A New CuSe-TiO2-GO Ternary Nanocomposite: Realizing a High Capacitance and Voltage for an Advanced Hybrid Supercapacitor
Abstract
:1. Introduction
2. Preparation of the Nanomaterials
2.1. Synthesis of CuSe
2.2. TiO2 Synthesis
2.3. Preparation of GO
2.4. Preparation of the CuSe-TiO2-GO Ternary Nanocomposite
2.5. Characterization and Electrode Preparation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, J.-C.; Huang, Z.-H.; Ma, T.-Y. Aqueous supercapacitor with ultrahigh voltage window beyond 2.0 volts. Small Struct. 2020, 1, 2000020. [Google Scholar] [CrossRef]
- Sajjad, M.; Khan, M.I.; Cheng, F.; Lu, W. A review on selection criteria of aqueous electrolytes performance evaluation for advanced asymmetric supercapacitors. J. Energy Storage 2021, 40, 102729. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, X.; Wang, Z.; Sun, F.; Dorrell, D.G. A review of supercapacitor modeling, estimation, and applications: A control/management perspective. Renew. Sustain. Energy Rev. 2018, 81, 1868–1878. [Google Scholar] [CrossRef]
- Zhao, X.; Sajjad, M.; Zheng, Y.; Zhao, M.; Li, Z.; Wu, Z.; Kang, K.; Qiu, L. Covalent organic framework templated ordered nanoporous C60 as durable energy efficient supercapacitor electrode material. Carbon 2021, 182, 144–154. [Google Scholar] [CrossRef]
- Javed, M.S.; Zhang, X.; Ali, S.; Mateen, A.; Idrees, M.; Sajjad, M.; Batool, S.; Ahmad, A.; Imran, M.; Najam, T. Heterostructured bimetallic–sulfide@layered Ti3C2Tx–MXene as a synergistic electrode to realize high-energy-density aqueous hybrid-supercapacitor. Nano Energy 2022, 101, 107624. [Google Scholar] [CrossRef]
- Sajjad, M.; Khan, Y.; Lu, W. One-pot synthesis of 2D SnS2 nanorods with high energy density and long-term stability for high-performance hybrid supercapacitor. J. Energy Storage 2021, 35, 102336. [Google Scholar] [CrossRef]
- Sajjad, M. Recent advances in SiO2-based composite electrodes for supercapacitor applications. J. Inorg. Organomet. Polym. Mater. 2021, 31, 3221–3239. [Google Scholar] [CrossRef]
- Sajjad, M.; Lu, W. Regulating high specific capacitance NCS/α-MnO2 cathode and a wide potential window α-Fe2O3/rGO anode to construct 2.7 V for high performance aqueous asymmetric supercapacitors. J. Energy Storage 2021, 44, 103343. [Google Scholar] [CrossRef]
- Sajjad, M.; Asif, S.U.; Guan, L.; Jiao, Y.; Jiang, Y.; Zhang, L.; Wen, J.; Zhang, S.; Lin, Y.; Zhang, S. Bismuth Yttrium Oxide (Bi3YO6), A New Electrode Material For Asymmetric Aqueous Supercapacitors. J. Inorg. Organomet. Polym. Mater. 2021, 31, 1260–1270. [Google Scholar] [CrossRef]
- Frackowiak, E. Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys. 2007, 9, 1774–1785. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X.; Li, Z.; Ma, Y.; Ma, L. Recent progress of biomass-derived carbon materials for supercapacitors. J. Power Sources 2020, 451, 227794. [Google Scholar] [CrossRef]
- Down, M.P.; Rowley-Neale, S.J.; Smith, G.C.; Banks, C.E. Fabrication of graphene oxide supercapacitor devices. ACS Appl. Energy Mater. 2018, 1, 707–714. [Google Scholar] [CrossRef] [Green Version]
