Significantly Suppressed Dielectric Loss and Enhanced Breakdown Strength in Core@Shell Structured Ni@TiO2/PVDF Composites
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of Samples
2.3. Characterizations
3. Results and Discussion
3.1. Characterizations of Core@Shell Ni@TiO2 Filler
3.2. Dielectric Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shen, Y.; Lin, Y.-H.; Zhang, Q.-M. Polymer nanocomposites with high energy storage densities. MRS Bull. 2015, 40, 753–759. [Google Scholar] [CrossRef]
- Zhong, S.-L.; Dang, Z.-M.; Zhou, W.-Y.; Cai, H.-W. Past and future on nanodielectrics. Nanodielectrics 2018, 1, 41–47. [Google Scholar] [CrossRef]
- Wang, P.; Li, Z.-Q.; Xie, Q.; Duan, W.; Zhang, X.-C.; Han, H.-L. A passive anti-icing strategy based on a superhydrophobic mesh with extremely low ice adhesion strength. J. Bionic Eng. 2021, 18, 55–64. [Google Scholar] [CrossRef]
- Zhou, W.-Y.; Chen, Q.-G.; Sui, X.-Z.; Dong, L.-N.; Wang, Z.-J. Enhanced thermal conductivity and dielectric properties of Al/β−SiCw/PVDF composites. Compos. Part A: Appl. Sci. Manuf. 2015, 71, 184–191. [Google Scholar] [CrossRef]
- Li, B.; Yuan, M.-X.; Zhang, S.-H.; Rajagopalan, R. Abnormal high voltage resistivity of polyvinylidene fluoride and implications for applications in high energy density film capacitors. Appl. Phys. Lett. 2018, 113, 193903. [Google Scholar] [CrossRef]
- Zhou, W.-Y.; Zhang, Y.; Wang, J.-J.; Li, H.; Xu, W.-H.; Li, B.; Chen, L.-Q.; Wang, Q. Lightweight porous polystyrene with high thermal conductivity by constructing 3d interconnected network of boron nitride nanosheets. ACS Appl. Mater. Interfaces 2020, 12, 46767–46778. [Google Scholar] [CrossRef]
- Wang, L.-L.; Yang, C.-X.; Wang, X.-Y.; Shen, J.-Y.; Sun, W.-J.; Wang, J.-K.; Yang, G.-Q.; Cheng, Y.-H.; Wang, Z.-D. Advances in polymers and composite dielectrics for thermal transport and high-temperature applications. Compos. Part A: Appl. Sci. Manuf. 2022, 164, 107320. [Google Scholar] [CrossRef]
- Zhou, W.-Y.; Cao, G.-Z.; Yuan, M.-X.; Zhong, S.-L.; Wang, Y.-D.; Liu, X.-R.; Cao, D.; Peng, W.-W.; Liu, J.; Wang, G.-H.; et al. Core-Shell Engineering of Conductive Fillers toward Enhanced Dielectric Properties: A Universal Polarization Mechanism in Polymer Conductor Composites. Adv. Mater. 2022, 2207829. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, X.-M.; Duan, W.; Teng, W.; Liu, Y.-B.; Xie, Q. Superhydrophobic flexible supercapacitors formed by integrating hydrogel with functional carbon nanomaterials. Chin. J. Chem. 2021, 39, 1153–1158. [Google Scholar] [CrossRef]
- Zhou, W.-Y.; Kou, Y.-J.; Yuan, M.-X.; Li, B.; Cai, H.-W.; Li, Z.; Chen, F.-X.; Liu, X.-R.; Wang, G.-H.; Chen, Q.-G.; et al. Polymer composites filled with core@double-shell structured fillers: Effects of multiple shells on dielectric and thermal properties. Compos. Sci. Technol. 2019, 181, 107686. [Google Scholar] [CrossRef]
- Jia, L.-C.; Jin, Y.-F.; Ren, J.-W.; Zhao, L.-H.; Yan, D.-X.; Li, Z.-M. Highly thermally conductive liquid metal-based composites with superior thermostability for thermal management. J. Mater. Chem. C 2021, 9, 2904–2911. [Google Scholar] [CrossRef]
