Ag/Cr-TiO2 and Pd/Cr-TiO2 for Organic Dyes Elimination and Treatment of Polluted River Water in Presence of Visible Light
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Cr-TiO2 Nanoparticles
2.3. Preparation of Pd/Cr-TiO2 and Ag/Cr-TiO2 Photocatalysts
2.4. Photocatalyst Characterization
2.5. Photocatalytic Activity Test in the AO7 Discoloration
2.6. Photocatalytic Activity Test in the River Water Treatment
3. Results
3.1. Photocatalysts Characterization Results
3.1.1. Chemical Composition by XRF
3.1.2. Specific Surface Area Measurement
3.1.3. UV-Vis DRS Spectra
3.1.4. Raman Analyses
3.1.5. Thermogravimetric Analyses
3.1.6. XRD Analyses
3.1.7. SEM—EDX Images
3.1.8. ATR-FTIR Spectra
3.2. Photocatalytic AO7 Removal Results
3.2.1. Comparison among the Photocatalysts Performances
3.2.2. Influence of Photocatalyst Dosage
3.2.3. Influence of Initial Dye Concentration
3.2.4. Literature Comparison
3.3. Photocatalytic Tests on Real River Water
3.3.1. Photocatalytic Treatment for River Water under UV Irradiation
3.3.2. Photocatalytic Treatment of River Water under Visible Light
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sescu, A.M.; Favier, L.; Lutic, D.; Soto-Donoso, N.; Ciobanu, G.; Harja, M. TiO2 doped with noble metals as an efficient solution for the photodegradation of hazardous organic water pollutants at ambient conditions. Water 2021, 13, 19. [Google Scholar] [CrossRef]
- Venkatesan, A.; Al-Onazi, W.A.; Elshikh, M.S.; Pham, T.H.; Suganya, S.; Boobas, S.; Priyadharsan, A. Study of synergistic effect of cobalt and carbon codoped with TiO2 photocatalyst for visible light induced degradation of phenol. Chemosphere 2022, 305, 135333. [Google Scholar] [CrossRef]
- Zaleska, A. Doped-TiO2: A review. Recent Pat. Eng. 2008, 2, 157–164. [Google Scholar] [CrossRef]
- Aravind, M.; Amalanathan, M.; Aslam, S.; Noor, A.E.; Jini, D.; Majeed, S.; Velusamy, P.; Alothman, A.A.; Alshgari, R.A.; Mushab, M.S.S. Hydrothermally synthesized Ag-TiO2 nanofibers (NFs) for photocatalytic dye degradation and antibacterial activity. Chemosphere 2023, 321, 138077. [Google Scholar] [CrossRef] [PubMed]
- Khairy, M.; Zakaria, W. Effect of metal-doping of TiO2 nanoparticles on their photocatalytic activities toward removal of organic dyes. Egypt. J. Pet. 2014, 23, 419–426. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Guan, J.; Tan, J.; Zheng, D.; Bian, J.; Wang, X. Band-gap modulation for enhancing NO photocatalytic oxidation over hollow ZnCdS: A combined experimental and theoretical investigation. J. Phys. Chem. C 2022, 126, 3967–3979. [Google Scholar] [CrossRef]
- Mohd Kaus, N.H.; Rithwan, A.F.; Adnan, R.; Ibrahim, M.L.; Thongmee, S.; Mohd Yusoff, S.F. Effective strategies, mechanisms, and photocatalytic efficiency of semiconductor nanomaterials incorporating rgo for environmental contaminant degradation. Catalysts 2021, 11, 302. [Google Scholar] [CrossRef]
- Mishra, N. Metal–Semiconductor Hybrid Nano-Heterostructures for Photocatalysis Application. In Semiconductor Photocatalysis-Materials, Mechanisms and Applications; IntechOpen: London, UK, 2016. [Google Scholar]