- Pazhamalai, P.; Krishnamoorthy, K.; Mariappan, V.K.; Kim, S.-J. Blue TiO2 nanosheets as a high-performance electrode material for supercapacitors. J. Colloid Interface Sci. 2019, 536, 62–70. [Google Scholar] [CrossRef]
- Park, S.; Shin, D.; Yeo, T.; Seo, B.; Hwang, H.; Lee, J.; Choi, W. Combustion-driven synthesis route for tunable TiO2/RuO2 hybrid composites as high-performance electrode materials for supercapacitors. Chem. Eng. J. 2020, 384, 123269. [Google Scholar] [CrossRef]
- Raj, C.C.; Prasanth, R. advent of TiO2 nanotubes as supercapacitor electrode. J. Electrochem. Soc. 2018, 165, E345. [Google Scholar] [CrossRef]
- Lu, X.; Wang, G.; Zhai, T.; Yu, M.; Gan, J.; Tong, Y.; Li, Y. Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett. 2012, 12, 1690–1696. [Google Scholar] [CrossRef]
- Hu, B.; Xiang, Q.; Cen, Y.; Li, S.; Liu, L.; Yu, D.; Chen, C. In situ constructing flexible V2O5@GO composite thin film electrode for superior electrochemical energy storage. J. Electrochem. Soc. 2018, 165, A3738. [Google Scholar] [CrossRef]
- Obodo, R.M.; Onah, E.O.; Nsude, H.E.; Agbogu, A.; Nwanya, A.C.; Ahmad, I.; Zhao, T.; Ejikeme, P.M.; Maaza, M.; Ezema, F.I. Performance evaluation of graphene oxide based Co3O4@GO, MnO2@GO and Co3O4/MnO2@GO electrodes for supercapacitors. Electroanalysis 2020, 32, 2786–2794. [Google Scholar] [CrossRef]
- Ahmed, A.F.; Yaseen, W.I.; Abbas, Q.A.; Mutlak, F.A. Plasma treatment effect on SnO2–GO nano-heterojunction: Fabrication, characterization and optoelectronic applications. Appl. Phys. A 2021, 127, 746. [Google Scholar] [CrossRef]
- Pawar, S.A.; Patil, D.S.; Shin, J.C. Transition of hexagonal to square sheets of Co3O4 in a triple heterostructure of Co3O4/MnO2/GO for high performance supercapacitor electrode. Curr. Appl. Phys. 2019, 19, 794–803. [Google Scholar] [CrossRef]
- Ahmad, J.; Majid, K. Enhanced visible light driven photocatalytic activity of CdO–graphene oxide heterostructures for the degradation of organic pollutants. New J. Chem. 2018, 42, 3246–3259. [Google Scholar] [CrossRef]
- Venkateshalu, S.; Kumar, P.G.; Kollu, P.; Jeong, S.K.; Grace, A.N. Solvothermal synthesis and electrochemical properties of phase pure pyrite FeS2 for supercapacitor applications. Electrochim. Acta 2018, 290, 378–389. [Google Scholar] [CrossRef]
- Chen, T.; Wei, S.; Wang, Z. NiCo2S4-based composite materials for supercapacitors. ChemPlusChem 2020, 85, 43–56. [Google Scholar] [CrossRef] [Green Version]
- Haider, W.A.; Tahir, M.; He, L.; Yang, W.; Minhas-khan, A.; Owusu, K.A.; Chen, Y.; Hong, X.; Mai, L. Integration of VS2 nanosheets into carbon for high energy density micro-supercapacitor. J. Alloys Compd. 2020, 823, 151769. [Google Scholar] [CrossRef]
- Wang, B.; Hu, R.; Zhang, J.; Huang, Z.; Qiao, H.; Gong, L.; Qi, X. 2D/2D SnS2/MoS2 layered heterojunction for enhanced supercapacitor performance. J. Am. Ceram. Soc. 2020, 103, 1088–1096. [Google Scholar] [CrossRef]
- Ray, S.K.; Pant, B.; Park, M.; Hur, J.; Lee, S.W. Cavity-like hierarchical architecture of WS2/α-NiMoO4 electrodes for supercapacitor application. Ceram. Int. 2020, 46, 19022–19027. [Google Scholar] [CrossRef]
