Nature of the Metal Insulator Transition in High-Mobility 2D_Si-MOSFETs
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Das Sarma, S.; Adam, S.; Hwang, E.H.; Rossi, E. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 2011, 83, 407–470. [Google Scholar] [CrossRef] [Green Version]
- Dlimi, S.; El Kaaouachi, A.; Limouny, L.; Narjis, A. Percolation Induced Metal–Insulator Transition in 2D Si/SiGe Quantum Wells. Trans. Electr. Electron. Mater. 2021, 23, 457–461. [Google Scholar] [CrossRef]
- Dlimi, S.; El Kaaouachi, A.; Narjis, A. Density inhomogeneity driven metal–insulator transition in 2D p-GaAs. Phys. E Low-dimens. Syst. Nanostruct. 2013, 54, 181–184. [Google Scholar] [CrossRef]
- Kravchenko, S.V.; Kravchenko, G.V.; Furneaux, J.E.; Pudalov, V.M.; D’iorio, M. Possible metal-insulator transition at B=0 in two dimensions. Phys. Rev. B 1994, 50, 8039–8042. [Google Scholar] [CrossRef] [Green Version]
- Kravchenko, S.V.; Mason, W.E.; Bowker, G.E.; Furneaux, J.E.; Pudalov, V.M.; D’iorio, M. Scaling of an anomalous metal-insulator transition in a two-dimensional system in silicon at B = 0. Phys. Rev. B 1995, 51, 7038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abrahams, E.; Kravchenko, S.V.; Sarachik, M.P. Metallic behavior and related phenomena in two dimensions. Rev. Mod. Phys. 2001, 73, 251. [Google Scholar] [CrossRef] [Green Version]
- Popović, D.; Fowler, A.B.; Washburn, S. Metal-Insulator Transition in Two Dimensions: Effects of Disorder and Magnetic Field. Phys. Rev. Lett. 1997, 79, 1543. [Google Scholar] [CrossRef]
- Coleridge, P.T.; Williams, R.L.; Feng, Y.; Zawadzki, P. Metal-insulator transition at B=0 in p-type SiGe. Phys. Rev. B 1997, 56, R12764. [Google Scholar] [CrossRef] [Green Version]
- Brunthaler, G.; Prinz, A.; Bauer, G.; Pudalov, V.M. Exclusion of Quantum Coherence as the Origin of the 2D Metallic State in High-Mobility Silicon Inversion Layers. Phys. Rev. Lett. 2001, 87, 096802. [Google Scholar] [CrossRef] [Green Version]
- Simmons, M.Y.; Hamilton, A.R.; Pepper, M.; Linfield, E.H.; Rose, P.D.; Ritchie, D.A.; Savchenko, A.K.; Griffiths, T.G. Metal-Insulator Transition at B = 0 in a Dilute Two Dimensional GaAs-AlGaAs Hole Gas. Phys. Rev. Lett. 1998, 80, 1292. [Google Scholar] [CrossRef] [Green Version]
- Hanein, Y.; Shahar, D.; Yoon, J.; Li, C.C.; Tsui, D.C.; Shtrikman, H. Observation of the metal-insulator transition in two-dimensional n-type GaAs. Phys. Rev. B 1998, 58, R13338. [Google Scholar] [CrossRef] [Green Version]
- Papadakis, S.J.; Shayegan, M. Apparent metallic behavior at B=0 of a two-dimensional electron system in AlAs. Phys. Rev. B 1998, 57, R15068. [Google Scholar] [CrossRef] [Green Version]
- Abrahams, E.; Anderson, P.W.; Licciardello, D.C.; Ramakrishnan, T.V. Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions. Phys. Rev. Lett. 1979, 42, 673. [Google Scholar] [CrossRef]
- Sergeev, A.; Reizer, M.Y.; Mitin, V. Effects of electron-electron and electron-phonon interactions in weakly disordered conductors and heterostructures. Phys. Rev. B 2004, 69, 075310. [Google Scholar] [CrossRef] [Green Version]
- Dlimi, S.; El Kaaouachi, A.; Limouny, L.; Hammou, B.A. A crossover from Efros–Shklovskii hopping to activated transport in a GaAs two-dimensional hole system at low temperatures. J. Semicond. 2021, 42, 052001. [Google Scholar] [CrossRef]
- Dlimi, S.; Limouny, L.; Hemine, J.; Echchelh, A.; El Kaaouachi, A. Efros–Shklovskii hopping in the electronic transport in 2D p-GaAs. Lith. J. Phys. 2020, 60, 167. [Google Scholar] [CrossRef]
