Tailoring the Emission Behavior of WO3 Thin Films by Eu3+ Ions for Light-Emitting Applications
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structural Analysis
3.2. Morphological and Composition Analysis
3.3. Optical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lethy, K.J.; Beena, D.; Pillai, V.P.M.; Ganesan, V. Bandgap renormalization in titania modified nanostructured tungsten oxide thin films prepared by pulsed laser deposition technique for solar cell applications. J. Appl. Phys. 2008, 104, 033515. [Google Scholar] [CrossRef]
- Shim, H.S.; Kim, J.W.; Sung, Y.E.; Kim, W.B. Electrochromic properties of tungsten oxide nanowires fabricated by electrospinning method. Sol. Energy Mater. Sol. Cells 2009, 93, 2062–2068. [Google Scholar] [CrossRef]
- Yoo, S.J.; Jung, Y.H.; Lim, J.W.; Choi, H.G.; Kim, D.K.; Sung, Y.E. Electrochromic properties of one-dimensional tungsten oxide nanobundles. Sol. Energy Mater. Sol. Cells 2008, 92, 179–183. [Google Scholar] [CrossRef]
- Wang, F.; Valentin, C.D.; Pacchioni, G. Rational band gap engineering of WO3 photocatalyst for visible light water splitting. Chem. Cat. Chem. 2012, 4, 476–478. [Google Scholar] [CrossRef]
- Li, X.L.; Lou, T.J.; Sun, X.M.; Li, Y.D. Highly sensitive WO3 hollow-sphere gas sensors. Inorg. Chem. 2004, 43, 5442–5449. [Google Scholar] [CrossRef]
- Solis, J.L.; Saukko, S.; Kish, L.; Granqvist, C.G.; Lantto, V. Semiconductor gas sensors based on nanostructured tungsten oxide. Thin Solid Film. 2001, 39, 255–260. [Google Scholar] [CrossRef]
- Zheng, H.; Tachibana, Y.; Zadeh, K.K. Dye-sensitized solar cells based on WO3. Langumuir 2010, 26, 19148–19152. [Google Scholar] [CrossRef] [PubMed]
- Bose, R.J.; Illyasukutty, N.; Tan, K.S.; Rawat, R.S.; Matham, M.V.; Kohler, H.; Pillai, V.P.M. Preparation and characterization of Pt loaded WO3 films suitable for gas sensing applications. Appl. Surf. Sci. 2018, 440, 320–330. [Google Scholar] [CrossRef]
- Baeck, S.H.; Choi, K.S.; Jaramillo, T.F.; Stucky, G.D.; McFarland, E.W. Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films. Adv. Mater. 2003, 15, 1269–1273. [Google Scholar] [CrossRef]
- Bechinger, C.; Wirth, C.; Leiderer, P. Photochromic coloration of WO3 with visible light. Appl. Phys. Lett. 1996, 68, 2834–2836. [Google Scholar] [CrossRef]
- Ponce, A. Advanced Electron Microscopy and Nanomaterials; Trans Tech Publications Ltd.: Wollerau, Switzerland, 2010. [Google Scholar]
- Jiao, Z.; Wang, J.; Ke, L.; Sun, X.W.; Demir, H.V. Morphology-tailored synthesis of tungsten trioxide (Hydrate) thin films and their photocatalytic properties. ACS Appl. Mater. Interfaces 2011, 3, 229–236. [Google Scholar] [CrossRef] [Green Version]
- Su, J.; Feng, X.; Sloppy, J.D.; Guo, L.; Grimes, C.A. Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis and photoelectrochemical properties. Nano Lett. 2011, 11, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Poongodi, S.; Kumar, P.S.; Mangalaraj, D.; Ponpandian, N.; Meena, P.; Masuda, Y.; Lee, C. Electrodeposition of WO3 nanostructured thin films for electrochromic and H2S gas sensor applications. J. Alloys Compd. 2017, 719, 71–81. [Google Scholar] [CrossRef]