- Zhao, L.-H.; Liao, C.-J.; Liu, Y.; Huang, X.-L.; Ning, W.-J.; Wang, Z.; Jia, L.-C.; Ren, J.-W. A combination of aramid nanofiber and silver nanoparticle decorated boron nitride for the preparation of a composite film with superior thermally conductive performance. Compos. Interfaces 2022, 29, 447–463. [Google Scholar] [CrossRef]
- Ren, J.-H.; Wang, Z.-Y.; Xu, P.; Wang, C.; Gao, F.; Zhao, D.-C.; Liu, S.-P.; Yang, H.; Wang, D.; Niu, C.-M.; et al. Porous Co2VO4 nanodisk as a high-energy and fast-charging anode for lithium-ion batteries. Nano-Micro Lett. 2022, 14, 5. [Google Scholar] [CrossRef]
- Li, B.; Xidas, P.I.; Manias, E. High breakdown strength polymer nanocomposites based on the synergy of nanofiller orientation and crystal orientation for insulation and dielectric applications. ACS Appl. Nano Mater. 2018, 1, 3520–3530. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.-H.; Feng, Y.; Zhang, T.-D.; Chen, Q.-G.; Chi, Q.-G.; Liu, L.-Z.; Li, G.-F.; Cui, Y.; Wang, X.; et al. Excellent energy storage performance and thermal property of polymer-based composite induced by multifunctional one-dimensional nanofibers oriented in-plane direction. Nano Energy 2019, 56, 138–150. [Google Scholar] [CrossRef]
- Luo, H.; Zhou, X.-F.; Ellingford, C.; Zhang, Y.; Chen, S.; Zhou, K.-C.; Zhang, D.; Bowen, C.-R.; Wan, C.-Y. Interface design for high energy density polymer nanocomposites. Chem. Soc. Rev. 2019, 48, 4424–4465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.-J.; Zheng, M.-S.; Chen, G.; Dang, Z.-M.; Zha, J.-W. High-temperature polyimide dielectric materials for energy storage: Theory, design, preparation and properties. Energy Environ. Sci. 2021, 15, 56–81. [Google Scholar] [CrossRef]
- Hyungsoon, I.; Nathan, C.; Lindquist, A.L.; Sang-Hyun, O. Atomic layer deposition of dielectric overlayers for enhancing the optical properties and chemical stability of plasmonic nanoholes. ACS Nano 2021, 4, 947–954. [Google Scholar]
- Yang, H.-J.; Cao, M.-S.; Li, Y.; Shi, H.-L.; Hou, Z.-L.; Fang, X.-Y.; Jin, H.-B.; Wang, W.-Z.; Yuan, J. Silicon Carbide: Enhanced Dielectric Properties and Excellent Microwave Absorption of SiC Powders Driven with NiO nanorings. Adv. Opt. Mater. 2014, 2, 214–219. [Google Scholar] [CrossRef]
- Zha, J.-W.; Zheng, M.-S.; Fan, B.-H.; Dang, Z.-M. Polymer-based dielectrics with high permittivity for electric energy storage: A review. Nano Energy 2021, 89, 106438. [Google Scholar] [CrossRef]
- Zhou, X.-G.; Yang, J.-J.; Gu, Z.-L.; Wei, Y.-H.; Li, G.-C.; Hao, C.-C.; Lei, Q.-Q. Effect of boron nitride concentration and morphology on dielectric and breakdown properties of cross-linked polyethylene/boron nitride nanocomposites. Adv. Eng. Mater. 2021, 23, 2100008. [Google Scholar] [CrossRef]
- Zhao, L.-H.; Wei, C.-M.; Ren, J.-W.; Li, Y.-C.; Zheng, J.-J.; Jia, L.-C.; Wang, Z.; Jia, S.-L. Biomimetic nacreous composite films toward multipurpose application structured by aramid nanofibers and edge-hydroxylated boron nitride nanosheets. Ind. Eng. Chem. Res. 2022, 61, 8881–8894. [Google Scholar] [CrossRef]
- Zhang, F.; Zhou, W.-Y.; Zhang, C.-H.; Li, Y.; Liang, C.; Li, X.; Wang, G.-H.; Cai, H.-W.; Dang, Z.-M. Toward enhancing dielectric properties and thermal conductivity of f−Cu/PVDF with PS as an interlayer. Polym. Plast. Technol. Mater. 2020, 60, 680–693. [Google Scholar] [CrossRef]