- Dlimi, S.; El Kaaouachi, A. Magnetoconductivity in a Disordered and Interacting 2D p-SiGe Quantum Well. J. Korean Phys. Soc. 2020, 77, 1218. [Google Scholar] [CrossRef]
- Dlimi, S.; Limouny, L.; El Kaaouachi, A. Crossover between ballistic and diffusive regime in 2D SiGe quantum well. Appl. Surf. Sci. Adv. 2021, 3, 100045. [Google Scholar] [CrossRef]
- Pudalov, V.M. Unconventional metallic state in a two-dimensional system with broken inversion symmetry. J. Exp. Theor. Phys. Lett. 1997, 66, 175. [Google Scholar] [CrossRef] [Green Version]
- Dlimi, S.; El Kaaouachi, A.; Abdia, R.; Narjis, A.; Biskupski, G.; Hemine, J.; Limouny, L.; Sybous, S. Low temperature electrical transport properties in dilute 2D GaAs hole systems with magnetic field. In AIP Conference Proceedings; American Institute of Physics: Melville, NY, USA, 2012; Volume 1435, pp. 385–392. [Google Scholar] [CrossRef] [Green Version]
- Das Sarma, S.; Hwang, E. The so-called two dimensional metal–insulator transition. Solid State Commun. 2005, 135, 579. [Google Scholar] [CrossRef] [Green Version]
- Dlimi, S.; El Kaaouachi, A.; Narjis, A.; Limouny, L.; Sybous, A.; Errai, M.; Biskupski, G. Evidence for the correlated hopping mechanism in p- GaAs near the 2D MIT AT B = 0 T. J. Optoelectron. Adv. Mater. 2013, 15, 1222–1227. [Google Scholar]
- Punnoose, A.; Finkel’Stein, A.M. Metal-Insulator Transition in Disordered Two-Dimensional Electron Systems. Science 2005, 310, 289–291. [Google Scholar] [CrossRef] [Green Version]
- Pudalov, V.M.; Brunthaler, G.; Prinz, A.; Bauer, G. Lack of universal one-parameter scaling in the two-dimensional metallic regime. J. Exp. Theor. Phys. Lett. 1998, 68, 442–447. [Google Scholar] [CrossRef] [Green Version]
- Noh, H.; Lilly, M.P.; Tsui, D.C.; Simmons, J.A.; Pfeiffer, L.N.; West, K.W. Linear temperature dependence of conductivity in the apparent insulating regime of dilute two-dimensional holes in GaAs. Phys. Rev. B 2003, 68, 241308. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Novikov, D.S.; Tsui, D.C.; Pfeiffer, L.N.; West, K.W. Two-Dimensional Holes in GaAs HIGFETs: Fabrication Methods and Transport Measurements. Int. J. Mod. Phys. B 2007, 21, 1219–1227. [Google Scholar] [CrossRef]
- Pudalov, V.M.; Gershenson, M.E.; Kojima, H.; Butch, N.; Dizhur, E.M.; Brunthaler, G.; Prinz, A.; Bauer, G. Low-Density Spin Susceptibility and Effective Mass of Mobile Electrons in Si Inversion Layers. Phys. Rev. Lett. 2002, 88, 196404. [Google Scholar] [CrossRef] [Green Version]
- Dlimi, S.; El Kaaouachi, A.; Narjis, A.; Limouny, L.; Sybous, A.; Errai, M. Hopping energy and percolation-type transport in p-GaAs low densities near the 2D metal–insulator transition at zero magnetic field. Solids 2013, 74, 1349–1354. [Google Scholar] [CrossRef]
- Spivak, B.; Kivelson, S.A. Phases intermediate between a two-dimensional electron liquid and Wigner crystal. Phys. Rev. B 2004, 70, 155114. [Google Scholar] [CrossRef]
- Das Sarma, S.; Hwang, E.H. Metallicity and its low-temperature behavior in dilute two-dimensional carrier systems. Phys. Rev. B 2004, 69, 195305. [Google Scholar] [CrossRef] [Green Version]
- Spivak, B. Properties of the strongly correlated two-dimensional electron gas in Si MOSFET’s. Phys. Rev. B 2001, 64, 085317. [Google Scholar] [CrossRef] [Green Version]
- Zala, G.; Narozhny, B.N.; Aleiner, I.L. Interaction corrections at intermediate temperatures: Magnetoresistance in a parallel field. Phys. Rev. B 2001, 65, 020201. [Google Scholar] [CrossRef] [Green Version]