- Liu, R.; Lin, Y.; Chou, L.Y.; Sheehan, S.W.; He, W.; Zhang, F.; Hou, H.J.; Wang, D. Water splitting by tungsten oxide prepared by atomic layer deposition and decorated with an oxygen-evolving catalyst. Angew. Chem. Int. Ed. Engl. 2011, 50, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Suresh, K.; Rao, N.V.P.; Murthy, K.V.R. Photoluminescent properties of Sr2CeO4: Eu3+ and Sr2CeO4: Eu2+ phosphors suitable for near ultraviolet excitation. Bull. Mater. Sci. 2014, 37, 1191–1195. [Google Scholar] [CrossRef]
- Niraula, B.B.; Rizal, C. Photoluminescence property of Eu3+ doped CaSiO3nano-phosphor with controlled grain size. Colloids Interfaces 2018, 2, 52. [Google Scholar] [CrossRef] [Green Version]
- Kavitha, V.S.; Suresh, S.; Chalana, S.R.; Pillai, V.P.M. Luminescent Ta doped WO3 thin films as a probable candidate for excitonic solar cell applications. Appl. Surf. Sci. 2019, 466, 289–300. [Google Scholar] [CrossRef]
- Li, G.; Zhu, X.; Tang, X.; Song, W.; Yang, Z.; Dai, J.; Sun, Y.; Pan, X.; Dai, S. Doping and annealing effects on ZnO:Cd thin films by sol-gel method. J. Alloys Compd. 2011, 509, 4816–4823. [Google Scholar] [CrossRef]
- Van der Drift, A. Evolutionary selection, a principle governing growth orientation in vapour-deposited layers. Philips Res. Rep. 1967, 22, 267–288. [Google Scholar]
- Oztas, M.; Bedir, M. Thickness dependence of structural, electrical and optical properties of sprayed ZnO:Cu films. Thin Solid Film. 2008, 516, 1703–1709. [Google Scholar] [CrossRef]
- Yamauchi, S.; Handa, H.; Nagayama, A.; Hariu, T. Low temperature epitaxial growth of ZnO layer by plasma-assisted epitaxy. Thin Solid Film. 1999, 345, 12–17. [Google Scholar] [CrossRef]
- Li, G.; Zhu, X.; Lei, H.; Song, W.; Yang, Z.; Dai, J.; Sun, Y.; Pan, X.; Dai, S. Study on chemical solution deposition of aluminum-doped zinc oxide films. J. Alloys Compd. 2010, 505, 434–442. [Google Scholar] [CrossRef]
- Pal, M.; Pal, U.; Jimenez, J.M.G.Y.; Rodriguez, F.P. Effects of crystallization and dopant concentration on the emission behaviour of TiO2:Eunanophosphors. Nanoscale Res. Lett. 2012, 7, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cullity, B.D. Elements of X-ray Diffraction; Addison-Wesley Publishing Co., Inc.: Cambridge, MA, USA, 1956. [Google Scholar]
- Neogi, S.K.; Chattopadhyay, S.; Banerjee, A.; Bandyopadhyay, S.; Sarkar, A.; Kumar, R. Effect of 50 MeV Li3+ irradiation on structural and electrical properties of Mn doped ZnO. J. Phys. Condens. Matter. 2011, 23, 205801. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, P.; Kim, B.; Park, J. Synthesis of single crystalline europium-doped ZnO nanowires. Mater. Sci. Eng. B 2007, 138, 224–227. [Google Scholar] [CrossRef]
- Cheng, X.F.; Leng, W.H.; Liu, D.P.; Zhang, J.Q.; Cao, C.N. Enhanced photoelectrocatalytic performance of Zn-doped WO3 photocatalysts for nitrite ions degradation under visible light. Chemosphere 2007, 68, 1976–1984. [Google Scholar] [CrossRef]
