Enhanced Thermal Conductivity and Dielectric Properties of Epoxy Composites with Fluorinated Graphene Nanofillers
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of F-Graphene/Epoxy Composites
2.3. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuan, C.; Duan, B.; Li, L.; Xie, B.; Huang, M.; Luo, X. Thermal Conductivity of Polymer-Based Composites with Magnetic Aligned Hexagonal Boron Nitride Platelets. ACS Appl. Mater. Interfaces 2015, 7, 13000–13006. [Google Scholar] [CrossRef]
- Hu, J.; Huang, Y.; Yao, Y.; Pan, G.; Sun, J.; Zeng, X.; Sun, R.; Xu, J.-B.; Song, B.; Wong, C.-P. Polymer Composite with Improved Thermal Conductivity by Constructing a Hierarchically Ordered Three-Dimensional Interconnected Network of BN. ACS Appl. Mater. Interfaces 2017, 9, 13544–13553. [Google Scholar] [CrossRef]
- Li, H.; Gadinski, M.R.; Huang, Y.; Ren, L.; Zhou, Y.; Ai, D.; Han, Z.; Yao, B.; Wang, Q. Crosslinked Fluoropolymers Exhibiting Superior High-Temperature Energy Density and Charge–Discharge Efficiency. Energy Environ. Sci. 2020, 13, 1279–1286. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.; Li, Q.; Pang, X.; Gong, B.; Wei, C.; Ren, J. Synergistic Enhanced Thermal Conductivity and Dielectric Constant of Epoxy Composites with Mesoporous Silica Coated Carbon Nanotube and Boron Nitride Nanosheet. Materials 2021, 14, 5251. [Google Scholar] [CrossRef]
- Akbari, M.; Shayegani-Akmal, A.A. Experimental Investigation on the Accelerated Aging of Silicone Rubber Insulators Based on Thermal Stress. Int. J. Electr. Power Energy Syst. 2023, 149, 109049. [Google Scholar] [CrossRef]
- Li, A.; Zhang, C.; Zhang, Y.-F. Thermal Conductivity of Graphene-Polymer Composites: Mechanisms, Properties, and Applications. Polymers 2017, 9, 437. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Huang, X.; Sun, B.; Jiang, P. Highly Thermally Conductive Yet Electrically Insulating Polymer/Boron Nitride Nanosheets Nanocomposite Films for Improved Thermal Management Capability. ACS Nano 2019, 13, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Hou, X.; Liao, M.; Dai, W.; Wang, Z.; Yan, C.; Li, H.; Lin, C.-T.; Jiang, N.; Yu, J. Constructing a “Pea-Pod-like” Alumina-Graphene Binary Architecture for Enhancing Thermal Conductivity of Epoxy Composite. Chem. Eng. J. 2020, 381, 122690. [Google Scholar] [CrossRef]
- Xu, X.; Hu, R.; Chen, M.; Dong, J.; Xiao, B.; Wang, Q.; Wang, H. 3D Boron Nitride Foam Filled Epoxy Composites with Significantly Enhanced Thermal Conductivity by a Facial and Scalable Approach. Chem. Eng. J. 2020, 397, 125447. [Google Scholar] [CrossRef]
- Yang, K.; Chen, W.; Zhao, Y.; Ding, L.; Du, B.; Zhang, S.; Yang, W. Enhancing Dielectric Strength of Thermally Conductive Epoxy Composites by Preventing Interfacial Charge Accumulation Using Micron-Sized Diamond. Compos. Sci. Technol. 2022, 221, 109178. [Google Scholar] [CrossRef]
