Carbon Isotope Fractionation Characteristics of Normally Pressured Shale Gas from the Southeastern Margin of the Sichuan Basin; Insights into Shale Gas Storage Mechanisms
Abstract
:1. Introduction
2. Geological Background
3. Samples and Methods of Analysis
4. Results and Discussion
4.1. Influence of Thermal Evolution Characteristics on Shale Gas Geochemistry
4.2. Factors That Control Gas Geochemical Characteristics
4.3. Insights into the Enrichment Mechanisms of Normally Pressured Shale Gas and Regions of Favorable Formation
5. Conclusions
- (1)
- The carbon isotope characteristics of shale gas in the Wufeng–Longmaxi Formation in the Sichuan Basin are mainly controlled by thermal maturity. The carbon isotope values of shale gas become heavier with increasing thermal maturity; for example, lighter δ13C1 and δ13C2 values were documented in Weiyuan, but heavier δ13C1 and δ13C2 values were documented in Changning.
- (2)
- The shale gas samples collected from various localities in the study region record a similar thermal evolution; however, they show different geochemical characteristics. The composition of δ13C1 and δ13C2 became heavier across five studied structural areas, in accordance with a decrease in the pressure coefficient, whereas the dryness coefficient of the studied shale gas decreased, as did the decreasing pressure coefficient. This indicates that the degree of thermal evolution was unlikely to be the main factor causing the differences between δ13C1 and δ13C2 in normally pressured shale gas in the study area.
- (3)
- Alternative factors that control the differences between δ13C1 and δ13C2 in normally pressured shale gas were discussed. We determined that factors such as TSR, the microbial degradation of alkane gas, different types of hydrocarbon-generating parent materials, the mixing of organic and inorganic alkane gas, and the mixing of oil-formed gas and coal-formed gas, are unsuitable for the study region. Instead, we posit that tectonic activity disrupted geological structures and destroyed original shale gas reservoirs, thus leading to the escape of some gases, which then drove carbon isotope reversals in the remaining gas.
- (4)
- The carbon isotope characteristics of normally pressured shale gas are more efficient indicators for identifying favorable shale gas sweet spots during exploration compared with geological parameters of shale samples, such as mineral composition, organic abundance, organic pore distribution, and gas content.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, C.H.; Li, H.; Qin, Q.R.; He, S.; Zhong, C. Geological conditions and exploration potential of shale gas reservoir in Wufeng and Longmaxi Formation of southeastern Sichuan Basin, China. J. Pet. Sci. Eng. 2020, 191, 107138. [Google Scholar] [CrossRef]
- He, T.H.; Li, W.H.; Lu, S.F.; Yang, E.Q.; Jing, T.T.; Ying, J.F.; Zhu, P.F.; Wang, X.Z.; Pan, W.Q.; Zhang, B.S.; et al. Quantitatively unmixing method for complex mixed oil based on its fractions carbon isotopes: A case from the Tarim Basin, NW China. Pet. Sci. 2022, in press. [Google Scholar] [CrossRef]
- Wang, S.Q. Shale gas exploitation: Status, problems and prospect. Nat. Gas Ind. B 2018, 5, 60–74. [Google Scholar] [CrossRef]