- Regmi, C.; Joshi, B.; Ray, S.K.; Gyawali, G.; Pandey, R.P. Understanding mechanism of photocatalytic microbial decontamination of environmental wastewater. Front. Chem. 2018, 6, 33. [Google Scholar] [CrossRef] [Green Version]
- De Pasquale, I.; Lo Porto, C.; Dell’Edera, M.; Petronella, F.; Agostiano, A.; Curri, M.L.; Comparelli, R. Photocatalytic TiO2-based nanostructured materials for microbial inactivation. Catalysts 2020, 10, 1382. [Google Scholar] [CrossRef]
- Mancuso, A.; Morante, N.; De Carluccio, M.; Sacco, O.; Rizzo, L.; Fontana, M.; Esposito, S.; Vaiano, V.; Sannino, D. Solar driven photocatalysis using iron and chromium doped TiO2 coupled to moving bed biofilm process for olive mill wastewater treatment. Chem. Eng. J. 2022, 450, 138107. [Google Scholar] [CrossRef]
- Murcia, J.; Hernández, J.; Rojas, H.; Moreno-Cascante, J.; Sánchez-Cid, P.; Hidalgo, M.; Navío, J.; Jaramillo-Páez, C. Evaluation of Au–ZnO, ZnO/Ag2CO3 and Ag–TiO2 as Photocatalyst for Wastewater Treatment. Top. Catal. 2020, 63, 1286–1301. [Google Scholar] [CrossRef]
- Landi Jr, S.; Segundo, I.R.; Freitas, E.; Vasilevskiy, M.; Carneiro, J.; Tavares, C.J. Use and misuse of the Kubelka-Munk function to obtain the band gap energy from diffuse reflectance measurements. Solid State Commun. 2022, 341, 114573. [Google Scholar] [CrossRef]
- Rodríguez, P.A.O.; Pecchi, G.A.; Casuscelli, S.G.; Elias, V.R.; Eimer, G.A. A simple synthesis way to obtain iron-doped TiO2 nanoparticles as photocatalytic surfaces. Chem. Phys. Lett. 2019, 732, 136643. [Google Scholar] [CrossRef]
- Vaiano, V.; Sacco, O.; Sannino, D.; Ciambelli, P. Photocatalytic removal of spiramycin from wastewater under visible light with N-doped TiO2 photocatalysts. Chem. Eng. J. 2015, 261, 3–8. [Google Scholar] [CrossRef]
- Cheng, H.-H.; Chen, S.-S.; Yang, S.-Y.; Liu, H.-M.; Lin, K.-S. Sol-Gel hydrothermal synthesis and visible light photocatalytic degradation performance of Fe/N codoped TiO2 catalysts. Materials 2018, 11, 939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Li, M.; Xu, P.; Tang, S.; Liu, C. Efficient photocatalytic degradation of acid orange 7 over N-doped ordered mesoporous titania on carbon fibers under visible-light irradiation based on three synergistic effects. Appl. Catal. A Gen. 2016, 524, 163–172. [Google Scholar] [CrossRef]
- Rice, E.W.; Bridgewater, L.; Association, A.P.H. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012; Volume 10. [Google Scholar]
- International Organization for Standardization. Water Quality-Enumeration of Escherichia coli and Coliform Bacteria; ISO: Geneva, Switzerland, 2014. [Google Scholar]
- Murcia, J.; Ávila-Martínez, E.; Rojas, H.; Navío, J.A.; Hidalgo, M. Study of the E. coli elimination from urban wastewater over photocatalysts based on metallized TiO2. Appl. Catal. B Environ. 2017, 200, 469–476. [Google Scholar] [CrossRef]
- Azambre, B.; Chebbi, M.; Ibrahim, N. Structure—Activity Relationships between the State of Silver on Different Supports and Their I2 and CH3I Adsorption Properties. Nanomaterials 2021, 11, 1300. [Google Scholar] [CrossRef]