- Chen, J.S.; Guan, C.; Gui, Y.; Blackwood, D.J. Rational design of self-supported Ni3S2 nanosheets array for advanced asymmetric supercapacitor with a superior energy density. ACS Appl. Mater. Interfaces 2017, 9, 496–504. [Google Scholar] [CrossRef]
- Sabeeh, H.; Aadil, M.; Zulfiqar, S.; Ayeman, I.; Shakir, I.; Agboola, P.O.; Haider, S.; Warsi, M.F. Self-supporting design of NiS/CNTs nanohybrid for advanced electrochemical energy storage applications. J. Clust. Sci. 2022, 33, 2113–2121. [Google Scholar] [CrossRef]
- Ahmad, S.A.; Shah, M.Z.U.; ur Rahman, S.; Arif, M.; Lu, J.; Huang, T.; Ahmad, A.; Al-Kahtani, A.A.; Tighezza, A.M.; Sajjad, M. Facile synthesis of hierarchical ZnS@FeSe2 nanostructures as new energy-efficient cathode material for advanced asymmetric supercapacitors. J. Sci. Adv. Mater. Devices 2022, 7, 100489. [Google Scholar] [CrossRef]
- Ramadoss, A.; Kim, G.-S.; Kim, S.J. Fabrication of reduced graphene oxide/TiO2 nanorod/reduced graphene oxide hybrid nanostructures as electrode materials for supercapacitor applications. CrystEngComm 2013, 15, 10222–10229. [Google Scholar] [CrossRef]
- Rani, P.; Ghorai, A.; Roy, S.; Goswami, D.K.; Midya, A.; Ray, S.K. Mesoporous GO-TiO2 nanocomposites for flexible solid-state supercapacitor applications. Mater. Res. Express 2020, 6, 125546. [Google Scholar] [CrossRef]
- Xiang, C.; Li, M.; Zhi, M.; Manivannan, A.; Wu, N. Reduced graphene oxide/titanium dioxide composites for supercapacitor electrodes: Shape and coupling effects. J. Mater. Chem. 2012, 22, 19161–19167. [Google Scholar] [CrossRef]
- Agharezaei, P.; Abdizadeh, H.; Golobostanfard, M.R. Flexible supercapacitor electrodes based on TiO2/rGO/TiO2 sandwich type hybrids. Ceram. Int. 2018, 44, 4132–4141. [Google Scholar] [CrossRef]
- Sajjad, M.; Shah, M.Z.U.; Javed, M.S.; Shah, M.S.; Shah, A.; Lu, W.; Mao, Z. A novel high-performance all-solid-state asymmetric supercapacitor based on CuSe nanoflakes wrapped on vertically aligned TiO2 nanoplates nanocomposite synthesized via a wet-chemical method. J. Energy Storage 2022, 55, 105304. [Google Scholar] [CrossRef]
- Li, J.-C.; Gong, J.; Zhang, X.; Lu, L.; Liu, F.; Dai, Z.; Wang, Q.; Hong, X.; Pang, H.; Han, M. Alternate integration of vertically oriented CuSe@FeOOH and CuSe@MnOOH hybrid nanosheets frameworks for flexible in-plane asymmetric micro-supercapacitors. ACS Appl. Energy Mater. 2020, 3, 3692–3703. [Google Scholar] [CrossRef]
- Gong, J.; Tian, Y.; Yang, Z.; Wang, Q.; Hong, X.; Ding, Q. High-performance flexible all-solid-state asymmetric supercapacitors based on vertically aligned CuSe@Co(OH)2 nanosheet arrays. J. Phys. Chem. C 2018, 122, 2002–2011. [Google Scholar] [CrossRef] [Green Version]
- Karuppasamy, K.; Vikraman, D.; Hussain, S.; Veerasubramani, G.K.; Santhoshkumar, P.; Lee, S.-H.; Bose, R.; Kathalingam, A.; Kim, H.-S. Unveiling a binary metal selenide composite of CuSe polyhedrons/CoSe2 nanorods decorated graphene oxide as an active electrode material for high-performance hybrid supercapacitors. Chem. Eng. J. 2022, 427, 131535. [Google Scholar] [CrossRef]
- Pazhamalai, P.; Krishnamoorthy, K.; Kim, S.J. Hierarchical copper selenide nanoneedles grown on copper foil as a binder free electrode for supercapacitors. Int. J. Hydrogen Energy 2016, 41, 14830–14835. [Google Scholar] [CrossRef]