- Epurescu, G.; Birjega, R.; Galca, A.C. Tailoring the optical properties of MgxZn1-xO thin films by nitrogen doping. Appl. Phys. A 2011, 104, 889–893. [Google Scholar] [CrossRef]
- Rao, T.P.; Kumar, M.C.S.; Safarulla, A.; Ganesan, V.; Barman, S.R.; Sanjeeviraja, C. Physical properties of ZnO thin films deposited at various substrate temperatures using spray pyrolysis. Phys. B Condens. Matter 2010, 405, 2226–2231. [Google Scholar]
- Illyaskutty, N.; Sreedhar, S.; Kohler, H.; Philip, R.; Rajan, V.K.; Pillai, V.P.M. ZnO modified MoO3nano-rods, -wires, -belts and -tubes: Photophysical and nonlinear optical properties. J. Phys. Chem. C 2013, 117, 7818–7829. [Google Scholar] [CrossRef]
- Chen, Y.; Washburn, J. Structural transition in large-lattice-mismatch heteroepitaxy. Phys. Rev. Lett. 1996, 77, 4046–4049. [Google Scholar] [CrossRef]
- Cebulla, R.; Wendt, R.; Ellmer, K. Al-doped zinc oxide films deposited by simultaneous RF and DC excitation of a magnetron plasma: Relationships between plasma parameters and structural and electrical film properties. J. Appl. Phys. 1998, 83, 1087–1095. [Google Scholar] [CrossRef]
- Williamson, G.K.; Smallman, R.E. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Phil. Mag. 1956, 11, 34–46. [Google Scholar] [CrossRef]
- Caglar, Y.; Aksoy, S.; Ilican, S.; Caglar, M. Crystalline structure and morphological properties of undoped and Sn doped ZnO thin films. Superlattice Microst. 2009, 46, 469–475. [Google Scholar] [CrossRef]
- Daniel, M.F.; Desbat, B.; Lassegues, J.C.; Gerand, B.; Figlarz, M. Infrared and Raman study of WO3 tungsten trioxides and WO3, xH2O tungsten trioxide hydrates. J. Solid State Chem. 1987, 67, 235–247. [Google Scholar] [CrossRef]
- Salje, E. Lattice dynamics of WO3. Acta Crystallogr. A 1975, 31, 360–363. [Google Scholar] [CrossRef]
- Thi, M.P.; Velasco, G. Raman study of WO3 thin films. Solid State Ion. 1984, 14, 217–220. [Google Scholar] [CrossRef]
- Anderson, A. Raman study of ceramic tungsten trioxide at low temperatures. Spectrosc. Lett. 1976, 9, 809–819. [Google Scholar] [CrossRef]
- Chan, S.S.; Wachs, I.E.; Murrell, L.L.; Dispenziere, N.C., Jr. Laser Raman characterization of tungsten oxide supported on alumina: Influence of calcinations temperatures. J. Catal. 1985, 92, 1–10. [Google Scholar] [CrossRef]
- Tagtstrom, P.; Jansson, U. Chemical vapour deposition of epitaxial WO3 films. Thin Solid Film. 1999, 352, 107–113. [Google Scholar] [CrossRef]
- Santato, C.; Odziemkowski, M.; Ulmann, M.; Augustynski, J. Crystallographically oriented mesoporous WO3 films: Synthesis, characterization, and applications. J. Am. Chem. Soc. 2001, 123, 10639–10649. [Google Scholar] [CrossRef]
- Shigesato, Y. Photochromic properties of amorphous WO3 Films. Japan. J. Appl. Phys. 1991, 30, 1457–1462. [Google Scholar] [CrossRef]
- Cazzanelli, E.; Papalino, L.; Pennisi, A.; Simone, F. Spatial variation of structural order in sputtered WO3 films. Electrochim. Acta 2001, 46, 1937–1944. [Google Scholar] [CrossRef]
- Bose, R.J.; Kavitha, V.S.; Sudarsanakumar, C.; Pillai, V.P.M. Phase modification and surface plasmon resonance of Au/WO3 system. Appl. Surf. Sci. 2016, 379, 505–515. [Google Scholar] [CrossRef]