- Singaravelan, R.; Bangaru Sudarsan Alwar, S. Electrochemical synthesis, characterisation and phytogenic properties of silver nanoparticles. Appl. Nanosci. 2015, 5, 983–991. [Google Scholar] [CrossRef]
- Balachandran, U.; Eror, N. Raman spectra of titanium dioxide. J. Solid State Chem. 1982, 42, 276–282. [Google Scholar] [CrossRef]
- Porto, S.; Fleury, P.; Damen, T. Raman spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2. Phys. Rev. J. Arch. 1967, 154, 522–526. [Google Scholar] [CrossRef]
- Iliev, M.; Hadjiev, V.; Litvinchuk, A. Raman and infrared spectra of brookite (TiO2): Experiment and theory. Vib. Spectrosc. 2013, 64, 148–152. [Google Scholar] [CrossRef]
- Gotić, M.; Ivanda, M.; Popović, S.; Musić, S.; Sekulić, A.; Turković, A.; Furić, K. Raman investigation of nanosized TiO2. J. Raman Spectrosc. 1997, 28, 555–558. [Google Scholar] [CrossRef]
- Kumari, T.; Gopal, R.; Goyal, A.; Joshi, J. Sol–gel synthesis of Pd@ PdO core–shell nanoparticles and effect of precursor chemistry on their structural and optical properties. J. Inorg. Organomet. Polym. Mater. 2019, 29, 316–325. [Google Scholar] [CrossRef]
- Graham, G.; O’Neill, A.; Uy, D.; Weber, W.; Sun, H.; Pan, X. Observation of strained PdO in an aged Pd/ceria-zirconia catalyst. Catal. Lett. 2002, 79, 99–105. [Google Scholar] [CrossRef]
- Martina, I.; Wiesinger, R.; Schreiner, M. Micro-Raman investigations of early stage silver corrosion products occurring in sulfur containing atmospheres. J. Raman Spectrosc. 2013, 44, 770–775. [Google Scholar] [CrossRef]
- Cavalheiro, A.A.; De Oliveira, L.C.S.; dos Santos, S.A.L. Structural aspects of anatase to rutile phase transition in titanium dioxide powders elucidated by the Rietveld method. Titan. Dioxide 2017, 63–77. [Google Scholar] [CrossRef] [Green Version]
- Chanda, A.; Rout, K.; Vasundhara, M.; Joshi, S.R.; Singh, J. Structural and magnetic study of undoped and cobalt doped TiO2 nanoparticles. RSC Adv. 2018, 8, 10939–10947. [Google Scholar] [CrossRef]
- Lee, J.H.; Yang, Y.S. Synthesis of TiO2 nanoparticles with pure brookite at low temperature by hydrolysis of TiCl4 using HNO3 solution. J. Mater. Sci. 2006, 41, 557–559. [Google Scholar] [CrossRef]
- Michalow, K.A.; Otal, E.H.; Burnat, D.; Fortunato, G.; Emerich, H.; Ferri, D.; Heel, A.; Graule, T. Flame-made visible light active TiO2: Cr photocatalysts: Correlation between structural, optical and photocatalytic properties. Catal. Today 2013, 209, 47–53. [Google Scholar] [CrossRef]
- Li, L.; Yan, Z.F.; Lu, G.Q.; Zhu, Z.H. Synthesis and structure characterization of chromium oxide prepared by solid thermal decomposition reaction. J. Phys. Chem. B 2006, 110, 178–183. [Google Scholar] [CrossRef]
- Dubey, R.; Singh, S. Investigation of structural and optical properties of pure and chromium doped TiO2 nanoparticles prepared by solvothermal method. Results Phys. 2017, 7, 1283–1288. [Google Scholar] [CrossRef]