- Li, Y.-T.; Liu, W.-J.; Shen, F.-X.; Zhang, G.-D.; Gong, L.-X.; Zhao, L.; Song, P.; Gao, J.-F.; Tang, L.-C. Processing, Thermal Conductivity and Flame Retardant Properties of Silicone Rubber Filled with Different Geometries of Thermally Conductive Fillers: A Comparative Study. Compos. Part B Eng. 2022, 238, 109907. [Google Scholar] [CrossRef]
- Sanada, K.; Tada, Y.; Shindo, Y. Thermal Conductivity of Polymer Composites with Close-Packed Structure of Nano and Micro Fillers. Compos. Part A Appl. Sci. Manuf. 2009, 40, 724–730. [Google Scholar] [CrossRef]
- Chen, H.; Ginzburg, V.V.; Yang, J.; Yang, Y.; Liu, W.; Huang, Y.; Du, L.; Chen, B. Thermal Conductivity of Polymer-Based Composites: Fundamentals and Applications. Prog. Polym. Sci. 2016, 59, 41–85. [Google Scholar] [CrossRef]
- Yang, J.; Chen, Z.; Liang, L.; Guan, Z.; Ren, J. Synergistic Enhanced Thermal Conductivity and Crack Resistance of Reactor Epoxy Insulation with Boron Nitride Nanosheets and Multiwalled Carbon Nanotubes. Nanomaterials 2022, 12, 3235. [Google Scholar] [CrossRef] [PubMed]
- Bi, S.; Li, Z.; Sheng, G. Effect of BN Nanosheet Orientation on Thermal Conductivity and Insulation Properties of BN/Epoxy Resin Composite. In Proceedings of the 2022 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Denver, CO, USA, 30 October–2 November 2022; pp. 301–304. [Google Scholar]
- Wang, J.; Hu, L.; Li, W.; Ouyang, Y.; Bai, L. Development and Perspectives of Thermal Conductive Polymer Composites. Nanomaterials 2022, 12, 3574. [Google Scholar] [CrossRef]
- Lee Sanchez, W.A.; Huang, C.-Y.; Chen, J.-X.; Soong, Y.-C.; Chan, Y.-N.; Chiou, K.-C.; Lee, T.-M.; Cheng, C.-C.; Chiu, C.-W. Enhanced Thermal Conductivity of Epoxy Composites Filled with Al2O3/Boron Nitride Hybrids for Underfill Encapsulation Materials. Polymers 2021, 13, 147. [Google Scholar] [CrossRef]
- Wang, Z.-Y.; Sun, X.; Wang, Y.; Liu, J.-D.; Zhang, C.; Zhao, Z.-B.; Du, X.-Y. A High-Performance Thermally Conductive and Electrically Insulating Silver@siloxane/Graphene/Epoxy Composites at Low Filler Content: Fabrication, Mechanism Study of Insulation and Thermal Conductivity Enhancement. Ceram. Int. 2023, 49, 2871–2880. [Google Scholar] [CrossRef]
- Guo, Y.; Yang, X.; Ruan, K.; Kong, J.; Dong, M.; Zhang, J.; Gu, J.; Guo, Z. Reduced Graphene Oxide Heterostructured Silver Nanoparticles Significantly Enhanced Thermal Conductivities in Hot-Pressed Electrospun Polyimide Nanocomposites. ACS Appl. Mater. Interfaces 2019, 11, 25465–25473. [Google Scholar] [CrossRef]
- Zhang, J.; Yao, T.; Shahsavarian, T.; Li, C.; Lei, Z.; Zhang, Z.; Jia, R.; Diaham, S. Improvement in Anti-Static Property and Thermal Conductivity of Epoxy Resin by Doping Graphene. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 542–548. [Google Scholar] [CrossRef]
- Wang, J.; Ren, P.; Chen, Z.; Wu, T.; Wang, F.; You, C. Enhanced Thermal Conductivity of Epoxy Composites Reinforced with Oriented Polydopamine-Graphene Foam Complexed by Metal Ions. Appl. Surf. Sci. 2023, 610, 155309. [Google Scholar] [CrossRef]