- Horcas, I.; Fernandez, R.; Gomez-Rodriguez, J.M.; Colchero, J.; Gomez-Herrero, J.; Baro, A.M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinodkumar, R.; Lethy, K.J.; Arunkumar, P.R.; Krishnan, R.R.; Pillai, N.V.; Pillai, V.P.M. Effect of cadmium oxide incorporation on the microstructural and optical properties of pulsed laser deposited nanostructured zinc oxide thin films. Reji Philip Mat. Chem. Phys. 2010, 121, 406–413. [Google Scholar] [CrossRef]
- Lethy, K.J.; Beena, D.; Kumar, R.V.; Pillai, V.P.M.; Ganesan, V.; Sathe, V.; Phase, D.M. Nanostructured tungsten oxide thin films by the reactive pulsed laser deposition technique. Appl. Phys. A 2008, 91, 637–649. [Google Scholar] [CrossRef]
- Naseri, N.; Azimirad, R.; Akhavan, O.; Moshfegh, A.Z. Improved electrochromical properties of sol–gel WO3 thin films by doping gold nanocrystals. Thin Solid Film. 2010, 518, 2250–2257. [Google Scholar] [CrossRef]
- Feng, M.; Pan, A.L.; Zhang, H.R.; Li, Z.A.; Liu, F.; Liu, H.W.; Shi, D.X.; Zou, B.S.; Gao, H.J. Strong photoluminescence of nanostructured crystalline tungsten oxide thin films. Appl. Phys. Lett. 2005, 86, 141901. [Google Scholar] [CrossRef] [Green Version]
- Baek, Y.; Yong, K. Controlled growth and characterization of tungsten oxide nanowires using thermal evaporation of WO3 powder. J. Phys. Chem. C 2007, 111, 1213–1218. [Google Scholar] [CrossRef]
- Alammar, T.; Hlova, I.Z.; Gupta, S.; Balema, V.; Pecharsky, V.K.; Mudring, A.V. Luminescence properties of mechanochemically synthesized lanthanide containing MIL-78 MOFs. Dalton Trans. 2018, 47, 7594–7601. [Google Scholar] [CrossRef] [Green Version]
- Tan, S.T.; Chen, B.J.; Sun, X.W.; Fan, W.J.; Kwok, H.S.; Zhang, X.H.; Chua, S.J. Blue shift of optical band gap in ZnO thin films grown by metal-organic chemical-vapour deposition. J. Appl. Phys. 2005, 98, 013505. [Google Scholar] [CrossRef] [Green Version]
- Tauc, J. Amorphous and liquid semiconductors; Plenum Press: London, UK, 1974. [Google Scholar]
- Joshi, K.; Rawat, M.; Gautam, S.K.; Singh, R.G.; Ramola, R.C.; Singh, F. Band gap widening and narrowing in Cu-doped ZnO thin films. J. Alloys Compd. 2016, 680, 252–258. [Google Scholar] [CrossRef]
- Mott, N.F.; Davies, E.A. Electronic Processes in Non-Crystalline Materials; ClarendonPress: Oxford, UK, 1979. [Google Scholar]
- Dakhel, A.A. Influence of dysprosium doping on the electrical and optical properties of CdO thin films. Solar Energy 2009, 83, 934–939. [Google Scholar] [CrossRef]
- Dakhel, A.A. Transparent conducting properties of samarium-doped CdO. J. Alloys Compd. 2009, 475, 51–54. [Google Scholar] [CrossRef]
- Dakhel, A.A. Bandgap narrowing in CdO doped with europium. Opt. Mater. 2009, 31, 691–695. [Google Scholar] [CrossRef]
- Dakhel, A.A. Influence of Yb-doping on optoelectrical properties of CdO, nanocrystalline films. J. Mater. Sci. 2011, 46, 1455–1461. [Google Scholar] [CrossRef]
- Dakhel, A.A. Effect of cerium doping on the structural and optoelectrical properties of CdO nanocrystallite thin films. Mater. Chem. Phys. 2011, 130, 398–402. [Google Scholar] [CrossRef]