- Sasi, S.; Chandran, A.; Sugunan, S.K.; Krishna, A.C.; Nair, P.R.; Peter, A.; Shaji, A.N.; Subramanian, K.R.; Pai, N.; Mathew, S. Flexible Nano-TiO2 Sheets Exhibiting Excellent Photocatalytic and Photovoltaic Properties by Controlled Silane Functionalization—Exploring the New Prospects of Wastewater Treatment and Flexible DSSCs. ACS Omega 2022, 7, 25094–25109. [Google Scholar] [CrossRef]
- Murcia, J.J.; Cely, Á.C.; Rojas, H.A.; Hidalgo, M.C.; Navío, J.A. Fluorinated and Platinized Titania as Effective Materials in the Photocatalytic Treatment of Dyestuffs and Stained Wastewater Coming from Handicrafts Factories. Catalysts 2019, 9, 179. [Google Scholar] [CrossRef] [Green Version]
- Murcia, J.; Hidalgo, M.C.; Navío, J.A.; Araña, J.; Doña-Rodríguez, J. In Situ FT-IR study of the adsorption and photocatalytic oxidation of ethanol over sulfated and metallized TiO2. Appl. Catal. B Environ. 2013, 142, 205–213. [Google Scholar] [CrossRef]
- Sethi, D.; Jada, N.; Tiwari, A.; Ramasamy, S.; Dash, T.; Pandey, S. Photocatalytic destruction of Escherichia coli in water by V2O5/TiO2. J. Photochem. Photobiol. B Biol. 2015, 144, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Eleutério, T.; Sério, S.; Teodoro, O.M.; Bundaleski, N.; Vasconcelos, H.C. XPS and FTIR studies of DC reactive magnetron sputtered TiO2 thin films on natural based-cellulose fibers. Coatings 2020, 10, 287. [Google Scholar] [CrossRef] [Green Version]
- Belhadj, H.; Hakki, A.; Robertson, P.K.; Bahnemann, D.W. In situ ATR-FTIR study of H2O and D2O adsorption on TiO2 under UV irradiation. Phys. Chem. Chem. Phys. 2015, 17, 22940–22946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nunes, M.J.; Lopes, A.; Pacheco, M.J.; Ciríaco, L. Visible-Light-Driven AO7 Photocatalytic Degradation and Toxicity Removal at Bi-Doped SrTiO3. Materials 2022, 15, 2465. [Google Scholar] [CrossRef]
- Al-Mamun, M.R.; Hossain, K.T.; Mondal, S.; Khatun, M.A.; Islam, M.S.; Khan, M.Z.H. Synthesis, characterization, and photocatalytic performance of methyl orange in aqueous TiO2 suspension under UV and solar light irradiation. S. Afr. J. Chem. Eng. 2022, 40, 113–125. [Google Scholar]
- Hariani, P.L.; Said, M.; Aprianti, N.; Naibaho, Y.A.L.R. High efficient photocatalytic degradation of methyl orange dye in an aqueous solution by CoFe2O4-SiO2-TiO2 magnetic catalyst. J. Ecol. Eng. 2022, 23, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Vasiljevic, Z.; Dojcinovic, M.; Vujancevic, J.; Jankovic-Castvan, I.; Ognjanovic, M.; Tadic, N.; Stojadinovic, S.; Brankovic, G.; Nikolic, M. Photocatalytic degradation of methylene blue under natural sunlight using iron titanate nanoparticles prepared by a modified sol–gel method. R. Soc. Open Sci. 2020, 7, 200708. [Google Scholar] [CrossRef]
- Saeed, M.; Muneer, M.; Haq, A.u.; Akram, N. Photocatalysis: An effective tool for photodegradation of dyes—A review. Environ. Sci. Pollut. Res. 2022, 29, 293–311. [Google Scholar] [CrossRef]
- Mancuso, A.; Sacco, O.; Vaiano, V.; Sannino, D.; Pragliola, S.; Venditto, V.; Morante, N. Visible light active Fe-Pr co-doped TiO2 for water pollutants degradation. Catal. Today 2021, 380, 93–104. [Google Scholar] [CrossRef]
