In Situ Growth of CdZnS Nanoparticles@Ti3C2Tx MXene Nanosheet Heterojunctions for Boosted Visible-Light-Driven Photocatalytic Hydrogen Evolution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Photocatalysts
2.3. Characterization
2.4. Photoelectrochemical Measurement
2.5. Photocatalytic H2 Evolution Performance
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, X.; Luo, N.; Xie, S.; Zhang, H.; Zhang, Q.; Wang, F.; Wang, Y. Photocatalytic transformations of lignocellulosic biomass into chemicals. Chem. Soc. Rev. 2020, 49, 6198–6223. [Google Scholar] [CrossRef]
- Wang, L.; Jin, P.X.; Huang, J.W.; She, H.D.; Wang, Q.Z. Integration of Copper(II)-Porphyrin Zirconium Metal-Organic Framework and Titanium Dioxide to Construct Z-Scheme System for Highly Improved Photocatalytic CO2 Reduction. Acs Sustain. Chem. Eng. 2019, 7, 15660–15670. [Google Scholar] [CrossRef]
- Hou, T.; Chen, H.; Li, Y.; Wang, H.; Yu, F.; Li, C.; Lin, H.; Li, S.; Wang, L. Unique Cd0.5Zn0.5S/WO3-x direct Z-scheme heterojunction with S, O vacancies and twinning superlattices for efficient photocatalytic water-splitting. Dalton Trans. 2022, 51, 1150–1162. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Jin, Y.; Park, S.S.; Soo, H.S.; Lee, G.D. Photocatalytic Degradation of Rhodamine B Using Cd0.5Zn0.5S/ZnO Photocatalysts under Visible Light Irradiation. Appl. Chem. Eng. 2015, 26, 356–361. [Google Scholar] [CrossRef]
- Liang, Q.; Jin, J.; Liu, C.; Xu, S.; Yao, C.; Li, Z. Fabrication of the ternary heterojunction Cd0.5Zn0.5S@UIO-66@g-C3N4 for enhanced visible-light photocatalytic hydrogen evolution and degradation of organic pollutants. Inorg. Chem. Front. 2018, 5, 335–343. [Google Scholar] [CrossRef]
- Mu, P.; Zhou, M.; Yang, K.; Zhou, C.; Mi, Y.; Yu, Z.; Lu, K.; Li, Z.; Ouyang, S.; Huang, W.; et al. Sulfur vacancies engineered over Cd0.5Zn0.5S by Yb3+/Er3+ co-doping for enhancing photocatalytic hydrogen evolution. Sustain. Energy Fuels 2021, 5, 5814–5824. [Google Scholar] [CrossRef]
- Xiao, L.; Su, T.; Wang, Z.; Zhang, K.; Peng, X.; Han, Y.; Li, Q.; Wang, X. Enhanced Photocatalytic Hydrogen Evolution by Loading Cd0.5Zn0.5S QDs onto Ni2P Porous Nanosheets. Nanoscale Res. Lett. 2018, 13, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zeng, C.; Hu, Y.; Zhang, T.; Dong, F.; Zhang, Y.; Huang, H. A core-satellite structured Z-scheme catalyst Cd0.5Zn0.5S/BiVO4 for highly efficient and stable photocatalytic water splitting. J. Mater. Chem. A 2018, 6, 16932–16942. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Poudel, M.B.; Kim, A.R.; Ramakrishan, S.; Logeshwaran, N.; Ramasamy, S.K.; Kim, H.J.; Yoo, D.J. Integrating the essence of metal organic framework-derived ZnCoTe-N-C/MoS2 cathode and ZnCo-NPS-N-CNT as anode for high-energy density hybrid supercapacitors. Compos. Part. B Eng. 2022, 247, 110339. [Google Scholar] [CrossRef]
- Poudel, M.B.; Kim, A.A.; Lohani, P.C.; Yoo, D.J.; Kim, H.J. Assembling zinc cobalt hydroxide/ternary sulfides heterostructure and iron oxide nanorods on three-dimensional hollow porous carbon nanofiber as high energy density hybrid supercapacitor. J. Energy Storage 2023, 60, 106713. [Google Scholar] [CrossRef]