- Li, S.Z.; Zhou, Z.; Nie, H.K.; Zhang, L.F.; Song, T.; Liu, W.B.; Li, H.H.; Xu, Q.C.; Wei, S.Y.; Tao, S. Distribution characteristics, exploration and development, geological theories research progress and exploration directions of shale gas in China. China Geol. 2022, 5, 110–135. [Google Scholar] [CrossRef]
- Dong, D.Z.; Shi, Z.S.; Guan, Q.Z.; Jiang, S.; Zhang, M.Q.; Zhang, C.C.; Wang, S.Y.; Sun, S.S.; Yu, R.Z.; Liu, D.X.; et al. Progress, challenges and prospects of shale gas exploration in the Wufeng–Longmaxi reservoirs in the Sichuan Basin. Nat. Gas Ind. B 2018, 5, 415–424. [Google Scholar] [CrossRef]
- Guo, T.L. Evaluation of highly thermally mature shale-gas reservoirs in complex structural parts of the Sichuan Basin. J. Earth Sci. 2013, 24, 863–873. [Google Scholar] [CrossRef]
- Guo, T.L.; Zhang, H.R. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin. Pet. Explor. Dev. 2014, 41, 31–40. [Google Scholar] [CrossRef]
- Hao, F.; Zou, H.Y.; Lu, Y.C. Mechanisms of shale gas storage: Implications for shale gas exploration in China. AAPG Bull. 2013, 97, 1325–1346. [Google Scholar] [CrossRef]
- Yang, P.; Yu, Q.; Mou, C.L.; Wang, Z.J.; Liu, W.; Zhao, Z.; Liu, J.H.; Xiong, G.Q.; Deng, Q. Shale gas enrichment model and exploration implications in the mountainous complex structural area along the southwestern margin of the Sichuan Basin: A new shale gas area. Nat. Gas Ind. B 2021, 8, 431–442. [Google Scholar] [CrossRef]
- He, X.P.; He, G.S.; Gao, Y.Q.; Zhang, P.X.; Lu, S.F.; Wan, J.Y. Geological characteristics and enrichment laws of normal-pressure shale gas in the basin-margin transition zone of SE Chongqing. Nat. Gas Ind. B 2019, 6, 333–346. [Google Scholar] [CrossRef]
- He, X.P.; Zhang, P.X.; Fang, D.Z.; Mei, J.W.; He, G.S.; Lu, B. Production characteristics of normal pressure shale gas in Pengshui-Wulong area, southeast Chongqing. Pet. Geol. Recovery Effic. 2018, 25, 72–79. [Google Scholar] [CrossRef]
- Jia, A.Q.; Hu, D.F.; He, S.; Guo, X.W.; Hou, Y.G.; Wang, T.; Yang, R. Variations of Pore Structure in Organic-Rich Shales with Different Lithofacies from the Jiangdong Block, Fuling Shale Gas Field, SW China: Insights into Gas Storage and Pore Evolution. Energy Fuels 2020, 34, 12457–12475. [Google Scholar] [CrossRef]
- Shu, Y.; Lu, Y.C.; Chen, L.; Wang, C.; Zhang, B.Q. Factors influencing shale gas accumulation in the lower Silurian Longmaxi formation between the north and South Jiaoshiba area, Southeast Sichuan Basin, China. Mar. Pet. Geol. 2020, 111, 905–917. [Google Scholar] [CrossRef]
- Xu, S.; Hao, F.; Shu, Z.G.; Zhang, A.H.; Yang, F. Pore structures of different types of shales and shale gas exploration of the Ordovician Wufeng and Silurian Longmaxi successions in the eastern Sichuan Basin, South China. J. Asian Earth Sci. 2020, 193, 104271. [Google Scholar] [CrossRef]
- Dong, T.; Harris, N.B.; Ayranci, K.; Twemlow, C.E.; Nassichuk, B.R. The impact of composition on pore throat size and permeability in high maturity shales: Middle and Upper Devonian Horn River Group, northeastern British Columbia, Canada. Mar. Pet. Geol. 2017, 81, 220–236. [Google Scholar] [CrossRef]
- Guo, T.; Zeng, P. The Structural and Preservation Conditions for Shale Gas Enrichment and High Productivity in the Wufeng—Longmaxi Formation, Southeastern Sichuan Basin. Energy Explor. Exploit. 2015, 33, 259–276. [Google Scholar] [CrossRef] [Green Version]
