Tuning Gaps and Schottky Contacts of Graphene/Phosphorene Heterostructures by Vertical Electric Field and Strain
Abstract
:1. Introduction
2. Model and Computational Methods
3. Results and Discussion
3.1. Structure and Energetics
3.2. Band Structures and Schottky Barriers
3.3. Perturbations: Vertical Strain and Electric Field
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BP | Black Phosphorus |
BZ | Brillouin Zone |
CBM | Conduction Band Minimum |
DFT | Density Functional Theory |
FET | Field-Effect Transistor |
G | Graphene |
GGA | Generalized Gradient Approximation |
G/P | Graphene/Phosphorene |
P | Phosphorene |
PBE | Perdew–Burke–Ernzerhof |
SBH | Schottky Barrier Height |
VBM | Valence Band Maximum |
vdW | van der Waals |
XC | eXchange Correlation |
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.E.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Balendhran, S.; Walia, S.; Nili, H.; Sriram, S.; Bhaskaran, M. Elemental analogues of graphene: Silicene, germanene, stanene, and phosphorene. Small 2015, 11, 640–652. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yu, Y.; Ye, G.J.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X.H.; Zhang, Y. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377. [Google Scholar] [CrossRef]
- Rodin, A.; Carvalho, A.; Neto, A.C. Strain-induced gap modification in black phosphorus. Phys. Rev. Lett. 2014, 112, 176801. [Google Scholar] [CrossRef]
- Xia, F.; Wang, H.; Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458. [Google Scholar] [CrossRef]
- Tran, V.; Yang, L. Scaling laws for the band gap and optical response of phosphorene nanoribbons. Phys. Rev. B 2014, 89, 245407. [Google Scholar] [CrossRef]
- Tran, V.; Soklaski, R.; Liang, Y.; Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 2014, 89, 235319. [Google Scholar] [CrossRef]
- Liu, H.; Neal, A.T.; Zhu, Z.; Luo, Z.; Xu, X.; Tománek, D.; Ye, P.D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033–4041. [Google Scholar] [CrossRef]
- Carvalho, A.; Wang, M.; Zhu, X.; Rodin, A.S.; Su, H.; Castro Neto, A.H. Phosphorene: From theory to applications. Nat. Rev. Mater. 2016, 1, 16061. [Google Scholar] [CrossRef]
- Lu, Y.; Zhou, D.; Chang, G.; Guan, S.; Chen, W.; Jiang, Y.; Jiang, J.; Wang, X.; Yang, S.A.; Feng, Y.P.; et al. Multiple unpinned Dirac points in group-Va single-layers with phosphorene structure. npj Comput. Mater. 2016, 2, 16011. [Google Scholar] [CrossRef]
- Ezawa, M. Topological origin of quasi-flat edge band in phosphorene. New J. Phys. 2014, 16, 115004. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, X.; Abdalla, L.; Fazzio, A.; Zunger, A. Switching a normal insulator into a topological insulator via electric field with application to phosphorene. Nano Lett. 2015, 15, 1222–1228. [Google Scholar] [CrossRef] [PubMed]
- Bechstedt, F.; Gori, P.; Pulci, O. Beyond graphene: Clean, hydrogenated and halogenated silicene, germanene, stanene, and plumbene. Prog. Surf. Sci. 2021, 96, 100615. [Google Scholar] [CrossRef]
- Peng, X.; Wei, Q.; Copple, A. Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene. Phys. Rev. B 2014, 90, 085402. [Google Scholar] [CrossRef]
- Jiang, J.W.; Park, H.S. Negative Poisson’s ratio in single-layer black phosphorus. Nat. Commun. 2014, 5, 4727. [Google Scholar] [CrossRef] [PubMed]
- Prete, M.S.; Grassano, D.; Pulci, O.; Kupchak, I.; Olevano, V.; Bechstedt, F. Giant excitonic absorption and emission in two-dimensional group-III nitrides. Sci. Rep. 2020, 10, 10719. [Google Scholar] [CrossRef]