- Limouny, L.; El Kaaouachi, A.; El Idrissi, H.; Zatni, A.; Tata, O.; Daoudi, E.; Errai, M.; Dlimi, S. Study of the electrical conductivity at finite temperature in 2D Si-MOSFETs. In AIP Conference Proceedings; American Institute of Physics: Melville, NY, USA, 2014; Volume 1574, pp. 309–313. [Google Scholar] [CrossRef]
- Limouny, L.; Dlimi, S.; El Kaaouachi, A. Negative magnetoresistance in Dirac semimetal Cd3As2 in the variable range hopping regime. Bull. Mater. Sci. 2021, 44, 210. [Google Scholar] [CrossRef]
- Limouny, L.; El Kaaouachi, A.; Dlimi, S.; Sybous, A.; Narjis, A.; Errai, M.; Daoudi, E. Anomalous crossover from efros–shklovskii to mott variable range hopping in silicon mosfets. Mod. Phys. Lett. B 2013, 27, 1350146. [Google Scholar] [CrossRef]
- Limouny, L.; Kaaouachi, A.E.; Dlimi, S.; Daoudi, E.F.; Sybous, A.B.; Narjis, A.; Errai, M.O. Study of the critical density of the metal-insulator transition in two dimensional systems. J. Optoelectron. Adv. Mater. 2013, 15, 1303–1305. [Google Scholar]
- Meir, Y. Percolation-Type Description of the Metal-Insulator Transition in Two Dimensions. Phys. Rev. Lett. 1999, 83, 3506–3509. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Xie, X.C. Droplet State and the Compressibility Anomaly in Dilute 2D Electron Systems. Phys. Rev. Lett. 2002, 88, 086401. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Xie, X.C. Search for Electron Antineutrino Appearance in a Long-Baseline Muon Antineutrino Beam. Phys. Rev. Lett. 1998, 80, 3324. [Google Scholar] [CrossRef] [Green Version]
- Spivak, B. Coulomb interaction in monolayer transition-metal dichalcogenides. Phys. Rev. B 2003, 67, 125205. [Google Scholar] [CrossRef] [Green Version]
- Wong, H. Abridging CMOS Technology. Nanomaterials 2022, 12, 4245. [Google Scholar] [CrossRef]
- Zhu, X.; Dong, S.; Yu, F.; Deng, F.; Shubhakar, K.; Pey, K.L.; Luo, J. Silicon-Controlled Rectifier Embedded Diode for 7 nm FinFET Process Electrostatic Discharge Protection. Nanomaterials 2022, 12, 1743. [Google Scholar] [CrossRef]
- Wong, H.; Kakushima, K. On the Vertically Stacked Gate-All-Around Nanosheet and Nanowire Transistor Scaling beyond the 5 nm Technology Node. Nanomaterials 2022, 12, 1739. [Google Scholar] [CrossRef] [PubMed]
- Knobloch, T.; Selberherr, S. Challenges for Nanoscale CMOS Logic Based on Two-Dimensional Materials. Nanomaterials 2022, 12, 3548. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Pan, Z.; Li, X.; Hao, W.; Miao, R. Selective Overview of 3D Heterogeneity in CMOS. Nanomaterials 2022, 12, 2340. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elmourabit, F.; Dlimi, S.; El Moutaouakil, A.; Id Ouissaaden, F.; Khoukh, A.; Limouny, L.; Elkhatat, H.; El Kaaouachi, A. Nature of the Metal Insulator Transition in High-Mobility 2D_Si-MOSFETs. Nanomaterials 2023, 13, 2047. https://doi.org/10.3390/nano13142047
Elmourabit F, Dlimi S, El Moutaouakil A, Id Ouissaaden F, Khoukh A, Limouny L, Elkhatat H, El Kaaouachi A. Nature of the Metal Insulator Transition in High-Mobility 2D_Si-MOSFETs. Nanomaterials. 2023; 13(14):2047. https://doi.org/10.3390/nano13142047
Chicago/Turabian StyleElmourabit, F., S. Dlimi, A. El Moutaouakil, F. Id Ouissaaden, A. Khoukh, L. Limouny, H. Elkhatat, and A. El Kaaouachi. 2023. "Nature of the Metal Insulator Transition in High-Mobility 2D_Si-MOSFETs" Nanomaterials 13, no. 14: 2047. https://doi.org/10.3390/nano13142047
APA StyleElmourabit, F., Dlimi, S., El Moutaouakil, A., Id Ouissaaden, F., Khoukh, A., Limouny, L., Elkhatat, H., & El Kaaouachi, A. (2023). Nature of the Metal Insulator Transition in High-Mobility 2D_Si-MOSFETs. Nanomaterials, 13(14), 2047. https://doi.org/10.3390/nano13142047