- Gong, J.; Li, J.-C.; Yang, J.; Zhao, S.; Yang, Z.; Zhang, K.; Bao, J.; Pang, H.; Han, M. High-performance flexible in-plane micro-supercapacitors based on vertically aligned CuSe@Ni(OH)2 hybrid nanosheet films. ACS Appl. Mater. Interfaces 2018, 10, 38341–38349. [Google Scholar] [CrossRef]
- Deng, Y.-f.; Chen, Y.; Zhang, X.-l.; Zhang, Q.; Wei, Z.-j.; Wang, D. One-step synthesis of 2D vertically-aligned hybrid CuSe@NiSe nanosheets for high performance flexible supercapacitors. J. Alloys Compd. 2022, 892, 162159. [Google Scholar] [CrossRef]
- Shah, M.Z.U.; Javed, M.S.; Sajjad, M.; Shah, A.; Shah, M.S.; ur Rahman, S.; Mahmood, A.; Ahmad, M.; Assiri, M.A.; Hou, H. A novel TiO2/CuSe based nanocomposite for high-voltage asymmetric supercapacitors. J. Sci. Adv. Mater. Devices 2022, 7, 100418. [Google Scholar] [CrossRef]
- Sajjad, M.; Javed, M.S.; Imran, M.; Mao, Z. CuCo2O4 nanoparticles wrapped in a rGO aerogel composite as an anode for a fast and stable Li-ion capacitor with ultra-high specific energy. New J. Chem. 2021, 45, 20751–20764. [Google Scholar] [CrossRef]
- Ramadoss, A.; Kim, S.J. Improved activity of a graphene–TiO2 hybrid electrode in an electrochemical supercapacitor. Carbon 2013, 63, 434–445. [Google Scholar] [CrossRef]
- Korkmaz, S.; Tezel, F.M.; Kariper, İ. Synthesis and characterization of GO/IrO2 thin film supercapacitor. J. Alloys Compd. 2018, 754, 14–25. [Google Scholar] [CrossRef]
- Singu, B.S.; Male, U.; Srinivasan, P.; Pabba, S. Use of surfactant in aniline polymerization with TiO2 to PANI-TiO2 for supercapacitor performance. J. Solid State Electrochem. 2014, 18, 1995–2003. [Google Scholar] [CrossRef]
- Wang, A.; Wang, H.; Zhang, S.; Mao, C.; Song, J.; Niu, H.; Jin, B.; Tian, Y. Controlled synthesis of nickel sulfide/graphene oxide nanocomposite for high-performance supercapacitor. Appl. Surf. Sci. 2013, 282, 704–708. [Google Scholar] [CrossRef]
- Ma, L.; Su, L.; Zhang, J.; Zhao, D.; Qin, C.; Jin, Z.; Zhao, K. A controllable morphology GO/PANI/metal hydroxide composite for supercapacitor. J. Electroanal. Chem. 2016, 777, 75–84. [Google Scholar] [CrossRef]
- Korkmaz, S.; Tezel, F.M.; Kariper, I. Synthesis and characterization of GO/V2O5 thin film supercapacitor. Synth. Met. 2018, 242, 37–48. [Google Scholar] [CrossRef]
- Liu, S.; Luo, C.; Chai, L.; Ren, J. Ball-milling fabrication of PPy/Ni2P/GO composites for high-performance supercapacitor electrodes. J. Solid State Electrochem. 2021, 25, 1975–1985. [Google Scholar] [CrossRef]
- Aboutalebi, S.H.; Chidembo, A.T.; Salari, M.; Konstantinov, K.; Wexler, D.; Liu, H.K.; Dou, S.X. Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors. Energy Environ. Sci. 2011, 4, 1855–1865. [Google Scholar] [CrossRef]
- Ramesh, S.; Vikraman, D.; Kim, H.-S.; Kim, H.S.; Kim, J.-H. Electrochemical performance of MWCNT/GO/NiCo2O4 decorated hybrid nanocomposite for supercapacitor electrode materials. J. Alloys Compd. 2018, 765, 369–379. [Google Scholar] [CrossRef]