- Seixas, L.; Rodin, A.; Carvalho, A.; Neto, A.C. Exciton binding energies and luminescence of phosphorene under pressure. Phys. Rev. B 2015, 91, 115437. [Google Scholar] [CrossRef]
- Wang, X.; Jones, A.M.; Seyler, K.L.; Tran, V.; Jia, Y.; Zhao, H.; Wang, H.; Yang, L.; Xu, X.; Xia, F. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 2015, 10, 517–521. [Google Scholar] [CrossRef]
- Surrente, A.; Mitioglu, A.; Galkowski, K.; Tabis, W.; Maude, D.K.; Plochocka, P. Excitons in atomically thin black phosphorus. Phys. Rev. B 2016, 93, 121405. [Google Scholar] [CrossRef]
- Zhang, G.; Chaves, A.; Huang, S.; Wang, F.; Xing, Q.; Low, T.; Yan, H. Determination of layer-dependent exciton binding energies in few-layer black phosphorus. Sci. Adv. 2018, 4, eaap9977. [Google Scholar] [CrossRef] [PubMed]
- Tian, R.; Fei, R.; Hu, S.; Li, T.; Zheng, B.; Shi, Y.; Zhao, J.; Zhang, L.; Gan, X.; Wang, X. Observation of excitonic series in monolayer and few-layer black phosphorus. Phys. Rev. B 2020, 101, 235407. [Google Scholar] [CrossRef]
- Carré, E.; Sponza, L.; Lusson, A.; Stenger, I.; Gaufrès, É.; Loiseau, A.; Barjon, J. Excitons in bulk black phosphorus evidenced by photoluminescence at low temperature. 2D Mater. 2021, 8, 021001. [Google Scholar] [CrossRef]
- Galicia Hernandez, J.M.; Fernandez-Escamilla, H.; Guerrero Sanchez, J.; Takeuchi, N. Electronic and optical properties of the buckled and puckered phases of phosphorene and arsenene. Sci. Rep. 2022, 12, 20979. [Google Scholar] [CrossRef]
- Qin, G.; Yan, Q.B.; Qin, Z.; Yue, S.Y.; Hu, M.; Su, G. Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles. Phys. Chem. Chem. Phys. 2015, 17, 4854–4858. [Google Scholar] [CrossRef]
- Mu, H.; Yu, W.; Yuan, J.; Lin, S.; Zhang, G. Interface and surface engineering of black phosphorus: A review for optoelectronic and photonic applications. Mater. Future 2022, 1, 012301. [Google Scholar] [CrossRef]
- Hugh, C.O.; Pablo, J. Two-dimensional crystals: Phosphorus joins the family. Nat. Nanotechnol. 2014, 9, 330–331. [Google Scholar]
- Liu, H.; Neal, A.T.; Zhu, Z.; Tomanek, D.; Ye, P.D. Phosphorene: A new 2D material with high carrier mobility. arXiv 2014, arXiv:1401.4133. [Google Scholar]
- Tao, Y.; Huang, T.; Ding, C.; Yu, F.; Tan, D.; Wang, F.; Xie, Q.; Yao, S. Few-layer phosphorene: An emerging electrode material for electrochemical energy storage. Appl. Mater. Today 2019, 15, 18–33. [Google Scholar] [CrossRef]
- Guo, G.C.; Wang, D.; Wei, X.L.; Zhang, Q.; Liu, H.; Lau, W.M.; Liu, L.M. First-principles study of phosphorene and graphene heterostructure as anode materials for rechargeable Li batteries. J. Phys. Chem. Lett. 2015, 6, 5002–5008. [Google Scholar] [CrossRef]
- Choi, J.R.; Yong, K.W.; Choi, J.Y.; Nilghaz, A.; Lin, Y.; Xu, J.; Lu, X. Black phosphorus and its biomedical applications. Theranostics 2018, 8, 1005. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Thakar, K.; Kaushik, N.; Muralidharan, B.; Lodha, S. Performance Projections for Two-dimensional Materials in Radio-Frequency Applications. Phys. Rev. Appl. 2018, 10, 014022. [Google Scholar] [CrossRef]
- Zhu, W.; Park, S.; Yogeesh, M.N.; McNicholas, K.M.; Bank, S.R.; Akinwande, D. Black Phosphorus Flexible Thin Film Transistors at Gighertz Frequencies. Nano Lett. 2016, 16, 2301–2306. [Google Scholar] [CrossRef] [PubMed]
- Ling, Z.P.; Sakar, S.; Mathew, S.; Zhu, J.T.; Gopinadhan, K.; Venkatesan, T.; Ang, K.W. Black phosphorus transistors with near band edge contact Schottky barrier. Sci. Rep. 2015, 5, 18000. [Google Scholar] [CrossRef]