- Powley, D.E. Pressures and hydrogeology in petroleum basins. Earth-Sci. Rev. 1990, 29, 215–226. [Google Scholar] [CrossRef]
- Hu, D.F.; Zhang, H.R.; Ni, K.; Yu, G.C. Main controlling factors for gas preservation conditions of marine shales insoutheastern margins of the Sichuan Basin. Natur. Gasind. 2014, 34, 17–23. [Google Scholar] [CrossRef]
- Wood, D.A.; Hazra, B. Characterization of organic-rich shales for petroleum exploration & exploitation: A review-Part 2: Geochemistry, thermal maturity, isotopes and biomarkers. J. Earth Sci. 2017, 28, 758–778. [Google Scholar] [CrossRef]
- Shi, X.W.; Kang, S.J.; Luo, C.; Wu, W.; Zhao, S.X.; Zhu, D.; Zhang, H.X.; Yang, Y.; Xiao, Z.L.; Li, Y. Shale gas exploration potential and reservoir conditions of the Longmaxi Formation in the Changning area, Sichuan Basin, SW China: Evidence from mud gas isotope logging. J. Asian Earth Sci. 2022, 233, 105239. [Google Scholar] [CrossRef]
- Tilley, B.; McLellan, S.; Hiebert, S.; Quartero, B.; Veilleux, B.; Muehlenbachs, K. Gas isotope reversals in fractured gas reservoirs of the western Canadian Foothills: Mature shale gases in disguise. AAPG Bull. 2011, 95, 1399–1422. [Google Scholar] [CrossRef]
- Xia, X.Y.; Chen, J.; Braun, R.; Tang, Y.C. Isotopic reversals with respect to maturity trends due to mixing of primary and secondary products in source rocks. Chem. Geol. 2013, 339, 205–212. [Google Scholar] [CrossRef]
- Zumberge, J.; Ferworn, K.; Brown, S. Isotopic reversal (‘rollover’) in shale gases produced from the Mississippian Barnett and Fayetteville formations. Mar. Pet. Geol. 2012, 31, 43–52. [Google Scholar] [CrossRef]
- Wan, C.X.; Song, Y.; Li, Z.; Jiang, Z.X.; Zhou, C.H.; Chen, Z.Y.; Chang, J.Q.; Hong, L. Variation in the brittle-ductile transition of Longmaxi shale in the Sichuan Basin, China: The significance for shale gas exploration. J. Pet. Sci. Eng. 2022, 209, 109858. [Google Scholar] [CrossRef]
- Zhao, J.H.; Jin, Z.J.; Jin, Z.K.; Hu, Q.H.; Hu, Z.Q.; Du, W.; Yan, C.N.; Geng, Y.K. Mineral types and organic matters of the Ordovician-Silurian Wufeng and Longmaxi Shale in the Sichuan Basin, China: Implications for pore systems, diagenetic pathways, and reservoir quality in fine-grained sedimentary rocks. Mar. Pet. Geol. 2017, 86, 655–674. [Google Scholar] [CrossRef]
- Hao, F.; Guo, T.L.; Zhu, Y.M.; Cai, X.Y.; Zou, H.Y.; Li, P.P. Evidence for multiple stages of oil cracking and thermochemical sulfate reduction in the Puguang gas field, Sichuan Basin, China. AAPG Bull. 2008, 92, 611–637. [Google Scholar] [CrossRef]
- Yong, R.; Wu, J.F.; Huang, H.Y.; Xu, E.S.; Xu, B. Complex in situ stress states in a deep shale gas reservoir in the southern Sichuan Basin, China: From field stress measurements to in situ stress modeling. Mar. Pet. Geol. 2022, 141, 105702. [Google Scholar] [CrossRef]
- Chen, L.; Lu, Y.C.; Jiang, S.; Li, J.Q.; Guo, T.L.; Luo, C.; Xing, F.C. Sequence stratigraphy and its application in marine shale gas exploration: A case study of the Lower Silurian Longmaxi Formation in the Jiaoshiba shale gas field and its adjacent area in southeast Sichuan Basin, SW China. J. Nat. Gas Sci. Eng. 2015, 27, 410–423. [Google Scholar] [CrossRef]
