Deep Levels and Electron Paramagnetic Resonance Parameters of Substitutional Nitrogen in Silicon from First Principles
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. The Symmetry Breaking in N
3.2. Ab Initio EPR Parameters
3.3. Charge Transition Levels of N
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Orlov, V.; Richter, H.; Fischer, A.; Reif, J.; Müller, T.; Wahlich, R. Mechanical properties of nitrogen-doped CZ silicon crystals. Mater. Sci. Semicond. Process. 2002, 5, 403–407. [Google Scholar] [CrossRef]
- Voronkov, V.V.; Falster, R.J. Multiplicity of Nitrogen Species in Silicon: The Impact on Vacancy Trapping. In Proceedings of the Gettering and Defect Engineering in Semiconductor Technology XII, Erice, Italy, 14–19 October 2007; Solid State Phenomena. Trans Tech Publications, Ltd.: Zurich, Switzerland, 2008; Volume 131–133, pp. 219–224. [Google Scholar] [CrossRef]
- Yuan, S.; Yang, D. Nitrogen impurity in crystalline silicon. In Handbook of Photovoltaic Silicon; Springer: Berlin/Heidelberg, Germany, 2019; pp. 463–494. [Google Scholar]
- Alpass, C.; Murphy, J.; Falster, R.; Wilshaw, P. Nitrogen diffusion and interaction with dislocations in single-crystal silicon. J. Appl. Phys. 2009, 105, 013519. [Google Scholar] [CrossRef]
- Ammon, W.; Dreier, P.; Hensel, W.; Lambert, U.; Köster, L. Influence of oxygen and nitrogen on point defect aggregation in silicon single crystals. Mater. Sci. Eng. B 1996, 36, 33–41. [Google Scholar] [CrossRef]
- Voronkov, V.; Falster, R. Nitrogen interaction with vacancies in silicon. Mater. Sci. Eng. B 2004, 114, 130–134. [Google Scholar] [CrossRef]
- Mitchell, J.; Shewchun, J.; Thompson, D.; Davies, J. Nitrogen- implanted silicon. II. Electrical properties. J. Appl. Phys. 1975, 46, 335–343. [Google Scholar] [CrossRef]
- Tokumaru, Y.; Okushi, H.; Masui, T.; Abe, T. Deep levels associated with nitrogen in silicon. Jpn. J. Appl. Phys. 1982, 21, L443. [Google Scholar] [CrossRef]
- Nauka, K.; Goorsky, M.; Gatos, H.; Lagowski, J. Nitrogen-related deep electron traps in float zone silicon. Appl. Phys. Lett. 1985, 47, 1341–1343. [Google Scholar] [CrossRef]
- Grant, N.E.; Markevich, V.P.; Mullins, J.; Peaker, A.R.; Rougieux, F.; Macdonald, D.; Murphy, J.D. Permanent annihilation of thermally activated defects which limit the lifetime of float-zone silicon. Phys. Status Solidi (A) 2016, 213, 2844–2849. [Google Scholar] [CrossRef]
- Mullins, J.; Markevich, V.P.; Vaqueiro-Contreras, M.; Grant, N.E.; Jensen, L.; Jabłoński, J.; Murphy, J.D.; Halsall, M.P.; Peaker, A.R. Thermally activated defects in float zone silicon: Effect of nitrogen on the introduction of deep level states. J. Appl. Phys. 2018, 124, 035701. [Google Scholar] [CrossRef]
- Nakamura, M.; Murakami, S.; Udono, H. Origins of the nitrogen-related deep donor center and its preceding species in nitrogen-doped silicon determined by deep-level transient spectroscopy. Appl. Phys. Express 2019, 12, 021005. [Google Scholar] [CrossRef]
- Hiller, D.; Markevich, V.P.; de Guzman, J.A.T.; König, D.; Prucnal, S.; Bock, W.; Julin, J.; Peaker, A.R.; Macdonald, D.; Grant, N.E.; et al. Kinetics of Bulk Lifetime Degradation in Float-Zone Silicon: Fast Activation and Annihilation of Grown-In Defects and the Role of Hydrogen versus Light. Phys. Status Solidi (A) 2020, 217, 2000436. [Google Scholar] [CrossRef]
- Sauer, R.; Weber, J.; Zulehner, W. Nitrogen in silicon: Towards the identification of the 1.1223-eV (A,B,C) photoluminescence lines. Appl. Phys. Lett. 1984, 44, 440–442. [Google Scholar] [CrossRef]
- Stein, H.J. Vibrational absorption bands for implanted nitrogen in crystalline silicon. Appl. Phys. Lett. 1983, 43, 296–298. [Google Scholar] [CrossRef]