- Poudel, M.B.; Lohani, P.C.; Acharya, D.; Kandel, D.R.; Kim, A.A.; Yoo, D.J. MOF derived hierarchical ZnNiCo-LDH on vapor solid phase grown CuxO nanowire array as high energy density asymmetric supercapacitors. J. Energy Storage 2023, 72, 108220. [Google Scholar] [CrossRef]
- Mamiyev, Z.; Balayeva, N.O. Metal Sulfide Photocatalysts for Hydrogen Generation: A Review of Recent Advances. Catalysts 2022, 12, 1316. [Google Scholar] [CrossRef]
- Ganapathy, M.; Chang, C.T.; Alagan, V. Facile preparation of amorphous SrTiO3− crystalline PbS heterojunction for efficient photocatalytic hydrogen production. Int. J. Hydrog. Energy 2022, 47, 27555–27565. [Google Scholar] [CrossRef]
- Zhuge, K.; Chen, Z.; Yang, Y.; Wang, J.; Shi, Y.; Li, Z. In-suit photodeposition of MoS2 onto CdS quantum dots for efficient photocatalytic H-2 evolution. Appl. Surf. Sci. 2021, 539, 148243. [Google Scholar] [CrossRef]
- Zhu, Q.H.; Xu, Q.; Du, M.M.; Zeng, X.F.; Zhong, G.F.; Qiu, B.C.; Zhang, J.L. Recent Progress of Metal Sulfide Photocatalysts for Solar Energy Conversion. Adv. Mater. 2022, 34, e2202929. [Google Scholar] [CrossRef]
- Poudel, M.B.; Awasthi, G.P.; Kim, H.J. Novel insight into the adsorption of Cr(VI) and Pb(II) ions by MOF derived Co-Al layered double hydroxide @hematite nanorods on 3D porous carbon nanofiber network. Chem. Eng. J. 2021, 417, 129312. [Google Scholar] [CrossRef]
- Ji, Q.; Xu, J.; Wang, C.; Wang, L. Controlling the coordination environment of Co atoms derived from Co/ZIF-8 for boosting photocatalytic H-2 evolution of CdS. J. Colloid. Interface Sci. 2021, 596, 139–147. [Google Scholar] [CrossRef]
- Qin, X.; Cao, R.; Gong, W.; Luo, L.; Shi, G.; Ji, L.; Zhu, A. Hydrothermal growth of ZnCdS/TiO2 nanoparticles on the surface of the Ti3C2 MXene sheet to enhance photocatalytic performance under visible light. J. Solid. State Chem. 2022, 306, 122751. [Google Scholar] [CrossRef]
- Jin, S.; Jing, H.; Wang, L.; Hu, Q.; Zhou, A. Construction and performance of CdS/MoO2@Mo2C-MXene photocatalyst for H-2 production. J. Adv. Ceram. 2022, 11, 1431–1444. [Google Scholar] [CrossRef]
- Cao, B.; Wan, S.; Wang, Y.; Guo, H.; Ou, M.; Zhong, Q. Highly-efficient visible-light-driven photocatalytic H-2 evolution integrated with microplastic degradation over MXene/ZnxCd1-xS photocatalyst. J. Colloid. Interface Sci. 2022, 605, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Dong, Y. Influence of the reaction temperature on Cd1-xZnxS thin films with chemical bath deposited. In Proceedings of the 12th China International Nanoscience and Technology Symposium, Chengdu and the Nano-Products Exposition, Chengdu, China, 27–31 October 2014; pp. 52–56. [Google Scholar]
- Chen, Y.; Guo, L. Highly efficient visible-light-driven photocatalytic hydrogen production from water using Cd0.5Zn0.5S/TNTs (titanate nanotubes) nanocomposites without noble metals. J. Mater. Chem. 2012, 22, 7507–7514. [Google Scholar] [CrossRef]