- Li, B.; Randall, C.A.; Manias, E. Polarization mechanism underlying strongly enhanced dielectric permittivity in polymer composites with conductive fillers. J. Phys. Chem. C 2022, 126, 7596–7604. [Google Scholar] [CrossRef]
- Wang, Z.-D.; Meng, G.-D.; Wang, L.-L.; Tian, L.-L.; Chen, S.-Y.; Wu, G.-L.; Kong, B.; Cheng, Y.-H.; Li, B.; Sarkarat, M.; et al. Interfacial effects on the dielectric properties of elastomer/carbon black/ceramic composites. MRS Adv. 2021, 6, 247–251. [Google Scholar]
- Wang, Y.; Zhu, L.-J.; Zhou, J.; Jia, B.-B.; Jiang, Y.-Y.; Wang, J.-K.; Wang, M.-L.; Cheng, Y.-H.; Wu, K. Dielectric properties and thermal conductivity of epoxy resin composite modified by Zn/ZnO/Al2O3 core-shell particles. Polym. Bull. 2018, 76, 3957–3970. [Google Scholar] [CrossRef]
- Mamunya, Y.P.; Levchenko, V.-V.; Rybak, A.; Boiteux, G.; Lebedev, E.-V.; Ulanski, J.; Seytre, G. Electrical and thermomechanical properties of segregated nanocomposites based on PVC and multiwalled carbon nanotubes. J. Non-Cryst. Solids 2010, 356, 635–641. [Google Scholar] [CrossRef]
- Xu, J.-X.; Cui, Y.-M.; Xu, H.-Z. Improvements of dielectric properties of Fe doped TbMnO3. Ceram. Int. 2014, 40, 12193–12198. [Google Scholar] [CrossRef]
- Lu, H.-F.; Yin, J.-H.; Ji, T.-Y.; Liu, X.-X.; Feng, Y.; Liu, Y.-Y.; Li, J.-L.; Zhao, H. Interfacial characteristics and dielectric properties of Polyimide/Ag nanosheet composites. Mater. Lett. 2018, 222, 12–15. [Google Scholar] [CrossRef]
- Yuan, M.-X.; Zhang, G.; Li, B.; Chung, T.-C.-M.; Rajagopalan, R.; Lanagan, M.-T. Thermally stable low-loss polymer dielectrics enabled by attaching cross-linkable antioxidant to polypropylene. ACS Appl. Mater. Interfaces 2020, 12, 14154–14164. [Google Scholar] [CrossRef]
- Wang, Z.-D.; Wang, X.-Z.; Wang, S.-L.; He, J.-Y.; Zhang, T.; Wang, J.; Wu, G.-L. Simultaneously enhanced thermal conductivity and dielectric breakdown strength in sandwich AlN/epoxy composites. Nanomaterials 2021, 11, 1898. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Zou, X.-W.; Shen, J.-L.; Zhang, L.; Jin, L.; Cheng, Z.-Y. High energy density with ultrahigh discharging efficiency obtained in ceramic-polymer nanocomposites using a non-ferroelectric polar polymer as matrix. Nano Energy 2020, 70, 104551. [Google Scholar] [CrossRef]
- Wang, Z.-D.; Meng, G.-D.; Wang, L.-L.; Tian, L.-L.; Chen, S.-Y.; Wu, G.-L.; Kong, B.; Cheng, Y.-H. Simultaneously enhanced dielectric properties and through-plane thermal conductivity of epoxy composites with alumina and boron nitride nanosheets. Sci. Rep. 2021, 11, 2495. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.-S.; Zhang, C.; Yang, Y.; Xing, Z.-L.; Chen, X.; Zhong, S.-L.; Dang, Z.-M. Improved dielectric properties of PVDF nanocomposites with core-shell structured BaTiO3@polyurethane nanoparticles. IET Nanodielectrics 2020, 3, 94–98. [Google Scholar] [CrossRef]
- Zhu, X.-T.; Yang, J.; Dastan, D.; Garmestani, H.; Fan, R.-H.; Shi, Z.-C. Fabrication of core-shell structured Ni@BaTiO3 scaffolds for polymer composites with ultrahigh dielectric constant and low loss. Compos. Part A: Appl. Sci. Manuf. 2019, 125, 105521. [Google Scholar] [CrossRef]
