zhang, H.; Wang, Y.; et al. In-Plane Anisotropic Thermal Conductivity of Few-Layered Transition Metal Dichalcogenide Td-WTe2. Adv. Mater. 2019, 31, 1804979. [Google Scholar] [CrossRef]
- Jang, H.; Ryder, C.R.; Wood, J.D.; Hersam, M.C.; Cahill, D.G. 3D Anisotropic Thermal Conductivity of Exfoliated Rhenium Disulfide. Adv. Mater. 2017, 29, 1700650. [Google Scholar] [CrossRef] [PubMed]
- Villegas, C.E.P.; Rocha, A.R.; Marini, A. Anomalous Temperature Dependence of the Band Gap in Black Phosphorus. Nano Lett. 2016, 16, 5095–5101. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zheng, Y.; Rui, K.; Hng, H.H.; Hippalgaonkar, K.; Xu, J.; Sun, W.; Zhu, J.; Yan, Q.; Huang, W. 2D Black Phosphorus for Energy Storage and Thermoelectric Applications. Small 2017, 13, 1700661. [Google Scholar] [CrossRef]
- Li, L.; Yu, Y.; Ye, G.J.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X.H.; Zhang, Y. Black Phosphorus Field-Effect Transistors. Nat. Nanotechnol. 2014, 9, 372–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, Y.; Zhang, J.; Cheng Zeng, X. Thermal Transport in Phosphorene and Phosphorene-Based Materials: A Review on Numerical Studies. Chin. Phys. B 2018, 27, 36501. [Google Scholar] [CrossRef]
- Qin, G.; Yan, Q.-B.; Qin, Z.; Yue, S.-Y.; Hu, M.; Su, G. Anisotropic Intrinsic Lattice Thermal Conductivity of Phosphorene from First Principles. Phys. Chem. Chem. Phys. 2015, 17, 4854–4858. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Chen, C.; Kealhofer, R.; Liu, H.; Yuan, Z.; Jiang, L.; Suh, J.; Park, J.; Ko, C.; Choe, H.S.; et al. Black Arsenic: A Layered Semiconductor with Extreme In-Plane Anisotropy. Adv. Mater. 2018, 30, 1800754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, S.; Li, W.; Chen, Z.; Shen, J.; Ge, B.; Pei, Y. Tellurium as a High-Performance Elemental Thermoelectric. Nat. Commun. 2016, 7, 10287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reed, E.J. Two-Dimensional Tellurium. Nature 2017, 552, 40–41. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Qiu, G.; Wang, Y.; Si, M.; Xu, X.; Wu, W.; Ye, P.D. One-Dimensional van Der Waals Material Tellurium: Raman Spectroscopy under Strain and Magneto-Transport. Nano Lett. 2017, 17, 3965–3973. [Google Scholar] [CrossRef] [Green Version]
- Qiao, J.; Pan, Y.; Yang, F.; Wang, C.; Chai, Y.; Ji, W. Few-Layer Tellurium: One-Dimensional-like Layered Elementary Semiconductor with Striking Physical Properties. Sci. Bull. 2018, 63, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Tao, F.; Ren, J. Unusually Low Thermal Conductivity of Atomically Thin 2D Tellurium. Nanoscale 2018, 10, 12997–13003. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Liu, G.; Ren, J. High Thermoelectric Performance in Two-Dimensional Tellurium: An Ab Initio Study. ACS Appl. Mater. Interfaces 2018, 10, 40702–40709. [Google Scholar] [CrossRef]
- Chen, J.; Dai, Y.; Ma, Y.; Dai, X.; Ho, W.; Xie, M. Ultrathin β-Tellurium Layers Grown on Highly Oriented Pyrolytic Graphite by Molecular-Beam Epitaxy. Nanoscale 2017, 9, 15945–15948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Z.; Cai, X.; Yi, S.; Chen, J.; Dai, Y.; Niu, C.; Guo, Z.; Xie, M.; Liu, F.; Cho, J.-H.; et al. Multivalency-Driven Formation of Te-Based Monolayer Materials: A Combined First-Principles and Experimental Study. Phys. Rev. Lett. 2017, 119, 106101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Qiu, G.; Wang, R.; Huang, S.; Wang, Q.; Liu, Y.; Du, Y.; Goddard, W.A.; Kim, M.J.; Xu, X. Field-Effect Transistors Made from Solution-Grown Two-Dimensional Tellurene. Nat. Electron. 2018, 1, 228–236. [Google Scholar] [CrossRef] [Green Version]