- Zhang, W.T.; Hu, W.X.; Borjigin, T.; Zhu, F. Pore characteristics of different organic matter in black shale: A case study of the Wufeng-Longmaxi Formation in the Southeast Sichuan Basin, China. Mar. Pet. Geol. 2020, 111, 33–43. [Google Scholar] [CrossRef]
- Yong, T.; Fan, Y.; Lv, Q.Q.; Tang, W.J.; Wang, H.K. Analysis of the Tectonic Stress Field of SE Sichuan and its Impact on the Preservation of Shale Gas in Lower Silurian Longmaxi Formation of the Dingshan Region, China. J. Geol. Soc. India 2018, 92, 92–100. [Google Scholar] [CrossRef]
- He, X.P.; Gao, Y.Q.; Tang, X.C.; Zhang, P.X.; He, G.S. Analysis of major factors controlling the accumulation in normal pressure shale gas in the southeast of Chongqing. Nat. Gas Geosci. 2017, 28, 654–664. [Google Scholar] [CrossRef]
- Tang, J.G.; Wang, K.M.; Qin, D.C.; Zhang, Y.; Feng, T. Tectonic deformation and its constraints to shale gas accumulation in Nanchuan area, southeastern Sichuan Basin. Bull. Geol. Sci. Technol. 2021, 40, 11–21. [Google Scholar] [CrossRef]
- Zhang, H.T.; Zhang, Y.; He, X.P.; Gao, Y.Q.; Zhang, P.X. The effect of tectonism on shale gas formation and preservation in Wulong area, southeastern Chongqing. China Pet. Explor. 2018, 23, 47–56. [Google Scholar] [CrossRef]
- Meng, Q.; Wang, X.F.; Wang, X.Z.; Shi, B.G.; Luo, X.R.; Zhang, L.X.; Lei, Y.H.; Jiang, C.F.; Liu, P. Gas geochemical evidences for biodegradation of shale gases in the Upper Triassic Yanchang Formation, Ordos Basin, China. Int. J. Coal Geol. 2017, 179, 139–152. [Google Scholar] [CrossRef]
- Wang, L.; Ning, B. Cause of Carbon lsotope Inversion of Marine Shale Gas in Sichuan Basin. J. Xi’an Univ. (Nat. Sci. Ed.) 2020, 23, 81–85. [Google Scholar]
- Cao, C.H.; Zhang, M.J.; Tang, Q.Y.; Lv, Z.G.; Wang, Y.; Du, L.; Li, Z.P. Geochemical Characteristics and lmplications of Shale Gas in Longmaxi Formation, Sichuan Basin, China. Nat. Gas Geosci. 2015, 26, 1604–1612. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.Q.; Zhang, J.Z.; Xu, H.W.; Wang, G.; Zhou, B.G.; Yang, J.; Wang, Y. Longmaxi Formation Shale Gas Geochemical Features Comparison between Different Blocks in Sichuan Basin. Coal Geol. China 2016, 28, 22–27. [Google Scholar] [CrossRef]
- Dai, J.X.; Zou, C.N.; Liao, S.M.; Dong, D.Z.; Ni, Y.Y.; Huang, J.L.; Wu, W.; Gong, D.Y.; Huang, S.P.; Hu, G.Y. Geochemistry of the extremely high thermal maturity Longmaxi shale gas, southern Sichuan Basin. Org. Geochem. 2014, 74, 3–12. [Google Scholar] [CrossRef]
- Wu, W.; Huang, S.P.; Hu, G.Y.; Gong, D.Y. A Comparison between Shale Gas and Conventional Gas on Geochemical Characteristics in Weiyuan Area. Nat. Gas Geosci. 2014, 25, 1994–2002. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.B.; Hou, L.H.; Chen, C.; Guo, J.Y.; Yang, C.L.; Wang, Y.F.; Li, Z.S.; Cui, H.Y.; Hao, A.S.; et al. Geochemical characteristics and resource potential of shale gas in Sichuan Basin. Nat. Gas Geosci. 2021, 32, 1093–1106. [Google Scholar] [CrossRef]
- Liu, R.B. Typical Features of the First Giant Shale Gas Field in China. Nat. Gas Geosci. 2015, 26, 1488–1498. [Google Scholar] [CrossRef]
- Niu, Q.; Zhang, H.X.; Zhu, D.; Xu, Z.Y.; Yang, Y.F.; Ding, A.X.; Gao, H.Q.; Zhang, L.S. Mud gas isotopic logging of Wufeng-Longmaxi shale in southeastern Sichuan Basin. Nat. Gas Geosci. 2020, 31, 1294–1305. [Google Scholar] [CrossRef]