- Espinoza, C.R.; Ryndyk, D.A.; Dianat, A.; Gutierrez, R.; Cuniberti, G. First principles study of field effect device through van der Waals and lateral heterostructures of graphene, phosphorene and graphane. Nano Mater. Sci. 2022, 4, 52–59. [Google Scholar] [CrossRef]
- Liu, B.; Wu, L.J.; Zhao, Y.Q.; Wang, L.Z.; Caii, M.Q. Tuning the Schottky contacts in the phosphorene and graphene heterostructure by applying strain. Phys. Chem. Chem. Phys. 2016, 18, 19918–19925. [Google Scholar] [CrossRef]
- Padilha, J.E.; Fazzio, A.; da Silva, A.J. van der Waals heterostructure of phosphorene and graphene: Tuning the Schottky barrier and doping by electrostatic gating. Phys. Rev. Lett. 2015, 114, 066803. [Google Scholar] [CrossRef]
- Shamekhi, M.; Ghobadi, N. Band structure and Schottky barrier modulation in multilayer black phosphorene and black phosphorene/graphene heterostructure through out-of-plane strain. Phys. B Condens. Matter 2020, 580, 411923. [Google Scholar] [CrossRef]
- Batmunkh, M.; Bat-Erdene, M.; Shapter, J.G. Phosphorene and phosphorene-based materials–prospects for future applications. Adv. Mater. 2016, 28, 8586–8617. [Google Scholar] [CrossRef]
- Han, X.; Liu, C.; Sun, J.; Sendek, A.D.; Yang, W. Density functional theory calculations for evaluation of phosphorene as a potential anode material for magnesium batteries. RSC Adv. 2018, 8, 7196–7204. [Google Scholar] [CrossRef]
- Zhao, S.; Kang, W.; Xue, J. The potential application of phosphorene as an anode material in Li-ion batteries. J. Mater. Chem. A 2014, 2, 19046–19052. [Google Scholar] [CrossRef]
- Island, J.O.; Steele, G.A.; van der Zant, H.S.; Castellanos-Gomez, A. Environmental instability of few-layer black phosphorus. 2D Mater. 2015, 2, 011002. [Google Scholar] [CrossRef]
- Hu, W.; Wang, T.; Yang, J. Tunable Schottky contacts in hybrid graphene–phosphorene nanocomposites. J. Mater. Chem. C 2015, 3, 4756–4761. [Google Scholar] [CrossRef]
- Phuc, H.V.; Ilyasov, V.V.; Hieu, N.N.; Nguyen, C.V. Electric-field tunable electronic properties and Schottky contact of graphene/phosphorene heterostructure. Vacuum 2018, 149, 231–237. [Google Scholar] [CrossRef]
- Haidar, E.A.; Tawfik, S.A.; Stampfl, C. Twist-Dependent Electron Charge Transfer and Transport in Phosphorene—Graphene Heterobilayers. J. Phys. Chem. C 2021, 125, 25886–25897. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef]
- Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Nardelli, M.B.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 2017, 29, 465901. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef]
- Pujari, B.S.; Gusarov, S.; Brett, M.; Kovalenko, A. Single-side-hydrogenated graphene: Density functional theory predictions. Phys. Rev. B 2011, 84, 041402. [Google Scholar] [CrossRef]
- Qiao, J.; Kong, X.; Hu, Z.X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475. [Google Scholar] [CrossRef] [PubMed]
- Koda, D.S.; Bechstedt, F.; Marques, M.; Teles, L.K. Coincidence lattices of 2D crystals: Heterostructure predictions and applications. J. Phys. Chem. C 2016, 120, 10895–10908. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, G.; Zhang, Y.W. Electronic properties of phosphorene/graphene and phosphorene/hexagonal boron nitride heterostructures. J. Phys. Chem. C 2015, 119, 13929–13936. [Google Scholar] [CrossRef]