- Stein, H.J. Infrared absorption band for substitutional nitrogen in silicon. Appl. Phys. Lett. 1985, 47, 1339–1341. [Google Scholar] [CrossRef]
- Scheffler, L.; Lei, A.; Duun, S.; Julsgaard, B. On the nature of thermally activated defects in n-type FZ silicon grown in nitrogen atmosphere. AIP Adv. 2022, 12, 035151. [Google Scholar] [CrossRef]
- Brower, K.L. Jahn–Teller-distorted nitrogen donor in laser-annealed silicon. Phys. Rev. Lett. 1980, 44, 1627. [Google Scholar] [CrossRef]
- Brower, K. Deep-level nitrogen centers in laser-annealed ion-implanted silicon. Phys. Rev. B 1982, 26, 6040. [Google Scholar] [CrossRef]
- Belli, M.; Fanciulli, M.; Batani, D. Electron spin resonance of substitutional nitrogen in silicon. Phys. Rev. B 2014, 89, 115207. [Google Scholar] [CrossRef]
- Murakami, K.; Masuda, K.; Aoyagi, Y.; Namba, S. Experimental tests of non-thermal effect for pulsed-laser annealing by time-resolved reflectivity and EPR measurements. Physica B + C 1983, 116, 564–569. [Google Scholar] [CrossRef]
- Jahn, H.A.; Teller, E. Stability of polyatomic molecules in degenerate electronic states-I—Orbital degeneracy. Proc. R. Soc. Lond. Ser. A-Math. Phys. Sci. 1937, 161, 220–235. [Google Scholar]
- Hjalmarson, H.P.; Vogl, P.; Wolford, D.J.; Dow, J.D. Theory of Substitutional Deep Traps in Covalent Semiconductors. Phys. Rev. Lett. 1980, 44, 810–813. [Google Scholar] [CrossRef]
- DeLeo, G.G.; Fowler, W.B.; Watkins, G.D. Theory of off-center impurities in silicon: Substitutional nitrogen and oxygen. Phys. Rev. B 1984, 29, 3193. [Google Scholar] [CrossRef]
- Murakami, K.; Itoh, H.; Takita, K.; Masuda, K. Substitutional nitrogen impurities in pulsed-laser annealed silicon. Appl. Phys. Lett. 1984, 45, 176–178. [Google Scholar] [CrossRef][Green Version]
- Murakami, K.; Kuribayashi, H.; Masuda, K. Motional effects between on-center and off-center substitutional nitrogen in silicon. Phys. Rev. B 1988, 38, 1589. [Google Scholar] [CrossRef]
- Voronkov, V.; Falster, R. Out-diffusion of deep donors in nitrogen-doped silicon and the diffusivity of vacancies. J. Appl. Phys. 2012, 112, 013519. [Google Scholar] [CrossRef]
- Itoh, H.; Murakami, K.; Takita, K.; Masuda, K. Charge-state changes of substitutional nitrogen impurities in silicon induced by additional impurities and defects. J. Appl. Phys. 1987, 61, 4862–4868. [Google Scholar] [CrossRef][Green Version]
- Goss, J.; Hahn, I.; Jones, R.; Briddon, P.; Öberg, S. Vibrational modes and electronic properties of nitrogen defects in silicon. Phys. Rev. B 2003, 67, 045206. [Google Scholar] [CrossRef]
- Zhu, Z.; Shao, H.; Dong, X.; Li, N.; Ning, B.Y.; Ning, X.J.; Zhao, L.; Zhuang, J. Electronic band structure and sub-band-gap absorption of nitrogen hyperdoped silicon. Sci. Rep. 2015, 5, 10513. [Google Scholar] [CrossRef]
- Platonenko, A.; Gentile, F.S.; Pascale, F.; Ferrari, A.M.; D’amore, M.; Dovesi, R. Nitrogen substitutional defects in silicon. A quantum mechanical investigation of the structural, electronic and vibrational properties. Phys. Chem. Chem. Phys. 2019, 21, 20939–20950. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baseggio, O.; Bonfà, P.; Brunato, D.; Car, R.; Carnimeo, I.; Cavazzoni, C.; de Gironcoli, S.; Delugas, P.; Ferrari Ruffino, F.; et al. Quantum ESPRESSO toward the exascale. J. Chem. Phys. 2020, 152, 154105. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed]
- Pickard, C.J.; Mauri, F. All-electron magnetic response with pseudopotentials: NMR chemical shifts. Phys. Rev. B 2001, 63, 245101. [Google Scholar] [CrossRef]
- Ceresoli, D. The Pseudopotentials Files Used for Calculations Are Si.pbe-tm-new-gipaw-dc.UPF and N.pbe-tm-new-gipaw-dc.UPF. Available online: https://sites.google.com/site/dceresoli/ (accessed on 15 March 2021).
- Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Nardelli, M.B.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 2017, 29, 465901. [Google Scholar] [CrossRef]
- Varini, N.; Ceresoli, D.; Martin-Samos, L.; Girotto, I.; Cavazzoni, C. Enhancement of DFT-calculations at petascale: Nuclear Magnetic Resonance, Hybrid Density Functional Theory and Car–Parrinello calculations. Comput. Phys. Commun. 2013, 184, 1827–1833. [Google Scholar] [CrossRef]
- Pickard, C.J.; Mauri, F. First-Principles Theory of the EPR g Tensor in Solids: Defects in Quartz. Phys. Rev. Lett. 2002, 88, 086403. [Google Scholar] [CrossRef]
- Pfanner, G.; Freysoldt, C.; Neugebauer, J.; Gerstmann, U. Ab initio EPR parameters for dangling-bond defect complexes in silicon: Effect of Jahn–Teller distortion. Phys. Rev. B 2012, 85, 195202. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Pack, J.D.; Monkhorst, H.J. “Special points for Brillouin-zone integrations”—A reply. Phys. Rev. B 1977, 16, 1748–1749. [Google Scholar] [CrossRef]
- Gonze, X.; Amadon, B.; Antonius, G.; Arnardi, F.; Baguet, L.; Beuken, J.M.; Bieder, J.; Bottin, F.; Bouchet, J.; Bousquet, E.; et al. The Abinit project: Impact, environment and recent developments. Comput. Phys. Commun. 2020, 248, 107042. [Google Scholar] [CrossRef]
- Bruneval, F.; Vast, N.; Reining, L. Effect of self-consistency on quasiparticles in solids. Phys. Rev. B 2006, 74, 045102. [Google Scholar] [CrossRef]
- Hamann, D.R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 2013, 88, 085117. [Google Scholar] [CrossRef]
- Freysoldt, C.; Grabowski, B.; Hickel, T.; Neugebauer, J.; Kresse, G.; Janotti, A.; Van de Walle, C.G. First-principles calculations for point defects in solids. Rev. Mod. Phys. 2014, 86, 253–305. [Google Scholar] [CrossRef]
- Rinke, P.; Janotti, A.; Scheffler, M.; Van de Walle, C.G. Defect Formation Energies without the Band-Gap Problem: Combining Density-Functional Theory and the G W Approach for the Silicon Self-Interstitial. Phys. Rev. Lett. 2009, 102, 026402. [Google Scholar] [CrossRef]
- Hedin, L.; Lundqvist, S. Effects of electron-electron and electron-phonon interactions on the one-electron states of solids. Solid State Phys. 1969, 23, 1–181. [Google Scholar]
- Van Setten, M.; Caruso, F.; Rinke, P. GW100. Available online: https://gw100.wordpress.com/ (accessed on 21 June 2023).