- Burstein, E. Anomalous optical absorption limit in InSb. Phys. Rev. 1954, 93, 632–633. [Google Scholar] [CrossRef]
- Anwar, M.; Hogarth, C.A. The optical absorption edge in amorphous thin films of MoO3-In2O3. J. Mater. Sci. 1989, 24, 3673–3678. [Google Scholar] [CrossRef]
- Yao, T.; Okada, Y.; Matsui, S.; Ischida, K.; Fujimoto, I. The effect of lattice deformation on optical properties and lattice parameters of ZnSe grown on (100) GaAs. J. Cryst. Growth 1987, 81, 518–523. [Google Scholar] [CrossRef]
- Zhao, D.G.; Xu, S.J.; Xie, M.H.; Tong, S.Y.; Yang, H. Stress and its effect on optical properties of GaN epilayers grown on Si(111), 6H-SiC(0001), and c-plane sapphire. Appl. Phys. Lett. 2003, 83, 677–679. [Google Scholar] [CrossRef] [Green Version]
- Wijs, G.A.; Groot, R.A. Amorphous WO3: A first-principles approach. Electrochim. Acta 2001, 46, 1989–1993. [Google Scholar] [CrossRef]
- Hamberg, I.; Granqvist, C.G. Evaporated Sn-doped In2O3 films: Basic optical properties and applications to energy-efficient windows. J. Appl. Phys. 1986, 60, R123–R159. [Google Scholar] [CrossRef]
- Luo, G.; Shen, L.; Zheng, J.; Xu, C. Europium ions doped WO3 film with bi-function of enhanced electrochromic switching and tunable red emission. J. Mater. Chem. C 2017, 5, 3488–3494. [Google Scholar] [CrossRef]
- Shen, L.; Luo, G.; Zheng, J.; Xu, C. Effect of pH on the electrochromic and photoluminescent properties of Eu doped WO3 film. Electrochim. Acta 2018, 278, 263–270. [Google Scholar] [CrossRef]
- Wang, J.; Lee, P.S.; Ma, J. Synthesis, growth mechanism and room-temperature blue luminescence emission of uniform WO3 nanosheets with W as starting material. J. Cryst. Growth 2009, 311, 316–319. [Google Scholar] [CrossRef]
- Sungpanich, J.; Thongtem, T.; Thongtem, S. Large-scale synthesis of WO3 nanoplates by a microwave-hydrothermal method. Ceram. Int. 2012, 38, 1051–1055. [Google Scholar] [CrossRef]
- Park, S.; Kim, H.; Jin, C.; Lee, C. Intense ultraviolet emission from needle-like WO3 nanostructures synthesized by noncatalytic thermal evaporation. Nanoscale Res. Lett. 2011, 6, 451. [Google Scholar] [CrossRef] [Green Version]
- Dash, A.; Sarkar, S.; Adusumalli, V.N.K.B.; Mahalingam, V. Microwave Synthesis, photoluminescence, and photocatalytic activity of PVA-functionalized Eu3+-doped BiOX (X = Cl, Br, I) Nanoflakes. Langmuir 2014, 30, 1401–1409. [Google Scholar] [CrossRef]
- Du, P.; Bharat, L.K.; Yu, J.S. Strong red emission in Eu3+/Bi3+ ions codoped CaWO4 phosphors for white light emitting diodes and field-emission displays application. J. Alloys Compd. 2015, 633, 37–41. [Google Scholar] [CrossRef]
- Som, S.; Mitra, P.; Kumar, V.; Kumar, V.; Terblans, J.J.; Swart, H.C.; Sharma, S.K. The energy transfer phenomena and colourtunability in Y2O2S:Eu3+/Dy3+ micro-fibers for white emission in solid state lighting applications. Dalton Trans. 2014, 43, 9860–9871. [Google Scholar] [CrossRef] [PubMed]