- Yu, K.; Huang, H.-B.; Zeng, X.-Y.; Xu, J.-Y.; Yu, X.-T.; Liu, H.-X.; Cao, H.-L.; Lu, J.; Cao, R. CdZnS nanorods with rich sulphur vacancies for highly efficient photocatalytic hydrogen production. Chem. Commun. 2020, 56, 7765–7768. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Dai, Y.; Zhou, Z.; Jan, S.U.; Guo, L.; Gong, J.R. Polarization-induced saw-tooth-like potential distribution in zincblende-wurtzite superlattice for efficient charge separation. Nano Energy 2017, 41, 101–108. [Google Scholar] [CrossRef]
- Chen, D.; Xu, Y.; Zhang, Y.; Sheng, W.; Qian, G. Nickel hydroxide as a non-noble metal co-catalyst decorated on Cd0.5Zn0.5S solid solution for enhanced hydrogen evolution. Rsc Adv. 2021, 11, 20479–20485. [Google Scholar] [CrossRef] [PubMed]
- Yin, Q.; Cao, Z.; Wang, Z.; Zhai, J.; Li, M.; Guan, L.; Fan, B.; Liu, W.; Shao, G.; Xu, H.; et al. Z-scheme TiO2@Ti3C2/Cd0.5Zn0.5S nanocomposites with efficient photocatalytic performance via one-step hydrothermal route. Nanotechnology 2021, 32, 015706. [Google Scholar] [CrossRef]
- Tao, J.; Wang, M.; Liu, G.; Liu, Q.; Lu, L.; Wan, N.; Tang, H.; Qiao, G. Efficient photocatalytic hydrogen evolution coupled with benzaldehyde production over 0D Cd0.5Zn0.5S/2D Ti3C2 Schottky heterojunction. J. Adv. Ceram. 2022, 11, 1117–1130. [Google Scholar] [CrossRef]
- Sherryna, A.; Tahir, M. Role of surface morphology and terminating groups in titanium carbide MXenes (Ti3C2Tx) cocatalysts with engineering aspects for modulating solar hydrogen production: A critical review. Chem. Eng. J. 2022, 433, 134573. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, Y.; Yang, X.; Liu, Q.; Yu, X.; Li, Y.; Tang, H.; Zhang, T. Porous Ni5P4 as a promising cocatalyst for boosting the photocatalytic hydrogen evolution reaction performance. Appl. Catal. B Environ. 2020, 275, 119144. [Google Scholar] [CrossRef]
- Shao, Y.; Feng, K.; Guo, J.; Zhang, R.; He, S.; Wei, X.; Lin, Y.; Ye, Z.; Chen, K. Electronic structure and enhanced photoelectrocatalytic performance of RuxZn1-xO/Ti electrodes. J. Adv. Ceram. 2021, 10, 1025–1041. [Google Scholar] [CrossRef]
- Ganguly, P.; Harb, M.; Cao, Z.; Cavallo, L.; Breen, A.; Dervin, S.; Dionysiou, D.D.; Pillai, S.C. 2D Nanomaterials for Photocatalytic Hydrogen Production. Acs Energy Lett. 2019, 4, 1687–1709. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Chen, H.; Wu, J.; Wang, H.; Li, S.; Wang, B.; Li, Y.; Lin, H.; Wang, L. Unique hollow heterostructured CdS/Cd0.5Zn0.5S-Mo1-xWxS2: Highly-improved visible-light-driven H-2 generation via synergy of Cd0.5Zn0.5S protective shell and defect-rich Mo1-xWXS2 cocatalyst. Nano Res. 2022, 15, 985–995. [Google Scholar] [CrossRef]
- Zuo, G.; Wang, Y.; Teo, W.L.; Xie, A.; Guo, Y.; Dai, Y.; Zhou, W.; Jana, D.; Xian, Q.; Dong, W.; et al. Ultrathin ZnIn2S4 Nanosheets Anchored on Ti3C2TX MXene for Photocatalytic H-2 Evolution. Angew. Chem. Int. Ed. 2020, 59, 11287–11292. [Google Scholar] [CrossRef] [PubMed]