- Cubillos-Lobo, J.A.; Murcia-Mesa, J.J.; Guarín-Romero, J.R.; Rojas-Sarmiento, H.A.; Hidalgo-López, M.d.C.; Navío-Santos, J.A. Study of the visible light activity of Pt and Au-TiO2 photocatalysts in organic pollutants degradation. Rev. Fac. Ing. Univ. Antioq. 2017, 83, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Riaz, N.; Hassan, M.; Siddique, M.; Mahmood, Q.; Farooq, U.; Sarwar, R.; Khan, M.S. Photocatalytic degradation and kinetic modeling of azo dye using bimetallic photocatalysts: Effect of synthesis and operational parameters. Environ. Sci. Pollut. Res. 2020, 27, 2992–3006. [Google Scholar] [CrossRef]
- Valentine Rupa, A.; Vaithiyanathan, R.; Sivakumar, T. Noble metal modified titania catalysts in the degradation of Reactive Black 5: A kinetic approach. Water Sci. Technol. 2011, 64, 1040–1045. [Google Scholar] [CrossRef]
- Mancuso, A.; Sacco, O.; Sannino, D.; Pragliola, S.; Vaiano, V. Enhanced visible-light-driven photodegradation of Acid Orange 7 azo dye in aqueous solution using Fe-N co-doped TiO2. Arab. J. Chem. 2020, 13, 8347–8360. [Google Scholar] [CrossRef]
- Lee, K.M.; Hamid, S.B.A.; Lai, C.W. Mechanism and kinetics study for photocatalytic oxidation degradation: A case study for phenoxyacetic acid organic pollutant. J. Nanomater. 2016, 2015, 9. [Google Scholar] [CrossRef] [Green Version]
- Yao, S.H.; Jia, Y.F.; Zhao, S.L. Photocatalytic oxidation and removal of arsenite by titanium dioxide supported on granular activated carbon. Environ. Technol. 2012, 33, 983–988. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-J.; Wu, C.-C.; Hsieh, L.-T.; Chen, K.-C. Treatment of trichloroethylene with photocatalyst-coated optical fiber. Water 2019, 11, 2391. [Google Scholar] [CrossRef] [Green Version]
- Umar, M.; Aziz, H.A. Photocatalytic degradation of organic pollutants in water. Org. Pollut. Monit. Risk Treat. 2013, 8, 196–197. [Google Scholar]
- Xiao, R.; Liu, K.; Bai, L.; Minakata, D.; Seo, Y.; Göktaş, R.K.; Dionysiou, D.D.; Tang, C.-J.; Wei, Z.; Spinney, R. Inactivation of pathogenic microorganisms by sulfate radical: Present and future. Chem. Eng. J. 2019, 371, 222–232. [Google Scholar] [CrossRef]
- Elsellami, L.; Vocanson, F.; Dappozze, F.; Baudot, R.; Febvay, G.; Rey, M.; Houas, A.; Guillard, C. Kinetics and initial photocatalytic pathway of tryptophan, important constituent of microorganisms. Appl. Catal. B Environ. 2010, 94, 192–199. [Google Scholar] [CrossRef]
- Helali, S.; Polo-López, M.I.; Fernández-Ibáñez, P.; Ohtani, B.; Amano, F.; Malato, S.; Guillard, C. Solar photocatalysis: A green technology for E. coli contaminated water disinfection. Effect of concentration and different types of suspended catalyst. J. Photochem. Photobiol. A Chem. 2014, 276, 31–40. [Google Scholar] [CrossRef]
- Lu, J.; Wang, X.; Shan, B.; Li, X.; Wang, W. Analysis of chemical compositions contributable to chemical oxygen demand (COD) of oilfield produced water. Chemosphere 2006, 62, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Lee, H.; Kim, Y.; Sohn, K.; Lee, K. Hydrogen peroxide interference in chemical oxygen demand during ozone based advanced oxidation of anaerobically digested livestock wastewater. Int. J. Environ. Sci. Technol. 2011, 8, 381–388. [Google Scholar] [CrossRef] [Green Version]