- Gui, D.; Liu, C.; Chen, F.; Liu, J. Preparation of polyaniline/graphene oxide nanocomposite for the application of supercapacitor. Appl. Surf. Sci. 2014, 307, 172–177. [Google Scholar] [CrossRef]
- Singu, B.S.; Yoon, K.R. Highly exfoliated GO-PPy-Ag ternary nanocomposite for electrochemical supercapacitor. Electrochim. Acta 2018, 268, 304–315. [Google Scholar] [CrossRef]
- Prabhu, S.; Gowdhaman, A.; Harish, S.; Navaneetham, M.; Ramesh, R. Synthesis of petal-like CoMoO4/r-GO composites for high performances hybrid supercapacitor. Mater. Lett. 2021, 295, 129821. [Google Scholar] [CrossRef]
- Li, J.-J.; Liu, M.-C.; Kong, L.-B.; Wang, D.; Hu, Y.-M.; Han, W.; Kang, L. Advanced asymmetric supercapacitors based on Ni3(PO4)2@GO and Fe2O3@GO electrodes with high specific capacitance and high energy density. RSC Adv. 2015, 5, 41721–41728. [Google Scholar] [CrossRef]
- Azman, N.H.N.; Lim, H.N.; Sulaiman, Y. Effect of electropolymerization potential on the preparation of PEDOT/graphene oxide hybrid material for supercapacitor application. Electrochim. Acta 2016, 188, 785–792. [Google Scholar] [CrossRef]
- Asen, P.; Shahrokhian, S. Ternary nanostructures of Cr2O3/graphene oxide/conducting polymers for supercapacitor application. J. Electroanal. Chem. 2018, 823, 505–516. [Google Scholar] [CrossRef]
- Sajjad, M.; Jiang, Y.; Guan, L.; Chen, X.; Iqbal, A.; Zhang, S.; Ren, Y.; Zhou, X.; Liu, Z. NiCo2S4 nanosheet grafted SiO2@C core-shelled spheres as a novel electrode for high performance supercapacitors. Nanotechnology 2019, 31, 045403. [Google Scholar] [CrossRef]
- Malavekar, D.; Bulakhe, R.; Kale, S.; Patil, U.; In, I.; Lokhande, C. Synthesis of layered copper selenide on reduced graphene oxide sheets via SILAR method for flexible asymmetric solid-state supercapacitor. J. Alloys Compd. 2021, 869, 159198. [Google Scholar] [CrossRef]
- Kim, H.; Cho, M.Y.; Kim, M.H.; Park, K.Y.; Gwon, H.; Lee, Y.; Roh, K.C.; Kang, K. A novel high-energy hybrid supercapacitor with an anatase TiO2–reduced graphene oxide anode and an activated carbon cathode. Adv. Energy Mater. 2013, 3, 1500–1506. [Google Scholar] [CrossRef]
- De, B.; Kuila, T.; Kim, N.H.; Lee, J.H. Carbon dot stabilized copper sulphide nanoparticles decorated graphene oxide hydrogel for high performance asymmetric supercapacitor. Carbon 2017, 122, 247–257. [Google Scholar] [CrossRef]
- Li, S.; Shi, C.; Pan, Y.; Wang, Y. 2D/2D NiCo-MOFs/GO hybrid nanosheets for high-performance asymmetrical supercapacitor. Diam. Relat. Mater. 2021, 115, 108358. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, H.; Xue, R.; Yue, L.; Li, Q.; Liu, H.; Yang, W.; Wang, X.; Yang, W. In-situ facile synthesis of flower shaped NiS2@ regenerative graphene oxide derived from waste dry battery nano-composites for high-performance supercapacitors. J. Energy Storage 2020, 31, 101630. [Google Scholar] [CrossRef]
- Ismail, J.; Sajjad, M.; Shah, M.Z.U.; Hussain, R.; Khan, B.A.; Maryam, R.; Shah, A.; Mahmood, A.; ur Rahman, S. Comparative capacitive performance of MnSe encapsulated GO based nanocomposites for advanced electrochemical capacitor with rapid charge transport channels. Mater. Chem. Phys. 2022, 284, 126059. [Google Scholar] [CrossRef]