- Wei, X.F.; Guo, T.L.; Liu, R.B. Geochemical features of shale gas and their genesis in Jiaoshiba block of Fuling Shale Gasfield, Chongqing. Nat. Gas Geosci. 2016, 27, 539–548. [Google Scholar] [CrossRef]
- Teng, G.E.; Tao, C.; Hu, G.; Shen, B.J.; Ma, Z.L.; Pan, A.Y.; Wang, J.; Wang, X.H.; Xu, E.S. Effect of hydrocarbon expulsion efficiency on shale gas formation and enrichment. Pet. Geol. Exp. 2020, 42, 325–334. [Google Scholar] [CrossRef]
- Feng, Z.Q.; Liu, D.; Huang, S.P.; Wu, W.; Dong, D.Z.; Peng, W.L.; Han, W.X. Carbon isotopic composition of shale gas in the Silurian Longmaxi Formation of the Changning area, Sichuan Basin. Pet. Explor. Dev. 2016, 43, 769–777. [Google Scholar] [CrossRef]
- Dai, J.X.; Song, Y.; Cheng, K.F.; Hong, F.; Fan, G.F. Characteristics of carbon isotopes of organic alkane gases inpetroliferous basins of China. Acta Pet. Sin. 1993, 14, 23–31. [Google Scholar]
- Liu, W.H.; Xu, Y.C. A two stage model of carbon isotopic fractionation in coal gas. Geochimica 1999, 4, 359–366. [Google Scholar] [CrossRef]
- Schoell, M. The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochim. Cosmochim. Acta 1980, 44, 649–661. [Google Scholar] [CrossRef]
- Stahl, W.J. Carbon and nitrogen isotopes in hydrocarbon research and exploration. Chem. Geol. 1977, 20, 121–149. [Google Scholar] [CrossRef]
- Tang, Y.C.; Huang, Y.S.; Ellis, G.S.; Wang, Y.; Kralert, P.G.; Gillaizeau, B.; Ma, Q.S.; Hwang, R. A kinetic model for thermally induced hydrogen and carbon isotope fractionation of individual n-alkanes in crude oil. Geochim. Cosmochim. Acta 2005, 69, 4505–4520. [Google Scholar] [CrossRef]
- Zhang, W.Z. Mature fractionation of organic carbon isotope and its geological significance. Exp. Pet. Geol. 1989, 11, 177–184. [Google Scholar]
- Lu, Q.Z.; Guo, T.L.; Hu, S.B. Hydrothermal History and Hydrocarbon Generation History in Northeastern Sichuan Basin. Xinjiang Pet. Geol. 2006, 27, 549–551. [Google Scholar] [CrossRef]
- Wu, Q.; Peng, J.N. Burial and thermal histories of northeastern Sichuan Basin: A case study of well Puguang 2. Pet. Geol. Exp. 2013, 35, 133–138. [Google Scholar] [CrossRef]
- Gao, B. Geochemical Characteristics of Shale Gas from Lower Silurian Longmaxi Formation in the Sichuan Basin and Its Geological Significance. Nat. Gas Geosci. 2015, 26, 1173–1182. [Google Scholar] [CrossRef]
- Gou, Q.Y.; Xu, S.; Hao, F.; Shu, Z.G. Evaluation of Shale Pore Connectivity and Effectiveness in the Jiaoshiba Area, Sichuan Basin. Acta Sedimentol. Sin. 2021, 5, 1419–1426. [Google Scholar] [CrossRef]
- He, X.P.; Qi, Y.P.; He, S.G.; Gao, Y.Q.; Liu, M.; Zhang, P.X.; Wang, K.M. Further understanding of main controlling factors of normal pressure shale gas enrichment and high yield in the area with complex structure of the southeast area of Chongqing. Reserv. Eval. Dev. 2019, 9, 32–39. [Google Scholar] [CrossRef]
- Xiong, L.; Yang, Z.H.; Shen, B.J.; Lu, L.F.; Wei, L.M.; Wang, R.Y.; Pang, H.Q. Micro reservoir space characteristics and significance of deep shale gas in Wufeng-Longmaxi formations in Weirong area, South Sichuan. Nat. Gas Geosci. 2022, 33, 860–872. [Google Scholar] [CrossRef]