- Rybak, A. Functional Polymer Composite with Core-Shell Ceramic Filler: II. Rheology, Thermal, Mechanical, and Dielectric Properties. Polymers 2021, 13, 2161. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhou, W.-Y.; Li, Y.; Cao, D.; Wu, H.-J.; Liu, D.-F.; Wang, Y.; Cao, G.-Z.; Dang, Z.-M. Concurrently improving dielectric properties and thermal conductivity of Ni/PVDF composites by constructing NiO shell as an interlayer. J. Mater. Sci. Mater. Electron. 2021, 32, 14764–14779. [Google Scholar] [CrossRef]
- Yuan, M.-X.; Li, B.; Zhang, S.-H.; Rajagopalan, R.; Lanagan, M.-T. High-Field dielectric properties of oriented poly (vinylidene fluoride-co-hexafluoropropylene): Structure-dielectric property relationship and implications for energy storage applications. ACS Appl. Polym. Mater. 2020, 2, 1356–1368. [Google Scholar] [CrossRef]
- Gao, F.; Mei, B.; Xu, X.-Y.; Ren, J.-H.; Zhao, D.-C.; Zhang, Z.; Wang, Z.-L.; Wu, Y.-T.; Liu, X.; Zhang, Y. Rational design of ZnMn2O4 nanoparticles on carbon nanotubes for high-rate and durable aqueous zinc-ion batteries. Chem. Eng. J. 2022, 448, 137742. [Google Scholar] [CrossRef]
- Zhou, W.-Y.; Li, T.; Yuan, M.-X.; Li, B.; Zhong, S.-L.; Li, Z.; Liu, X.-R.; Zhou, J.-J.; Wang, Y.; Cai, H.-W.; et al. Decoupling of inter-particle polarization and intra-particle polarization in core-shell structured nanocomposites towards improved dielectric performance. Energy Storage Mater. 2021, 42, 1–11. [Google Scholar] [CrossRef]
- Lu, X.; Deng, W.; Wei, J.-D.; Wan, Y.-H.; Zhang, J.-J.; Zhang, L.; Jin, L.; Cheng, Z.-Y. Crystallization behaviors and related dielectric properties of semicrystalline matrix in polymer-ceramic nanocomposites. Compos. Part B Eng. 2021, 224, 109195. [Google Scholar] [CrossRef]
- Karmakar, S.; Panda, B.; Sahoo, B.; Routray, K.-L.; Varma, S.; Behera, D. A Study on Optical and Dielectric Properties of Ni-ZnO nanocomposite. Mater. Sci. Semicond. Process. 2018, 88, 198–206. [Google Scholar] [CrossRef]
- Yang, C.; Tse, M.-Y.; Wei, X.-H.; Hao, J.-H. Colossal permittivity of (Mg + Nb) co-doped TiO2 ceramics with low dielectric loss. J. Mater. Chem. C 2017, 5, 5170–5175. [Google Scholar] [CrossRef]
- Cao, G.-Z.; Zhou, W.-Y.; Li, Y.-Y.; Liu, P.-Q.; Yao, T.; Li, J.; Zuo, J.; Cai, J.-T.; Li, Y. Suppressed dielectric loss and enhanced breakdown strength in Ni/PVDF composites through constructing Al2O3 shell as an interlayer. J. Mater. Sci. Mater. Electron. 2022, 33, 9951–9965. [Google Scholar] [CrossRef]
- Zha, J.-W.; Yao, S.-C.; Qiu, Y.; Zheng, M.-S.; Dang, Z.-M. Enhanced dielectric properties and energy storage of the sandwich-structured poly (vinylidene fluoride-co-hexafluoropropylene) composite films with functional BaTiO3@Al2O3 nanofibres. IET Nanodielectrics 2019, 2, 103–108. [Google Scholar] [CrossRef]
- Zhao, D.-C.; Zhang, Z.; Ren, J.-H.; Xu, Y.-Y.; Xu, X.-Y.; Zhou, J.; Gao, F.; Tang, H.; Liu, S.; Wang, Z.-L.; et al. Fe2VO4 nanoparticles on rGO as anode material for high-rate and durable lithium and sodium ion batteries. Chem. Eng. J. 2023, 451, 138882. [Google Scholar] [CrossRef]
- Wang, Z.-D.; Cheng, Y.-H.; Yang, M.-M.; Huang, J.-L.; Cao, D.-X.; Chen, S.-Y.; Xie, Q.; Lou, W.-X.; Wu, H.-J. Dielectric properties and thermal conductivity of epoxy composites using core/shell structured Si/SiO2/Polydopamine. Compos. Part B-Eng. 2018, 140, 83–90. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Deng, Y.; Li, M.; Bai, J.-B. Enhanced dielectric properties of ferroelectric polymer composites induced by metal-semiconductor Zn-ZnO core-shell structure. ACS Appl. Mater. Interfaces 2012, 4, 65–68. [Google Scholar] [CrossRef]