- Dejnek, M.; Snitzer, E.; Riman, R.E. Blue, Green and red fluorescence and energy transfer of Eu3+ on fluoride glasses. J. Lumin. 1995, 65, 227–245. [Google Scholar] [CrossRef]
- Devi, L.L.; Jayasankar, C.K. Spectroscopic investigations on high efficiency deep red-emitting Ca2SiO4:Eu3+ phosphors synthesized from agricultural waste. Cer. Int. 2018, 44, 14063–14069. [Google Scholar] [CrossRef]
- Viswanath, C.S.D.; Krishnaiah, K.V.; Jayasankar, C.K. Luminescence properties of europium doped oxyfluorosilicate glasses for visible light devices. Opt. Mater. 2018, 83, 348–355. [Google Scholar] [CrossRef]
- Liu, X.; Chen, S.; Wang, X. Synthesis and photoluminescence of CeO2:Eu3+ phosphor powders. J. Lumin. 2007, 127, 650–654. [Google Scholar] [CrossRef]
- Smith, T.; Guild, J. The C.I.E. colorimetric standards and their use. Trans. Opt. Soc. 1931, 33, 73–134. [Google Scholar] [CrossRef]
- Singh, V.; Mishra, A.K. White light emission from vegetable extracts. Sci. Rep. 2015, 5, 11118. [Google Scholar] [CrossRef] [Green Version]
Sample Code | FWHM (Degree) | Crystallite Mean Size (nm) from Scherrer Formula | Micro Strain (×10−3) | Dislocation Density (lines/nm2) | (nm) |
---|---|---|---|---|---|
WEu0 | 0.2148 | 38 | 1.97 | 0.00069 | 0.3705 |
WEu1 | 0.1162 | 70 | 1.06 | 0.00020 | 0.3708 |
WEu3 | 0.1112 | 73 | 1.03 | 0.00018 | 0.3711 |
WEu5 | 0.2678 | 30 | 2.50 | 0.0011 | 0.3750 |
Sample Label | Film Thickness (nm) | RMS Surface Roughness (nm) | Average Transmittance (%) | Band Gap Energy Eg(eV) | CIE Coordinates | |
---|---|---|---|---|---|---|
X | Y | |||||
WEu0 | 243 | 3.48 | 85 | 2.95 | 0.2893 | 0.2419 |
WEu1 | 251 | 15.29 | 80 | 2.92 | 0.3180 | 0.2826 |
WEu3 | 280 | 102.01 | 51 | 2.61 | 0.3635 | 0.3111 |
WEu5 | 301 | 55.07 | 51 | 2.55 | 0.3624 | 0.2961 |
WEu10 | 134 | 3.49 | 78 | 2.49 | 0.2547 | 0.2126 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kavitha, V.S.; Biju, V.; Gopchandran, K.G.; Praveena, R.; Jayasankar, C.K.; Mekprasart, W.; Boonyarattanakalin, K.; Pecharapa, W.; Pillai, V.P.M. Tailoring the Emission Behavior of WO3 Thin Films by Eu3+ Ions for Light-Emitting Applications. Nanomaterials 2023, 13, 7. https://doi.org/10.3390/nano13010007
Kavitha VS, Biju V, Gopchandran KG, Praveena R, Jayasankar CK, Mekprasart W, Boonyarattanakalin K, Pecharapa W, Pillai VPM. Tailoring the Emission Behavior of WO3 Thin Films by Eu3+ Ions for Light-Emitting Applications. Nanomaterials. 2023; 13(1):7. https://doi.org/10.3390/nano13010007
Chicago/Turabian StyleKavitha, V. S., V. Biju, K. G. Gopchandran, R. Praveena, C. K. Jayasankar, Wanichaya Mekprasart, Kanokthip Boonyarattanakalin, Wisanu Pecharapa, and V. P. Mahadevan Pillai. 2023. "Tailoring the Emission Behavior of WO3 Thin Films by Eu3+ Ions for Light-Emitting Applications" Nanomaterials 13, no. 1: 7. https://doi.org/10.3390/nano13010007
APA StyleKavitha, V. S., Biju, V., Gopchandran, K. G., Praveena, R., Jayasankar, C. K., Mekprasart, W., Boonyarattanakalin, K., Pecharapa, W., & Pillai, V. P. M. (2023). Tailoring the Emission Behavior of WO3 Thin Films by Eu3+ Ions for Light-Emitting Applications. Nanomaterials, 13(1), 7. https://doi.org/10.3390/nano13010007