- Nieminen, R.M. Supercell Methods for Defect Calculations. In Theory of Defects in Semiconductors; Drabold, D.A., Estreicher, S.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 29–68. [Google Scholar] [CrossRef]
- Giacomazzi, L.; Umari, P. First-principles investigation of electronic, structural and vibrational properties of a-Si3N4. Phys. Rev. B 2009, 80, 144201. [Google Scholar] [CrossRef]
- Herrero-Saboya, G.; Martin-Samos, L.; Richard, N.; Hémeryck, A. Common defects in diamond lattices as instances of the general T⊗(e+ t 2) Jahn–Teller effect. Phys. Rev. Mater. 2022, 6, 034601. [Google Scholar] [CrossRef]
- Skachkov, D.; Lambrecht, W.R.L.; von Bardeleben, H.J.; Gerstmann, U.; Ho, Q.D.; Deák, P. Computational identification of Ga-vacancy related electron paramagnetic resonance centers in β-Ga2O3. J. Appl. Phys. 2019, 125, 185701. [Google Scholar] [CrossRef]
- Giacomazzi, L.; Martin-Samos, L.; Richard, N. Paramagnetic centers in amorphous GeO2. Microelectron. Eng. 2015, 147, 130–133. [Google Scholar] [CrossRef]
- Schultz, P.A.; Messmer, R. Valence-bond theory of off-center impurities in silicon: Substitutional nitrogen. Phys. Rev. B 1986, 34, 2532. [Google Scholar] [CrossRef]
(Si) (MHz) | (N) (MHz) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ref. | ||||||||||||
tw-off | 2.0020 | 2.0089 | 2.0078 | 2.0062 | −380.4 | −205.9 | −205.9 | −264.1 | 37.5 | 29.6 | 29.6 | 32.2 |
[18,19] | 2.0026 | 2.0089 | 2.0089 | 2.0068 | 397.5 | 231.7 | 231.7 | 287.0 | 45.3 | 36.3 | 36.3 | 39.3 |
[20] | 2.00219 | 2.00847 | 2.00847 | 2.00638 | 396.6 | 234.7 | 234.7 | 288.7 | 45.85 | 36.49 | 36.49 | 39.61 |
tw-on | - | - | - | - | −55.0 | −32.6 | −32.6 | −40.1 | 165.7 | 165.7 | 165.7 | 165.7 |
tw-cluster | 2.0056 | 2.0056 | 2.0056 | 2.0056 | −58.4 | −13.2 | −13.2 | −28.3 | 226.6 | 226.6 | 226.6 | 226.6 |
[21] ([26]) | - | - | - | 2.0065 | - | - | - | - | - | - | - | 45.5 (376.2) |
Reference | |||
---|---|---|---|
tw-PBE | 0.55 | 0.32 | - |
tw-PBE + GW | 0.83 | 0.55 | - |
pw [29] | - | 0.40 | - |
Exp. [28] | 0.31 | 0.08 | - |
Exp. [17] | - | 0.64 | 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simha, C.; Herrero-Saboya, G.; Giacomazzi, L.; Martin-Samos, L.; Hemeryck, A.; Richard, N. Deep Levels and Electron Paramagnetic Resonance Parameters of Substitutional Nitrogen in Silicon from First Principles. Nanomaterials 2023, 13, 2123. https://doi.org/10.3390/nano13142123
Simha C, Herrero-Saboya G, Giacomazzi L, Martin-Samos L, Hemeryck A, Richard N. Deep Levels and Electron Paramagnetic Resonance Parameters of Substitutional Nitrogen in Silicon from First Principles. Nanomaterials. 2023; 13(14):2123. https://doi.org/10.3390/nano13142123
Chicago/Turabian StyleSimha, Chloé, Gabriela Herrero-Saboya, Luigi Giacomazzi, Layla Martin-Samos, Anne Hemeryck, and Nicolas Richard. 2023. "Deep Levels and Electron Paramagnetic Resonance Parameters of Substitutional Nitrogen in Silicon from First Principles" Nanomaterials 13, no. 14: 2123. https://doi.org/10.3390/nano13142123
APA StyleSimha, C., Herrero-Saboya, G., Giacomazzi, L., Martin-Samos, L., Hemeryck, A., & Richard, N. (2023). Deep Levels and Electron Paramagnetic Resonance Parameters of Substitutional Nitrogen in Silicon from First Principles. Nanomaterials, 13(14), 2123. https://doi.org/10.3390/nano13142123