- Groele, J.; Foster, J. Hydrogen peroxide interference in chemical oxygen demand assessments of plasma treated waters. Plasma 2019, 2, 294–302. [Google Scholar] [CrossRef] [Green Version]
- Jungfer, C.; Schwartz, T.; Obst, U. UV-induced dark repair mechanisms in bacteria associated with drinking water. Water Res. 2007, 41, 188–196. [Google Scholar] [CrossRef]
- Kacem, M.; Plantard, G.; Wery, N.; Goetz, V. Kinetics and efficiency displayed by supported and suspended TiO2 catalysts applied to the disinfection of Escherichia coli. Chin. J. Catal. 2014, 35, 1571–1577. [Google Scholar] [CrossRef]
- Rauf, M.; Meetani, M.; Hisaindee, S. An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination 2011, 276, 13–27. [Google Scholar] [CrossRef]
- Wilke, K.; Breuer, H. The influence of transition metal doping on the physical and photocatalytic properties of titania. J. Photochem. Photobiol. A Chem. 1999, 121, 49–53. [Google Scholar] [CrossRef]
- Besinis, A.; De Peralta, T.; Handy, R.D. The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology 2014, 8, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Akhavan, O. Lasting antibacterial activities of Ag–TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation. J. Colloid Interface Sci. 2009, 336, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Skorb, E.; Antonouskaya, L.; Belyasova, N.; Shchukin, D.; Möhwald, H.; Sviridov, D. Antibacterial activity of thin-film photocatalysts based on metal-modified TiO2 and TiO2: In2O3 nanocomposite. Appl. Catal. B Environ. 2008, 84, 94–99. [Google Scholar] [CrossRef]
- Saravanan, A.; Kumar, P.S.; Jeevanantham, S.; Karishma, S.; Kiruthika, A. Photocatalytic disinfection of micro-organisms: Mechanisms and applications. Environ. Technol. Innov. 2021, 24, 101909. [Google Scholar] [CrossRef]
- Murcia Mesa, J.J.; Arias Bolivar, L.G.; Sarmiento, H.A.R.; Martínez, E.G.Á.; Páez, C.J.; Lara, M.A.; Santos, J.A.N.; del Carmen Hidalgo López, M. Urban wastewater treatment by using Ag/ZnO and Pt/TiO2 photocatalysts. Environ. Sci. Pollut. Res. 2019, 26, 4171–4179. [Google Scholar] [CrossRef]
- Yang, H.; Yang, B.; Chen, W.; Yang, J. Preparation and photocatalytic activities of TiO2-based composite catalysts. Catalysts 2022, 12, 1263. [Google Scholar] [CrossRef]
Sample | SSA [m2 g−1] |
---|---|
TiO2 | 107 |
Cr-TiO2 | 113 |
Pd(0.25%)/Cr-TiO2 | 106 |
Ag(0.25%)/Cr-TiO2 | 96 |
Photocatalyst | Anatase Crystallite Size (nm) |
---|---|
Cr-TiO2 | 7.59 |
Ag/Cr-TiO2 | 7.26 |
Pd/Cr-TiO2 | 7.64 |
Photocatalytic System | Photocatalyst | Type of Light | Type of Azo Dye | k [min−1] |
---|---|---|---|---|
Our system at the optimal operative conditions | Pd(0.25%)/Cr-TiO2 | Visible | AO7 | 0.041 |
[48] | Pt(0.3%)/S-TiO2 | Visible | Methyl Orange | 0.017 |
[49] | Cu(10%)/TiO2 | Visible | Methyl Orange | 0.001 |
[50] | Pt(1%)/TiO2 | Visible | Reactive Black 5 | 0.001 |