- Fleurence, A.; Friedlein, R.; Ozaki, T.; Kawai, H.; Wang, Y.; Yamada-Takamura, Y. Experimental Evidence for Epitaxial Silicene on Diboride Thin Films. Phys. Rev. Lett. 2012, 108, 245501. [Google Scholar] [CrossRef] [PubMed]
- Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M.C.; Resta, A.; Ealet, B.; Le Lay, G. Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon. Phys. Rev. Lett. 2012, 108, 155501. [Google Scholar] [CrossRef] [PubMed]
- Pettes, M.T.; Maassen, J.; Jo, I.; Lundstrom, M.S.; Shi, L. Effects of Surface Band Bending and Scattering on Thermoelectric Transport in Suspended Bismuth Telluride Nanoplates. Nano Lett. 2013, 13, 5316–5322. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Tao, X.; Gu, Y. Thickness-Dependent Thermal Conductivity of Suspended Two-Dimensional Single-Crystal In2Se3 Layers Grown by Chemical Vapor Deposition. J. Phys. Chem. C 2016, 120, 4753–4758. [Google Scholar] [CrossRef]
- Lee, M.-J.; Ahn, J.-H.; Sung, J.H.; Heo, H.; Jeon, S.G.; Lee, W.; Song, J.Y.; Hong, K.-H.; Choi, B.; Lee, S.-H.; et al. Thermoelectric Materials by Using Two-Dimensional Materials with Negative Correlation between Electrical and Thermal Conductivity. Nat. Commun. 2016, 7, 12011. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Wang, R.; Zhao, W.; Jiang, J.; Wei, X.; Zheng, T.; Yang, Y.; Wang, X.; Lu, J.; Ni, Z. Thermal Transport and Energy Dissipation in Two-Dimensional Bi2O2Se. Appl. Phys. Lett. 2019, 115, 193103. [Google Scholar] [CrossRef]
- Qin, Z.; Qin, G.; Zuo, X.; Xiong, Z.; Hu, M. Orbitally Driven Low Thermal Conductivity of Monolayer Gallium Nitride (GaN) with Planar Honeycomb Structure: A Comparative Study. Nanoscale 2017, 9, 4295–4309. [Google Scholar] [CrossRef]
- Li, D.; Gao, J.; Cheng, P.; He, J.; Yin, Y.; Hu, Y.; Chen, L.; Cheng, Y.; Zhao, J. 2D Boron Sheets: Structure, Growth, and Electronic and Thermal Transport Properties. Adv. Funct. Mater. 2020, 30, 1904349. [Google Scholar] [CrossRef]
- Mortazavi, B.; Shahrokhi, M.; Raeisi, M.; Zhuang, X.; Pereira, L.F.C.; Rabczuk, T. Outstanding Strength, Optical Characteristics and Thermal Conductivity of Graphene-like BC3 and BC6N Semiconductors. Carbon 2019, 149, 733–742. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.-Y.; Pei, Q.-X.; Liu, H.-Y.; Wei, N. Thermal Conductivity of a H-BCN Monolayer. Phys. Chem. Chem. Phys. 2017, 19, 27326–27331. [Google Scholar] [CrossRef] [PubMed]
Preparation Method | Graphene Layers | Thermal Conductivity k/W (m·K)−1 |
---|---|---|
Raman Method | ||
Mechanical exfoliation [30] | 1 | ~4840–5300 (Room temperature) |
Mechanical exfoliation [132] | 1 | ~3080–5150 (Room temperature) |
CVD [133] | 1 | ~2500 +1100/−1050 (T = 350 K) |
CVD [133] | 1 | ~1400 +500/−480 (T = 500 K) |
CVD [134] | 1 | ~2600–3100 (T = 350 K) |
Mechanical exfoliation [135] | 1 | ~630 (T = 660 K) |
Mechanical exfoliation [136] | 1 | ~1800 (T = 325 K) |
Mechanical exfoliation [136] | 1 | ~710 (T = 500 K) |
CVD [137] | 1 | ~850–1100 (T = 303–644 K) |
Mechanical exfoliation [137] | 1 | ~1500 (T = 330–445 K) |
Mechanical exfoliation [137] | 2 | ~970 (T = 303–630 K) |
Suspended thermal bridge method | ||
CVD [138] | 1 | ~190 (T = 280 K, L = 0.5 µm) |
CVD [98] | 2 | ~560–620 (Room temperature, L = 5 µm) |
CVD [97] | 1 | ~1689–1831 (T = 300 K, L = 9 µm) |
Scanning thermal microscopy (SThM) | ||
CVD [139] | 1 | ~2100–2430 (T = 335 K) |
Number of Boron Nitride Film Layers | Preparation Method | Measurement Methods | Thermal Conductivity (Room Temperature/300 K) k/(W(m·K)–1) |