- Chen, J.P.; Wang, X.L.; Chen, J.F.; Ni, Y.Y.; Xiang, B.L.; Liao, F.R.; He, W.J.; Yao, L.M.; Li, E.T. New equation to decipher the relationship between carbon isotopic composition of methane and maturity of gas source rocks. Sci. Sin. 2021, 51, 560–581. [Google Scholar] [CrossRef]
- Tilley, B.; Muehlenbachs, K. Isotope reversals and universal stages and trends of gas maturation in sealed, self-contained petroleum systems. Chem. Geol. 2013, 339, 194–204. [Google Scholar] [CrossRef]
- Dai, J.X.; Ni, Y.Y.; Zhang, W.Z.; Huang, S.P.; Gong, D.Y.; Liu, D.; Feng, Z.Q. Relationships between wetness and maturity of coal-derived gas in China. Pet. Explor. Dev. 2016, 43, 675–677. [Google Scholar] [CrossRef]
- Dai, J.X.; Ni, Y.Y.; Zou, C.N. Stable carbon and hydrogen isotopes of natural gases sourced from the Xujiahe Formation in the Sichuan Basin, China. Org. Geochem. 2012, 43, 103–111. [Google Scholar] [CrossRef]
- Qu, Z.Y.; Sun, J.N.; Shi, J.T.; Zhan, Z.W.; Zou, Y.R.; Peng, P.A. Characteristics of stable carbon isotopic composition of shale gas. J. Nat. Gas Geosci. 2016, 1, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.R.; Cai, Y.L.; Zhang, C.C.; Zhang, X.; Peng, P.A. Variations of natural gas carbon isotope-type curves and their interpretation—A case study. Org. Geochem. 2007, 38, 1398–1415. [Google Scholar] [CrossRef]
- Pang, Q. Characteristics of Hydrocarbon-Generating Parent Materials and Their Effects on Organic Matter Pores in Wufeng Formation and Longmaxi Formation in Changning Area. Master’s Thesis, Southwest Petroleum University, Chengdu, China, 2019. [Google Scholar] [CrossRef]
- Dai, J.X. Significance of Carbon Isotope Study of Alkane Gas in Natural Gas. Nat. Gas Ind. 2011, 31, 1–6. [Google Scholar] [CrossRef]
- Dai, J.X.; Qin, S.F.; Tao, S.Z.; Zhu, G.Y.; Mi, J.K. Developing trends of natural gas industry and the significant progress on natural gas geological theories in China. Nat. Gas Geosci. 2005, 16, 127–142. [Google Scholar] [CrossRef]
- Huang, J.Z. Genetic Classification of Natural Gas in Oil and Gas Regions and Its Application in Sichuan Basin. Nat. Gas Geosci. 1991, 2, 6–15. [Google Scholar]
- Wang, S.Q. Geochemical Characteristics of Jurassic-Sinian Natural Gas in Sichuan Basin. Nat. Gas Ind. 1994, 6, 1–5. [Google Scholar]
- Miao, W.D.; Luo, X.; Wang, Y.B.; Liu, W.L.; Shao, M.L. A discussion on the identification of abiogenic gas in the Songliao Basin according to its carbon isotope compositions. Nat. Gas Ind. 2010, 30, 27–30. [Google Scholar] [CrossRef]
- Sun, X.F.; Cui, Y.Q.; Zou, S.Q. Review on carbon isotope concentration index of natural gas origin. Geol. Chem. Miner. 2006, 28, 225–233. [Google Scholar] [CrossRef]
- Liu, Q.Y.; Wu, X.Q.; Wang, X.F.; Jin, Z.J.; Zhu, D.Y.; Meng, Q.Q.; Huang, S.P.; Liu, J.Y.; Fu, Q. Carbon and hydrogen isotopes of methane, ethane, and propane: A review of genetic identification of natural gas. Earth-Sci. Rev. 2019, 190, 247–272. [Google Scholar] [CrossRef]
- Zhu, G.Y.; Zhang, S.C.; Liang, Y.B.; Dai, J.X.; Li, J. Isotope Evidence of TSR Origin of High Hydrogen Sulfide Natural Gas in Feixianguan Formation, Northeast Sichuan. Sci. Sin. 2005, 35, 1037–1046. [Google Scholar] [CrossRef]
- Prinzhofer, A.; Battani, A. Gas Isotopes Tracing: An Important Tool for Hydrocarbons Exploration. Oil Gas Sci. Technol. 2003, 58, 299–311. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z. Relationship between Petroliferous Gas Humidity and Maturity. Coal Geol. China 2020, 32, 52–57. [Google Scholar] [CrossRef]