[51] | Fe-N-TiO2 | Visible | AO7 | 0.03 |
[47] | Fe-Pr-TiO2 | Visible | AO7 | 0.0325 |
Quality Control Parameters | Starting River Water Sample | Blank Test UV-Vis | TiO2 | Cr-TiO2 | Ag/Cr-TiO2 | Pd/Cr-TiO2 |
---|---|---|---|---|---|---|
pH | 6.10 | 7.12 | 6.92 | 7.13 | 6.83 | 6.32 |
Nitrates (mg/L) | 0.63 | <0.3 | <0.3 | 0.3 | 0.3 | 0.6 |
Chlorides (mg/L) | 24 | 22 | 22 | 21 | 20 | 24 |
Total hardness (mgCaCO3/L) | 43 | 32 | 26 | 25 | 29 | 25 |
COD (mg/L) | 67 | 75 | 96 | 128 | 151 | 121 |
E. coli (CFU/100 mL) | 905 | 12 | 1 | 5 | 0 | 1 |
Other coliforms (Citrobacter freundii, Enterobacter aerogenes) (CFU/100 mL) | 2793 | 270 | 3 | 0 | 0 | 2 |
Total Coliforms (CFU/100 mL) | 3698 | 282 | 4 | 5 | 0 | 3 |
Other Enterobacteriaceae (CFU/100 mL) | 1845 | 382 | 4 | 3 | 0 | 3 |
Coliform Bacteria Loading (CFU/100 mL) | Average Bacteria Elimination (%) |
---|---|
Commercial TiO2 (Sigma Aldrich) [12] | 98 |
Faceted TiO2 [12] | 99 |
Faceted TiO2–Ag 5% [12] | 100 |
Commercial TiO2 (P25 Evonic) [20] | 40 |
(0.5%wt.) Pt-TiO2 (sulfated) [20] | 80 |
(2%wt.) Pt-TiO2 at 120 W/m2 (sulfated) [20] | 100 |
Pt-TiO2 [70] | 99 |
Quality Control Parameters | Starting River Water Sample | Blank Test (Visible Light) | TiO2 | Cr-TiO2 | Ag/Cr-TiO2 | Pd/Cr-TiO2 |
---|---|---|---|---|---|---|
pH | 6.07 | 7.09 | 6.91 | 7.04 | 6.35 | 6.1 |
COD (mg/L) | 68 | 60.0 | 39.7 | 18 | 26.7 | 47 |
Nitrates (mg/L) | 0.73 | 0.6 | <0.3 | 0.4 | 0.5 | 0.6 |
Chlorides (mg/L) | 30.5 | 32.3 | 27.3 | 27.3 | 27.7 | 27.7 |
Total hardness (mg CaCO3/L) | 61.3 | 63.0 | 30.7 | 29.0 | 40.3 | 32.3 |
E. coli (CFU/100 mL) | 690 | 10 | 1 | 0 | 3 | 1 |
Coliforms (Citrobacter freundii, Enterobacter aerogenes) (CFU/100 mL) | 2560 | 132 | 36 | 35 | 1 | 2 |
Total Coliforms (CFU/100 mL) | 3250 | 142 | 37 | 35 | 4 | 3 |
Other Enterobacteriaceae (CFU/100 mL) | 1120 | 115 | 22 | 10 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gil, M.A.; Murcia, J.J.; Hernández-Laverde, M.; Morante, N.; Sannino, D.; Vaiano, V. Ag/Cr-TiO2 and Pd/Cr-TiO2 for Organic Dyes Elimination and Treatment of Polluted River Water in Presence of Visible Light. Nanomaterials 2023, 13, 2341. https://doi.org/10.3390/nano13162341
Gil MA, Murcia JJ, Hernández-Laverde M, Morante N, Sannino D, Vaiano V. Ag/Cr-TiO2 and Pd/Cr-TiO2 for Organic Dyes Elimination and Treatment of Polluted River Water in Presence of Visible Light. Nanomaterials. 2023; 13(16):2341. https://doi.org/10.3390/nano13162341
Chicago/Turabian StyleGil, Mariana Alejandra, Julie J. Murcia, Mónica Hernández-Laverde, Nicola Morante, Diana Sannino, and Vincenzo Vaiano. 2023. "Ag/Cr-TiO2 and Pd/Cr-TiO2 for Organic Dyes Elimination and Treatment of Polluted River Water in Presence of Visible Light" Nanomaterials 13, no. 16: 2341. https://doi.org/10.3390/nano13162341
APA StyleGil, M. A., Murcia, J. J., Hernández-Laverde, M., Morante, N., Sannino, D., & Vaiano, V. (2023). Ag/Cr-TiO2 and Pd/Cr-TiO2 for Organic Dyes Elimination and Treatment of Polluted River Water in Presence of Visible Light. Nanomaterials, 13(16), 2341. https://doi.org/10.3390/nano13162341