- Zhao, H.-Q.; Cheng, Y.; Zhang, Z.; Yu, J.-W.; Zheng, J.; Zhou, M.; Zhou, L.; Zhang, B.-S.; Ji, G.-B. Rational design of core-shell Co@C nanotubes towards lightweight and high-efficiency microwave absorption. Compos. Part B-Eng. 2020, 196, 108119. [Google Scholar] [CrossRef]
- Wu, X.-D.; Song, G.-H.; Zhang, W.-L.; Feng, H.; Liu, Y.-C.; Huang, E.-L.; Lin, X.-T.; Yang, Y.-X.; Tan, D.-Q. Atomic layer deposition fabricated core-shell nanostructures for enhanced polyetherimide composite dielectrics. J. Mater. Chem. A 2022, 10, 13097–13105. [Google Scholar] [CrossRef]
- Balasubramanian, B.; Kraemer, K.L.; Reding, N.A.; Skomski, R.; Ducharme, S.; Sellmyer, D.J. Synthesis of Monodisperse TiO2-Paraffin Core-Shell Nanoparticles for Improved Dielectric Properties. ACS Nano 2010, 4, 1893–1900. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.-C.; Jiang, S.; Yu, S.; Ren, J.-H.; Zhang, Z.; Liu, S.-P.; Liu, X.; Wang, Z.-L.; Wu, Y.-T.; Zhang, Y. Lychee seed-derived microporous carbon for high-performance sodium-sulfur batteries. Carbon 2023, 201, 864–870. [Google Scholar] [CrossRef]
- Buchheit, R.; Kuttich, B.; Gonzalez-Garcia, L.; Kraus, T. Hybrid dielectric films of inkjet-printable core-shell nanoparticles. Adv. Mater. 2021, 33, 2103087. [Google Scholar] [CrossRef]
- Lu, X.; Deng, W.; Wei, J.-D.; Zhu, Y.-S.; Ren, P.-R.; Wan, Y.-H.; Yan, F.-X.; Jin, L.; Zhang, L.; Cheng, Z.-Y. Filler size effects on the microstructure and properties of polymer-ceramic nanocomposites using a semicrystalline matrix. J. Mater. Sci. 2021, 56, 19983–19995. [Google Scholar] [CrossRef]
- Li, B.; Polizos, G.; Manias, E. Interfacial Effects on the Dielectric Properties of Elastomer Composites and Nanocomposites. In Dynamics of Composite Materials; Springer: Cham, Switzerland, 2022; pp. 225–249. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Zhou, W.; Yuan, M.; Dong, X.; Zhang, J.; Zhang, X.; Zhang, Y.; Chen, X.; Chen, Y.; Liu, X. Significantly Suppressed Dielectric Loss and Enhanced Breakdown Strength in Core@Shell Structured Ni@TiO2/PVDF Composites. Nanomaterials 2023, 13, 211. https://doi.org/10.3390/nano13010211
Zhou J, Zhou W, Yuan M, Dong X, Zhang J, Zhang X, Zhang Y, Chen X, Chen Y, Liu X. Significantly Suppressed Dielectric Loss and Enhanced Breakdown Strength in Core@Shell Structured Ni@TiO2/PVDF Composites. Nanomaterials. 2023; 13(1):211. https://doi.org/10.3390/nano13010211
Chicago/Turabian StyleZhou, Juanjuan, Wenying Zhou, Mengxue Yuan, Xinbo Dong, Jiebing Zhang, Xuejiao Zhang, Yanqing Zhang, Xiaolong Chen, Yanrong Chen, and Xiangrong Liu. 2023. "Significantly Suppressed Dielectric Loss and Enhanced Breakdown Strength in Core@Shell Structured Ni@TiO2/PVDF Composites" Nanomaterials 13, no. 1: 211. https://doi.org/10.3390/nano13010211
APA StyleZhou, J., Zhou, W., Yuan, M., Dong, X., Zhang, J., Zhang, X., Zhang, Y., Chen, X., Chen, Y., & Liu, X. (2023). Significantly Suppressed Dielectric Loss and Enhanced Breakdown Strength in Core@Shell Structured Ni@TiO2/PVDF Composites. Nanomaterials, 13(1), 211. https://doi.org/10.3390/nano13010211