- He, G.S.; He, X.P.; Gao, Y.Q.; Wan, J.Y.; Zhang, P.X.; Zhang, Y.; Gao, H.Q. Enrichment model of normal-pressure shale gas in the Jinfo slope of the basin-margin transition zone in Southeast Chongqing. Nat. Gas Ind. 2020, 40, 50–60. [Google Scholar] [CrossRef]
- Chen, F.W.; Liu, D.C.; Ding, X.; Zheng, Q.; Lu, S.F. Pore size distributions contributed by various components in the Upper Ordovician Wufeng Shale from Southeast Chongqing, China. J. Pet. Sci. Eng. 2022, 208, 109230. [Google Scholar] [CrossRef]
- Xiang, J.; Zhu, Y.M.; Wang, Y.; Chen, S.B.; Jiang, Z.F. Structural deformation and its pore-fracture system response of the Wufeng-Longmaxi shale in the Northeast Chongqing area, using FE-SEM, gas adsorption, and SAXS. J. Pet. Sci. Eng. 2022, 209, 109877. [Google Scholar] [CrossRef]
- Li, Y.F.; Zhang, T.W.; Ellis, G.S.; Shao, D.Y. Depositional environment and organic matter accumulation of Upper Ordovician–Lower Silurian marine shale in the Upper Yangtze Platform, South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 466, 252–264. [Google Scholar] [CrossRef]
- Wang, S.F.; Zou, C.N.; Dong, D.Z.; Wang, Y.M.; Li, X.J.; Huang, J.L.; Guan, Q.Z. Multiple controls on the paleoenvironment of the Early Cambrian marine black shales in the Sichuan Basin, SW China: Geochemical and organic carbon isotopic evidence. Mar. Pet. Geol. 2015, 66, 660–672. [Google Scholar] [CrossRef]
- Guo, T.L.; He, X.P.; Zeng, P.; Gao, Y.Q.; Zhang, P.X.; He, G.S. Geological characteristics and beneficial development scheme of shale gas reservoirs in complex tectonic regions: A case study of Wufeng-Longmaxi formations in Sichuan Basin and its periphery. Acta Pet. Sin. 2020, 41, 1490–1500. [Google Scholar] [CrossRef]
- He, X.P. Sweet spot evaluation system and enrichment and high yield influential factors of shale gas in Nanchuan area of eastern Sichuan Basin. Nat. Gas Ind. 2021, 41, 59–71. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Wu, C.; Xiao, Q.; Zhang, X.; Teng, J.; Li, J. Carbon Isotope Fractionation Characteristics of Normally Pressured Shale Gas from the Southeastern Margin of the Sichuan Basin; Insights into Shale Gas Storage Mechanisms. Nanomaterials 2023, 13, 143. https://doi.org/10.3390/nano13010143
Yang C, Wu C, Xiao Q, Zhang X, Teng J, Li J. Carbon Isotope Fractionation Characteristics of Normally Pressured Shale Gas from the Southeastern Margin of the Sichuan Basin; Insights into Shale Gas Storage Mechanisms. Nanomaterials. 2023; 13(1):143. https://doi.org/10.3390/nano13010143
Chicago/Turabian StyleYang, Changyu, Chenjun Wu, Qilin Xiao, Xu Zhang, Juan Teng, and Jiaxin Li. 2023. "Carbon Isotope Fractionation Characteristics of Normally Pressured Shale Gas from the Southeastern Margin of the Sichuan Basin; Insights into Shale Gas Storage Mechanisms" Nanomaterials 13, no. 1: 143. https://doi.org/10.3390/nano13010143
APA StyleYang, C., Wu, C., Xiao, Q., Zhang, X., Teng, J., & Li, J. (2023). Carbon Isotope Fractionation Characteristics of Normally Pressured Shale Gas from the Southeastern Margin of the Sichuan Basin; Insights into Shale Gas Storage Mechanisms. Nanomaterials, 13(1), 143. https://doi.org/10.3390/nano13010143