- Sajjad, M.; Ismail, J.; Shah, A.; Mahmood, A.; Shah, M.Z.U.; ur Rahman, S.; Lu, W. Fabrication of 1.6 V hybrid supercapacitor developed using MnSe2/rGO positive electrode and phosphine based covalent organic frameworks as a negative electrode enables superb stability up to 28,000 cycles. J. Energy Storage 2021, 44, 103318. [Google Scholar] [CrossRef]
Current Density (A/g) | 1 | 3 | 5 | 7 | 9 | 12 |
---|---|---|---|---|---|---|
Specific Capacitance (F/g) | 920 | 817 | 750 | 633 | 553 | 321 |
Specific Capacity (mAh/g) | 153 | 136 | 125 | 105 | 93 | 53 |
Coulombic Efficiency (%) | 69 | 58 | 54 | 77 | 73 | 73 |
Current Density (A/g) | 1 | 2 | 5 | 7 | 10 |
---|---|---|---|---|---|
Specific Capacitance (F/g) | 175 | 143 | 132 | 111 | 96 |
Specific Energy (Wh/kg) | 36 | 27 | 22 | 19 | 15 |
Specific Power (W/kg) | 875 | 1281 | 2193 | 3477 | 4781 |
Electrode Material | Voltage (V) | Capacitance (F/g) | Specific Energy (Wh/kg) | Specific Power (W/kg) | Stability (%) | Ref. |
---|---|---|---|---|---|---|
CoSe2/CuSe hybrid SC | 1.6 | 192.8 | 54.6 | 700 | 82.5@10k | [37] |
CuSe@TiO2||AC ASC | 1.8 | 70 | 31.5 | 4500 | 99.6@10k | [34] |
CuSe2/rGO||CuS ASC | 1.5 | 104 | 28.3 | 1538 | 86.5@5k | [59] |
TiO2/rGO||AC ASC | 3 | 89 | 42 | 800 | 80@10k | [60] |
Fe2O3@GO//Ni3(PO4)2@GO ASC | 1.6 | 189 | 67.2 | 1276.3 | 88@1k | [55] |
PEDOT/graphene oxide supercapacitor | 1.2 | 115.15 | 13.60 | 139.09 | - | [56] |
CuS@carbon dot ASC | 1.4 | 103 | 28 | 700 | 90@5k | [61] |
2D/2D NiCo-MOF/GO ASC | 1.6 | 162 C/g | 36.83 | 374.99 | - | [62] |
Re-GO@NiS2 ASC | 1.6 | 80 | 28.31 | 800 | 83.34@10k | [63] |
MnSe/GO//AC | 1.6 | 56.25 | 31.25 | 6779.20 | 86.3@5k | [64] |
MnSe2/rGO//AC | 1.6 | - | 16.6 | 7200 | 99@10k | [65] |
CuSe-TiO2-GO||AC-GO||KOH hybrid supercapacitor | 2 | 175 | 36 | 4781 | 91.3@5k | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sajjad, M.; Khan, A.J.; Eldin, S.M.; Alothman, A.A.; Ouladsmane, M.; Bocchetta, P.; Arifeen, W.U.; Javed, M.S.; Mao, Z. A New CuSe-TiO2-GO Ternary Nanocomposite: Realizing a High Capacitance and Voltage for an Advanced Hybrid Supercapacitor. Nanomaterials 2023, 13, 123. https://doi.org/10.3390/nano13010123
Sajjad M, Khan AJ, Eldin SM, Alothman AA, Ouladsmane M, Bocchetta P, Arifeen WU, Javed MS, Mao Z. A New CuSe-TiO2-GO Ternary Nanocomposite: Realizing a High Capacitance and Voltage for an Advanced Hybrid Supercapacitor. Nanomaterials. 2023; 13(1):123. https://doi.org/10.3390/nano13010123
Chicago/Turabian StyleSajjad, Muhammad, Abdul Jabbar Khan, Sayed M. Eldin, Asma A. Alothman, Mohamed Ouladsmane, Patrizia Bocchetta, Waqas Ul Arifeen, Muhammad Sufyan Javed, and Zhiyu Mao. 2023. "A New CuSe-TiO2-GO Ternary Nanocomposite: Realizing a High Capacitance and Voltage for an Advanced Hybrid Supercapacitor" Nanomaterials 13, no. 1: 123. https://doi.org/10.3390/nano13010123
APA StyleSajjad, M., Khan, A. J., Eldin, S. M., Alothman, A. A., Ouladsmane, M., Bocchetta, P., Arifeen, W. U., Javed, M. S., & Mao, Z. (2023). A New CuSe-TiO2-GO Ternary Nanocomposite: Realizing a High Capacitance and Voltage for an Advanced Hybrid Supercapacitor. Nanomaterials, 13(1), 123. https://doi.org/10.3390/nano13010123