- Lin, J.; Zhou, J.; Guo, M.; Chen, D.; Chen, G. Study on Thermal Conductivity of P-Phenylenediamine Modified Graphene/Epoxy Composites. Polymers 2022, 14, 3660. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, J.; Li, Q.; Xia, D.-H.; Deng, Y.; Zhang, Y.; Qin, Z. Preparation and Thermal Conductivity of Epoxy Resin/Graphene-Fe3O4 Composites. Materials 2021, 14, 2013. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, H.; Neate, N.; Fay, M.; Hou, X.; Grant, D.; Xu, F. Highly Aligned Ni-Decorated GO–CNT Nanostructures in Epoxy with Enhanced Thermal and Electrical Properties. Polymers 2022, 14, 2583. [Google Scholar] [CrossRef]
- Wang, J.; Ren, P.; Chen, Z.; Sun, Z.; Wu, T.; You, C. Highly Thermally Conductive and Electrical Insulating Epoxy-Based Composites Containing Oriented Ternary Carbon/Graphene/MgO Hybrid Network. Ceram. Int. 2022, 48, 13115–13124. [Google Scholar] [CrossRef]
- Mostovoy, A.S.; Yakovlev, A.V.; Lopukhova, M.I. Directional Control of Physico-Chemical and Mechanical Properties of Epoxide Composites by the Addition of Graphite-Graphene Structures. Polym. Plast. Technol. Mater. 2020, 59, 874–883. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, R.; Wang, P.; Wang, Y.; Zhou, Z.; Zhang, H.; Wu, Z.; Li, L. Highly Compressible, Thermally Conductive, yet Electrically Insulating Fluorinated Graphene Aerogel. ACS Appl. Mater. Interfaces 2020, 12, 58170–58178. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wu, P. Highly Thermally Conductive Fluorinated Graphene Films with Superior Electrical Insulation and Mechanical Flexibility. ACS Appl. Mater. Interfaces 2019, 11, 21946–21954. [Google Scholar] [CrossRef] [PubMed]
- Fedorov, V.E.; Grayfer, E.D.; Makotchenko, V.G.; Nazarov, A.S.; Shin, H.-J.; Choi, J.-Y. Highly Exfoliated Graphite Fluoride as a Precursor for Graphene Fluoride Dispersions and Films. Croat. Chem. Acta 2012, 85, 107–112. [Google Scholar] [CrossRef]
- Tang, Q.; Zhou, Z.; Chen, Z. Graphene-Related Nanomaterials: Tuning Properties by Functionalization. Nanoscale 2013, 5, 4541–4583. [Google Scholar] [CrossRef]
- Feng, W.; Long, P.; Feng, Y.; Li, Y. Two-Dimensional Fluorinated Graphene: Synthesis, Structures, Properties and Applications. Adv. Sci. 2016, 3, 1500413. [Google Scholar] [CrossRef]
- Vu, M.C.; Thi Thieu, N.A.; Lim, J.-H.; Choi, W.-K.; Chan Won, J.; Islam, M.A.; Kim, S.-R. Ultrathin Thermally Conductive yet Electrically Insulating Exfoliated Graphene Fluoride Film for High Performance Heat Dissipation. Carbon 2020, 157, 741–749. [Google Scholar] [CrossRef]
- Chronopoulos, D.D.; Bakandritsos, A.; Pykal, M.; Zbořil, R.; Otyepka, M. Chemistry, Properties, and Applications of Fluorographene. Appl. Mater. Today 2017, 9, 60–70. [Google Scholar] [CrossRef]
- Yang, Z.; Ren, J.; Li, L.; Liu, J.; Li, L.; Wang, G. Enhanced Breakdown Strength of Ferroelectric Polymer Films for Capacitive Energy Storage by Incorporating Oriented Fluorographene. ACS Appl. Nano Mater. 2023, 6, 1272–1284. [Google Scholar] [CrossRef]
