Improved Electrical Properties of EHD Jet-Patterned MoS2 Thin-Film Transistors with Printed Ag Electrodes on a High-k Dielectric
Abstract
:1. Introduction
2. Experimental Details
2.1. Growth of MoS2 Layers
2.2. Transfer of MoS2 onto Other Substrates
2.3. Device Fabrication
3. Results and Discussion
3.1. Printed MoS2 Line Patterns
3.2. Printed Ag Line Patterns
3.3. Printed MoS2 TFTs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sang, M.; Shin, J.; Kim, K.; Yu, K. Electronic and thermal properties of graphene and recent advances in graphene based electronics applications. Nanomaterials 2019, 9, 374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhimanapati, G.R.; Lin, Z.; Meunier, V.; Jung, Y.; Cha, J.; Das, S.; Xiao, D.; Son, Y.; Strano, M.S.; Cooper, V.R.; et al. Recent Advances in Two-Dimensional Materials beyond Graphene. ACS Nano 2015, 9, 11509–11539. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.; Chauhan, V.; Kumr, R. A comprehensive review on synthesis and applications of molybdenum disulfide (MoS2) material: Past and recent developments. Inorg. Chem. Commun. 2020, 121, 108200. [Google Scholar] [CrossRef]
- Krishnan, U.; Kaur, M.; Singh, K.; Kumar, M.; Kumar, A. A synoptic review of MoS2: Synthesis to applications. Superlattices Microstruct. 2019, 128, 274–297. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, W.; Giustiniano, F.; Eda, G. Effect of oxygen and ozone on p-type doping of ultra-thin WSe2 and MoSe2 field effect transistors. Phys. Chem. Chem. Phys. 2016, 18, 4304–4309. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Jiang, D.; Schedin, F.; Booth, T.J.; Khotkevich, V.V.; Morozov, S.V.; Geim, A.K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janica, I.; Iglesias, D.; Ippolito, S.; Ciesielski, A.; Samorì, P. Effect of temperature and exfoliation time on the properties ofchemically exfoliated MoS2 nanosheets. Chem. Commun. 2020, 56, 15573–15576. [Google Scholar] [CrossRef] [PubMed]
- Nam Trung, T.; Kamand, F.Z.; Al tahtamouni, T.M. Elucidating the mechanism for the chemical vapor deposition growth ofvertical MoO2/MoS2 flakes toward photoelectrochemical applications. Appl. Surf. Sci. 2020, 505, 144551. [Google Scholar] [CrossRef]
- Kwack, Y.J.; Choi, W.-S. CVD-Free S-Rich Solution-Process for Two-Dimensional MoS2 Atomic Layer Films. Nanotechnology 2019, 30, 385201. [Google Scholar] [CrossRef] [PubMed]
- Can, T.T.T.; Nguyen, T.C.; Choi, W.S. Patterning of high-viscosity silver paste by an electrohydrodynamic-jet printer for use in TFT applications. Sci. Rep. 2019, 9, 9180. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Choi, W.-S. Low-temperature Processing of Inkjet-printed IZO Thin-film Transistors. J. Korean Phys. Soc. 2014, 64, 701–705. [Google Scholar] [CrossRef]
- Kwack, Y.J.; Choi, W.S. Screen-printed source and drain electrodes for inkjet-processed zinc-tin-oxide thin-film transistor. Trans. Electr. Electron. Mater. 2011, 12, 271–274. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Wang, Z.; Lopatin, S.; Quevedo-Lopez, M.A.; Alshareef, H.N. Wafer scale quasi single crystalline MoS2 realized by epitaxial phase conversion. 2D Mater. 2018, 6, 015030. [Google Scholar] [CrossRef] [Green Version]