---|---|---|---|
5 | Mechanical exfoliation [32] | Microbridge thermometer | ~250 |
11 | Mechanical exfoliation [32] | Microbridge thermometer | ~360 |
9 | CVD [113] | Raman method | ~227–280 |
2.1 nm | CVD [108] | Raman method | ~223 |
10 nm/20 nm | CVD [149] | Steady/transient state | ~100 |
2 | Mechanical exfoliation [100] | Thermal bridge method | ~484 +141/−24 |
4 | Mechanical exfoliation [44] | Thermal bridge method | ~286 |
1 | Mechanical exfoliation [109] | Raman method | 751 ± 340 |
2 | Mechanical exfoliation [109] | Raman method | 646 ± 242 |
3 | Mechanical exfoliation [109] | Raman method | 602 ± 247 |
Preparation Method | Molybdenum Sulfide Film Layers | Measurement Methods | Thermal Conductivity (Room Temperature/300 K) k/(W(m·K)–1) |
---|---|---|---|
CVD [112] | 11 | Raman method | ~52 |
Mechanical exfoliation [56] | 1 | Raman method | 34.5 ± 4 |
Mechanical exfoliation [129] | 4 | Thermal bridge method | ~44–45 |
Mechanical exfoliation [129] | 7 | Thermal bridge method | ~48–52 |
Mechanical exfoliation [154] | 1 | Raman method | 84 ± 17 |
Mechanical exfoliation [154] | 2 | Raman method | 77 ± 25 |
Mechanical exfoliation [104] | 4 | Electron beam self-heating | 34 ± 6 |
Mechanical exfoliation [104] | 5 | Electron beam self-heating | 30 ± 3 |
CVD [155] | 1 | Raman method | 13.3 ± 1.4 |
CVD [155] | 2 | Raman method | 15.6 ± 1.5 |
CVD [156] | 1 | Thermal bridge method | ~21–24 |
CVD [111] | 1 | Raman method | 60.3 ± 5.2 |
CVD [111] | 2 | Raman method | 38.4 ± 3.1 |
CVD [111] | 3 | Raman method | 44.8 ± 5.9 |
CVD [111] | 4 | Raman method | 36.9 ± 4.9 |
Mechanical exfoliation [157] | 1 | Raman method | ~62.2 |
Mechanical exfoliation [158] | 4 | Raman method | 60.3 ± 5 |
Preparation Method | Number of Film Layers | Measurement Methods | Thermal Conductivity (Room Temperature/300 K) k/(W(m·K)−1) |
---|---|---|---|
Molybdenum Selenide (MoSe2) | |||
Mechanical exfoliation [154] | 1 | Raman method | 59 ± 18 |
Mechanical exfoliation [154] | 2 | Raman method | 42 ± 13 |
Mechanical exfoliation [161] | 45 nm | Raman method | 11.1 ± 0.4 |
Mechanical exfoliation [161] | 140 nm | Raman method | 20.3 ± 0.9 |
Mechanical exfoliation [162] | 5 nm | Raman method | 6.2 ± 0.9 |
Mechanical exfoliation [162] | 36 nm | Raman method | 10.8 ± 1.7 |
Tantalum Selenide (TaSe2) | |||
Mechanical exfoliation [163] | 45 nm | Raman method | ~9 |
Mechanical exfoliation [163] | 55 nm | Raman method | ~11 |
Tungsten Sulfide (WS2) | |||
CVD [36] | 1 | Raman method | ~32 |
CVD [36] | 2 | Raman method | ~53 |
CVD [111] | 1 | Raman method | 74.8 ± 17.2 |
Tungsten Selenide (Wse2) | |||
CVD [111] | 1 | Raman method | 66 ± 20.9 |
Mechanical exfoliation [164] | 1 | Raman method | 36 ± 12 |
Tungsten Telluride (Wte2) | |||
Mechanical exfoliation [165] | 220 nm | TDTR | ~2 |
Mechanical exfoliation [166] | 11.2 nm | Raman method | ~0.639–0.743 |
Rhenium sulfide (ReS2) | |||
Mechanical exfoliation [167] | 150 nm | TDTR | ~50–70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalantari, M.H.; Zhang, X. Thermal Transport in 2D Materials. Nanomaterials 2023, 13, 117. https://doi.org/10.3390/nano13010117
Kalantari MH, Zhang X. Thermal Transport in 2D Materials. Nanomaterials. 2023; 13(1):117. https://doi.org/10.3390/nano13010117
Chicago/Turabian StyleKalantari, Mohammad Hassan, and Xian Zhang. 2023. "Thermal Transport in 2D Materials" Nanomaterials 13, no. 1: 117. https://doi.org/10.3390/nano13010117
APA StyleKalantari, M. H., & Zhang, X. (2023). Thermal Transport in 2D Materials. Nanomaterials, 13(1), 117. https://doi.org/10.3390/nano13010117