- Mani, D.; Vu, M.C.; Jeong, T.-H.; Kim, J.-B.; Lim, C.-S.; Lim, J.-H.; Kim, K.-M.; Kim, S.-R. 3D Structured Graphene Fluoride-Based Epoxy Composites with High Thermal Conductivity and Electrical Insulation. Compos. Part A Appl. Sci. Manuf. 2021, 149, 106585. [Google Scholar] [CrossRef]
- Yin, X.; Feng, Y.; Zhao, Q.; Li, Y.; Li, S.; Dong, H.; Hu, W.; Feng, W. Highly Transparent, Strong, and Flexible Fluorographene/Fluorinated Polyimide Nanocomposite Films with Low Dielectric Constant. J. Mater. Chem. C 2018, 6, 6378–6384. [Google Scholar] [CrossRef]
- Palacios, A.; Cong, L.; Navarro, M.E.; Ding, Y.; Barreneche, C. Thermal Conductivity Measurement Techniques for Characterizing Thermal Energy Storage Materials—A Review. Renew. Sustain. Energy Rev. 2019, 108, 32–52. [Google Scholar] [CrossRef]
- Abad, B.; Borca-Tasciuc, D.-A.; Martin-Gonzalez, M.S. Non-Contact Methods for Thermal Properties Measurement. Renew. Sustain. Energy Rev. 2017, 76, 1348–1370. [Google Scholar] [CrossRef]
- Wang, H.; Chu, W.; Chen, G. A Brief Review on Measuring Methods of Thermal Conductivity of Organic and Hybrid Thermoelectric Materials. Adv. Electron. Mater. 2019, 5, 1900167. [Google Scholar] [CrossRef]
- Miura, A.; Zhou, S.; Nozaki, T.; Shiomi, J. Crystalline–Amorphous Silicon Nanocomposites with Reduced Thermal Conductivity for Bulk Thermoelectrics. ACS Appl. Mater. Interfaces 2015, 7, 13484–13489. [Google Scholar] [CrossRef]
- Boutinguiza, M.; Lusquiños, F.; Pou, J.; Soto, R.; Quintero, F.; Comesaña, R. Thermal Properties Measurement of Slate Using Laser Flash Method. Opt. Lasers Eng. 2012, 50, 727–730. [Google Scholar] [CrossRef]
- Parker, W.J.; Jenkins, R.J.; Butler, C.P.; Abbott, G.L. Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity. J. Appl. Phys. 2004, 32, 1679–1684. [Google Scholar] [CrossRef]
- Feser, J.P.; Liu, J.; Cahill, D.G. Pump-Probe Measurements of the Thermal Conductivity Tensor for Materials Lacking in-Plane Symmetry. Rev. Sci. Instrum. 2014, 85, 104903. [Google Scholar] [CrossRef]
- Cahill, D.G. Thermal-Conductivity Measurement by Time-Domain Thermoreflectance. MRS Bull. 2018, 43, 782–788. [Google Scholar] [CrossRef]
- Kato, R.; Hatta, I. Thermal Conductivity and Interfacial Thermal Resistance: Measurements of Thermally Oxidized SiO2 Films on a Silicon Wafer Using a Thermo-Reflectance Technique. Int. J. Thermophys. 2008, 29, 2062–2071. [Google Scholar] [CrossRef]
- Ishibe, T.; Kaneko, T.; Uematsu, Y.; Sato-Akaba, H.; Komura, M.; Iyoda, T.; Nakamura, Y. Tunable Thermal Switch via Order–Order Transition in Liquid Crystalline Block Copolymer. Nano Lett. 2022, 22, 6105–6111. [Google Scholar] [CrossRef] [PubMed]
- Graphene to Fluorographene and Fluorographane: A Theoretical Study—IOPscience. Available online: https://iopscience.iop.org/article/10.1088/0957-4484/24/3/035706 (accessed on 12 July 2023).