- Can, T.T.T.; Ko, H.L.; Choi, W.S. EHD-jet patterned MoS2 on a high-k dielectric for high mobility in thin film transistor applications. Nanotechnology 2021, 32, 245710. [Google Scholar] [CrossRef] [PubMed]
- Shu, J.; Wu, G.; Guo, Y.; Liu, B.; Wei, X.; Chen, Q. The intrinsic origin of hysteresis in MoS2 field effect transistors. Nanoscale 2016, 8, 3049–3056. [Google Scholar] [CrossRef] [PubMed]
- Kelly, A.G.; Hallam, T.; Backes, C.; Harvey, A.; Esmaeily, A.S.; Godwin, I.; Coelho, J.; Nicolosi, N.; Lauth, J.; Kulkarni, A.; et al. All-printed thin-flm transistors from networks of liquid exfoliated nanosheets. Science 2017, 356, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Xi, Y.; Serna, M.; Cheng, L.; Gao, Y.; Baniasadi, M.; Rodriguez-Davila, R.; Kim, J.; Quevedo-Lopez, M.; Minary-Jolandan, M. Fabrication of MoS2 thin flm transistors via selective-area solution deposition methods. J. Mater. Chem. C 2015, 3, 3842–3847. [Google Scholar] [CrossRef]
- Jiang, Z.; Chen, L.; Chen, J.-J.; Wang, Y.; Xu, Z.; Sowade, E.; Baumann, R.; Sheremet, E.; Rodriguez, R.; Feng, Z. All-inkjet-printed MoS2 field-effect transistors on paper for low-cost and flexible electronics. Appl. Nanosci. 2020, 10, 3649–3658. [Google Scholar] [CrossRef]
- Zhao, M.; Ye, Y.; Ham, Y.; Xia, Y.; Zhu, H.; Wang, S.; Wang, Y.; Muller, D.; Zhang, X. Large-scale chemical assembly of atomically thin transistors and circuits. Nat. Nanotechnol. 2016, 11, 954–959. [Google Scholar] [CrossRef] [PubMed]
- Gomes, F.O.V.; Pokle, A.; Marinkovi, M.; Balster, T.; Anselmann, R.; Nicolosi, V.; Wagner, V. High mobility solution processed MoS2 thin film transistors. Solid-State Electron. 2019, 158, 75–84. [Google Scholar] [CrossRef]
Gate Dielectric | Concentration mM | S-S (V dec−1) | (V) | (cm2 V−1 s−1) | Hysteresis (V) | |
---|---|---|---|---|---|---|
40 nm Al2O3 | 25 | (2.1 ± 1.7) × 105 | 2.2 ± 0.9 | 13.1 ± 2.4 | 0.29 ± 0.23 | 4.0 ± 0.65 |
50 | (2.7 ± 1.7) × 105 | 1.3 ± 0.4 | 11.0 ± 1.6 | 0.33 ± 0.06 | 4.1 ± 0.15 | |
75 | (7.5 ± 2.1) × 104 | 4.1 ± 0.9 | 10.1 ± 1.5 | 0.42 ± 0.14 | 2.5 ± 0.23 | |
100 | (1.7 ± 1.1) × 105 | 2.5 ± 0.5 | 9.5 ± 2.9 | 0.58 ± 0.3 | 3.2 ± 0.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Can, T.T.T.; Choi, W.-S. Improved Electrical Properties of EHD Jet-Patterned MoS2 Thin-Film Transistors with Printed Ag Electrodes on a High-k Dielectric. Nanomaterials 2023, 13, 194. https://doi.org/10.3390/nano13010194
Can TTT, Choi W-S. Improved Electrical Properties of EHD Jet-Patterned MoS2 Thin-Film Transistors with Printed Ag Electrodes on a High-k Dielectric. Nanomaterials. 2023; 13(1):194. https://doi.org/10.3390/nano13010194
Chicago/Turabian StyleCan, Thi Thu Thuy, and Woon-Seop Choi. 2023. "Improved Electrical Properties of EHD Jet-Patterned MoS2 Thin-Film Transistors with Printed Ag Electrodes on a High-k Dielectric" Nanomaterials 13, no. 1: 194. https://doi.org/10.3390/nano13010194
APA StyleCan, T. T. T., & Choi, W. -S. (2023). Improved Electrical Properties of EHD Jet-Patterned MoS2 Thin-Film Transistors with Printed Ag Electrodes on a High-k Dielectric. Nanomaterials, 13(1), 194. https://doi.org/10.3390/nano13010194