- Zhong, T.; Yu, Z.; Jiang, R.; Hou, Y.; Chen, H.; Ding, L.; Lian, C.; Zou, B. Surface-Activated Ti3C2Tx MXene Cocatalyst Assembled with CdZnS-Formed 0D/2D CdZnS/Ti3C2-A(40) Schottky Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Sol. Rrl 2022, 6, 2100863. [Google Scholar] [CrossRef]
- Shi, X.; Wang, P.; Lan, L.; Jia, S.; Wei, Z. Construction of BiOBrxI1-x/MXene Ti3C2Tx composite for improved photocatalytic degradability. J. Mater. Sci. Mater. Electron. 2019, 30, 19804–19812. [Google Scholar] [CrossRef]
- Chen, Y.; Yin, X.; Lei, S.; Dai, X.; Xu, X.; Shi, W.; Liu, W.; Wu, F.; Cao, X. MXene for aqueous zinc-based energy storage devices. Funct. Mater. Lett. 2021, 14, 2130011. [Google Scholar] [CrossRef]
- Luo, H.; Liu, B.; Yang, Z.; Wan, Y.; Zhong, C. The Trade-Offs in the Design of Reversible Zinc Anodes for Secondary Alkaline Batteries. Electrochem. Energy Rev. 2022, 5, 187–210. [Google Scholar] [CrossRef]
- Lu, W.; Zhang, C.; Zhang, H.; Li, X. Anode for Zinc-Based Batteries: Challenges, Strategies, and Prospects. Acs Energy Lett. 2021, 6, 2765–2785. [Google Scholar] [CrossRef]
- Chen, X.; Guo, Y.; Bian, R.; Ji, Y.; Wang, X.; Zhang, X.; Cui, H.; Tian, J. Titanium carbide MXenes coupled with cadmium sulfide nanosheets as two-dimensional/two-dimensional heterostructures for photocatalytic hydrogen production. J. Colloid. Interface Sci. 2022, 613, 644–651. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Huang, J.X.; Tang, H.; Yu, X.H.; Shen, J. Construction 0D TiO2 nanoparticles/2D CoP nanosheets heterojunctions for enhanced photocatalytic H-2 evolution activity. J. Mater. Sci. Technol. 2020, 56, 196–205. [Google Scholar] [CrossRef]
- Handoko, A.D.; Fredrickson, K.D.; Anasori, B.; Convey, K.W.; Johnson, L.R.; Gogotsi, Y.; Vojvodic, A.; Seh, Z.W. Tuning the Basal Plane Functionalization of Two-Dimensional Metal Carbides (MXenes) to Control Hydrogen Evolution Activity. Acs Appl. Energy Mater. 2018, 1, 173–180. [Google Scholar] [CrossRef]
- Seh, Z.W.; Fredrickson, K.D.; Anasori, B.; Kibsgaard, J.; Strickler, A.L.; Lukatskaya, M.R.; Gogotsi, Y.; Jaramillo, T.F.; Vojvodic, A. Two-Dimensional Molybdenum Carbide (MXene) as an Efficient Electrocatalyst for Hydrogen Evolution. Acs Energy Lett. 2016, 1, 589–594. [Google Scholar] [CrossRef]
- Cai, T.; Wang, L.; Liu, Y.; Zhang, S.; Dong, W.; Chen, H.; Yi, X.; Yuan, J.; Xia, X.; Liu, C.; et al. Ag3PO4/Ti3C2 MXene interface materials as a Schottky catalyst with enhanced photocatalytic activities and anti-photocorrosion performance. Appl. Catal. B Environ. 2018, 239, 545–554. [Google Scholar] [CrossRef]
- Qureshi, M.; Takanabe, K. Insights on Measuring and Reporting Heterogeneous Photocatalysis: Efficiency Definitions and Setup Examples. Chem. Mater. 2017, 29, 158–167. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Y.; Xiao, T.; Yuan, X.; Zeng, G.; Tu, W.; Wu, S.; Lee, H.Y.; Tan, Y.Z.; Chew, J.W. Formation of quasi-core-shell In2S3/anatase TiO2@metallic Ti3C2Tx hybrids with favorable charge transfer channels for excellent visible-light-photocatalytic performance. Appl. Catal. B Environ. 2018, 233, 213–225. [Google Scholar] [CrossRef]