- Maiti, A.; Mahan, G.D.; Pantelides, S.T. Dynamical Simulations of Nonequilibrium Processes—Heat Flow and the Kapitza Resistance across Grain Boundaries. Solid State Commun. 1997, 102, 517–521. [Google Scholar] [CrossRef]
- Twu, C.-J.; Ho, J.-R. Molecular-Dynamics Study of Energy Flow and the Kapitza Conductance across an Interface with Imperfection Formed by Two Dielectric Thin Films. Phys. Rev. B 2003, 67, 205422. [Google Scholar] [CrossRef]
- Shenogin, S.; Xue, L.; Ozisik, R.; Keblinski, P.; Cahill, D.G. Role of Thermal Boundary Resistance on the Heat Flow in Carbon-Nanotube Composites. J. Appl. Phys. 2004, 95, 8136–8144. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, T.; Wang, J.; Yang, G.; Li, M.; Wu, G. The Investigation of the Effect of Filler Sizes in 3D-BN Skeletons on Thermal Conductivity of Epoxy-Based Composites. Nanomaterials 2022, 12, 446. [Google Scholar] [CrossRef]
- Jang, J.; Nam, H.E.; So, S.O.; Lee, H.; Kim, G.S.; Kim, S.Y.; Kim, S.H. Thermal Percolation Behavior in Thermal Conductivity of Polymer Nanocomposite with Lateral Size of Graphene Nanoplatelet. Polymers 2022, 14, 323. [Google Scholar] [CrossRef]
- Chen, S.; Meng, G.; Kong, B.; Xiao, B.; Wang, Z.; Jing, Z.; Gao, Y.; Wu, G.; Wang, H.; Cheng, Y. Asymmetric Alicyclic Amine-Polyether Amine Molecular Chain Structure for Improved Energy Storage Density of High-Temperature Crosslinked Polymer Capacitor. Chem. Eng. J. 2020, 387, 123662. [Google Scholar] [CrossRef]
- Wang, Z.; Yuan, J.; Zhao, L.; Ren, J. Significant Improvement of the Thermal Conductivity and Dielectric Properties of Cyanoethyl Cellulose Films by Introducing Barium Titanate Decorated Boron Nitride Nanosheet. Mater. Lett. 2022, 323, 132588. [Google Scholar] [CrossRef]
- Wang, B. High Dielectric Properties of Poly(Vinylidene Fluoride-Co-Hexafluoropropylene)-Based Composite Films Containing Worm-Like Expanded Graphite and Aluminum Oxide Fillers. J. Mater. Eng. Perform. 2023. [Google Scholar] [CrossRef]
- Bouharras, F.E.; Labardi, M.; Tombari, E.; Capaccioli, S.; Raihane, M.; Améduri, B. Dielectric Characterization of Core-Shell Structured Poly(Vinylidene Fluoride)-Grafted-BaTiO3 Nanocomposites. Polymers 2023, 15, 595. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, L. Dielectric Constant, Dielectric Loss, Conductivity, Capacitance and Model Analysis of Electronic Electroactive Polymers. Polym. Test. 2023, 120, 107965. [Google Scholar] [CrossRef]
- Pan, Z.; Yao, L.; Zhai, J.; Shen, B.; Wang, H. Significantly Improved Dielectric Properties and Energy Density of Polymer Nanocomposites via Small Loaded of BaTiO3 Nanotubes. Compos. Sci. Technol. 2017, 147, 30–38. [Google Scholar] [CrossRef]
- Dayananda, D.; Reddy, P.L.; Deshmukh, K.; Kumar, Y.R.; Kesarla, M.K.; Kar, T.; Sadasivuni, K.K.; Pasha, S.K.K. Chapter 22—MXene-Based Flexible Polymer Composites as High Dielectric Constant Materials. In Mxenes and Their Composites; Sadasivuni, K.K., Deshmukh, K., Pasha, S.K.K., Kovářík, T., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2022; pp. 725–758. ISBN 978-0-12-823361-0. [Google Scholar]
- Effect of Crystal Orientation and Nanofiller Alignment on Dielectric Breakdown of Polyethylene/Montmorillonite Nanocomposites | Applied Physics Letters | AIP Publishing. Available online: https://pubs.aip.org/aip/apl/article/111/8/082906/35090/Effect-of-crystal-orientation-and-nanofiller (accessed on 29 July 2023).
- Li, B.; Yuan, M.; Zhang, S.; Rajagopalan, R.; Lanagan, M.T. Abnormal High Voltage Resistivity of Polyvinylidene Fluoride and Implications for Applications in High Energy Density Film Capacitors. Appl. Phys. Lett. 2018, 113, 193903. [Google Scholar] [CrossRef]
- Cao, D.; Zhou, W.; Yuan, M.; Li, B.; Li, T.; Li, J.; Liu, D.; Wang, G.; Zhou, J.; Zhang, H. Polymer Composites Filled with Core–Shell Structured Nanofillers: Effects of Shell Thickness on Dielectric and Thermal Properties of Composites. J. Mater. Sci. Mater. Electron. 2022, 33, 5174–5189. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, H.; Wu, D.; Yin, D.; Zhu, N.; Guo, K.; Lu, C. PVDF-Based Matrix with Covalent Bonded BaTiO3 Nanowires Enabled Ultrahigh Energy Density and Dielectric Properties. Chem. Eng. J. 2023, 451, 138391. [Google Scholar] [CrossRef]
- Wang, Q.; Che, J.; Wu, W.; Hu, Z.; Liu, X.; Ren, T.; Chen, Y.; Zhang, J. Contributing Factors of Dielectric Properties for Polymer Matrix Composites. Polymers 2023, 15, 590. [Google Scholar] [CrossRef]
- Yang, X.; Fan, S.; Li, Y.; Guo, Y.; Li, Y.; Ruan, K.; Zhang, S.; Zhang, J.; Kong, J.; Gu, J. Synchronously Improved Electromagnetic Interference Shielding and Thermal Conductivity for Epoxy Nanocomposites by Constructing 3D Copper Nanowires/Thermally Annealed Graphene Aerogel Framework. Compos. Part A Appl. Sci. Manuf. 2020, 128, 105670. [Google Scholar] [CrossRef]
- Mitra, S.; Ahire, A.; Mallik, B.P. Investigation of Accelerated Aging Behaviour of High Performance Industrial Coatings by Dynamic Mechanical Analysis. Prog. Org. Coat. 2014, 77, 1816–1825. [Google Scholar] [CrossRef]
- Levita, G.; De Petris, S.; Marchetti, A.; Lazzeri, A. Crosslink Density and Fracture Toughness of Epoxy Resins. J. Mater. Sci. 1991, 26, 2348–2352. [Google Scholar] [CrossRef]
Samples | Weight Loss Temperature (°C) | THRI (°C) | |
---|---|---|---|
Neat epoxy resin | 353.50 | 400.33 | 186.98 |
1.0 wt.% F-graphene/epoxy | 334.83 | 396.95 | 182.33 |
Samples | Physical Parameters | υ (10−3mol/cc) | |
---|---|---|---|
E′ (MPa) | T (K) | ||
Neat epoxy resin | 3.21 | 450.99 | 0.31 |
1.0 wt.% F-graphene/epoxy | 12.45 | 457.34 | 1.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Wang, Z.; Jiang, G.; Wei, H.; Zhang, Z.; Ren, J. Enhanced Thermal Conductivity and Dielectric Properties of Epoxy Composites with Fluorinated Graphene Nanofillers. Nanomaterials 2023, 13, 2322. https://doi.org/10.3390/nano13162322
Zhang J, Wang Z, Jiang G, Wei H, Zhang Z, Ren J. Enhanced Thermal Conductivity and Dielectric Properties of Epoxy Composites with Fluorinated Graphene Nanofillers. Nanomaterials. 2023; 13(16):2322. https://doi.org/10.3390/nano13162322
Chicago/Turabian StyleZhang, Jiacheng, Zi Wang, Guoqing Jiang, Huachao Wei, Zongxi Zhang, and Junwen Ren. 2023. "Enhanced Thermal Conductivity and Dielectric Properties of Epoxy Composites with Fluorinated Graphene Nanofillers" Nanomaterials 13, no. 16: 2322. https://doi.org/10.3390/nano13162322
APA StyleZhang, J., Wang, Z., Jiang, G., Wei, H., Zhang, Z., & Ren, J. (2023). Enhanced Thermal Conductivity and Dielectric Properties of Epoxy Composites with Fluorinated Graphene Nanofillers. Nanomaterials, 13(16), 2322. https://doi.org/10.3390/nano13162322