- Ismael, M.; Elhaddad, E.; Wark, M. Construction of SnO2/g-C3N4 composite photocatalyst with enhanced interfacial charge separation and high efficiency for hydrogen production and Rhodamine B degradation. Colloids Surf. A Physicochem. Eng. Asp. 2022, 638, 128288. [Google Scholar] [CrossRef]
- Kokhanovsky, A.A. Physical interpretation and accuracy of the Kubelka-Munk theory. J. Phys. D Appl. Phys. 2007, 40, 2210–2216. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.-H.; Li, X.; Zhang, Q.; Yu, H.; Peng, X.; Peng, F. Regulating Electron-Hole Separation to Promote Photocatalytic H-2 Evolution Activity of Nanoconfined Ru/MXene/TiO2 Catalysts. Acs Nano 2020, 14, 14181–14189. [Google Scholar] [CrossRef]
- Wang, H.; Sun, Y.; Wu, Y.; Tu, W.; Wu, S.; Yuan, X.; Zeng, G.; Xu, Z.J.; Li, S.; Chew, J.W. Electrical promotion of spatially photoinduced charge separation via interfacial-built-in quasi-alloying effect in hierarchical Zn2In2S5/Ti3C2(O, OH)xhybrids toward efficient photocatalytic hydrogen evolution and environmental remediation. Appl. Catal. B Environ. 2019, 245, 290–301. [Google Scholar] [CrossRef]
- Peng, C.; Yang, X.; Li, Y.; Yu, H.; Wang, H.; Peng, F. Hybrids of Two-Dimensional Ti3C2 and TiO2 Exposing {001} Facets toward Enhanced Photocatalytic Activity. Acs Appl. Mater. Interfaces 2016, 8, 6051–6060. [Google Scholar] [CrossRef]
- Ismael, M. Highly effective ruthenium-doped TiO2 nanoparticles photocatalyst for visible-light-driven photocatalytic hydrogen production. New J. Chem. 2019, 43, 9596–9605. [Google Scholar] [CrossRef]
- Low, J.; Zhang, L.; Tong, T.; Shen, B.; Yu, J. TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. J. Catal. 2018, 361, 255–266. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Zhao, Y.; Deng, Q.; Zhu, X.; Tan, Y.; Feng, Z.; Ji, H.; Zhang, S.; Yao, L. In Situ Growth of CdZnS Nanoparticles@Ti3C2Tx MXene Nanosheet Heterojunctions for Boosted Visible-Light-Driven Photocatalytic Hydrogen Evolution. Nanomaterials 2023, 13, 2261. https://doi.org/10.3390/nano13152261
Li Z, Zhao Y, Deng Q, Zhu X, Tan Y, Feng Z, Ji H, Zhang S, Yao L. In Situ Growth of CdZnS Nanoparticles@Ti3C2Tx MXene Nanosheet Heterojunctions for Boosted Visible-Light-Driven Photocatalytic Hydrogen Evolution. Nanomaterials. 2023; 13(15):2261. https://doi.org/10.3390/nano13152261
Chicago/Turabian StyleLi, Zelin, Yang Zhao, Qinglin Deng, Xuhui Zhu, Yipeng Tan, Ziwen Feng, Hao Ji, Shan Zhang, and Lingmin Yao. 2023. "In Situ Growth of CdZnS Nanoparticles@Ti3C2Tx MXene Nanosheet Heterojunctions for Boosted Visible-Light-Driven Photocatalytic Hydrogen Evolution" Nanomaterials 13, no. 15: 2261. https://doi.org/10.3390/nano13152261
APA StyleLi, Z., Zhao, Y., Deng, Q., Zhu, X., Tan, Y., Feng, Z., Ji, H., Zhang, S., & Yao, L. (2023). In Situ Growth of CdZnS Nanoparticles@Ti3C2Tx MXene Nanosheet Heterojunctions for Boosted Visible-Light-Driven Photocatalytic Hydrogen Evolution. Nanomaterials, 13(15), 2261. https://doi.org/10.3390/nano13152261