- Rowland, R.S.; Taylor, R. Intermolecular nonbonded contact distances in organic crystal structures: Comparison with distances expected from van der Waals radii. J. Phys. Chem. 1996, 100, 7384–7391. [Google Scholar] [CrossRef]
- Bondi, A. van der Waals volumes and radii. J. Phys. Chem. 1964, 68, 441–451. [Google Scholar] [CrossRef]
- Kaur, S.; Kumar, A.; Srivastava, S.; Tankeshwar, K. Electronic properties of phosphorene/graphene heterostructures: Effect of external electric field. In Proceedings of the AIP Conference Proceedings, Bandung, India, 24–26 October 2016; AIP Publishing LLC: New York, NY, USA, 2016; Volume 1731, p. 050012. [Google Scholar]
- Li, C.; Gao, J.; Zi, Y.; Wang, F.; Niu, C.; Cho, J.H.; Jia, Y. Asymmetric quantum confinement-induced energetically and spatially splitting Dirac rings in graphene/phosphorene/graphene heterostructure. Carbon 2018, 140, 164–170. [Google Scholar] [CrossRef]
- Guo, H.; Lu, N.; Dai, J.; Wu, X.; Zeng, X.C. Phosphorene nanoribbons, phosphorus nanotubes, and van der Waals multilayers. J. Phys. Chem. C 2014, 118, 14051–14059. [Google Scholar] [CrossRef]
- Lin, Z.; Tian, Z.; Cen, W.; Zeng, Q. Monolayer black phosphorus: Tunable band gap and optical properties. Phys. B Condens. Matter 2023, 657, 414780. [Google Scholar] [CrossRef]
- Bechstedt, F. Many-Body Approach to Electronic Excitations; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Rudenko, A.N.; Katsnelson, M.I. Quasiparticle band structure and tight-binding model for single-and bilayer black phosphorus. Phys. Rev. B 2014, 89, 201408. [Google Scholar] [CrossRef]
- Bardeen, J. Surface states and rectification at a metal semi-conductor contact. Phys. Rev. 1947, 71, 717. [Google Scholar] [CrossRef]
- Höffling, B.; Schleife, A.; Rödl, C.; Bechstedt, F. Band discontinuities at Si-TCO interfaces from quasiparticle calculations: Comparison of two alignment approaches. Phys. Rev. B 2012, 85, 035305. [Google Scholar] [CrossRef]
- Koda, D.S.; Bechstedt, F.; Marques, M.; Teles, L.K. Tuning electronic properties and band alignments of phosphorene combined with MoSe2 and WSe2. J. Phys. Chem. C 2017, 121, 3862–3869. [Google Scholar] [CrossRef]
- Gong, K.; Zhang, L.; Ji, W.; Guo, H. Electrical contacts to monolayer black phosphorus: A first-principles investigation. Phys. Rev. B 2014, 90, 125441. [Google Scholar] [CrossRef]
- Ponti, G.; Palombi, F.; Abate, D.; Ambrosino, F.; Aprea, G.; Bastianelli, T.; Beone, F.; Bertini, R.; Bracco, G.; Caporicci, M.; et al. The role of medium size facilities in the HPC ecosystem: The case of the new CRESCO4 cluster integrated in the ENEAGRID infrastructure. In Proceedings of the 2014 International Conference on High Performance Computing & Simulation (HPCS), Bologna, Italy, 21–25 July 2014; pp. 1030–1033. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muroni, A.; Brozzesi, S.; Bechstedt, F.; Gori, P.; Pulci, O. Tuning Gaps and Schottky Contacts of Graphene/Phosphorene Heterostructures by Vertical Electric Field and Strain. Nanomaterials 2023, 13, 2358. https://doi.org/10.3390/nano13162358
Muroni A, Brozzesi S, Bechstedt F, Gori P, Pulci O. Tuning Gaps and Schottky Contacts of Graphene/Phosphorene Heterostructures by Vertical Electric Field and Strain. Nanomaterials. 2023; 13(16):2358. https://doi.org/10.3390/nano13162358
Chicago/Turabian StyleMuroni, Alessia, Simone Brozzesi, Friedhelm Bechstedt, Paola Gori, and Olivia Pulci. 2023. "Tuning Gaps and Schottky Contacts of Graphene/Phosphorene Heterostructures by Vertical Electric Field and Strain" Nanomaterials 13, no. 16: 2358. https://doi.org/10.3390/nano13162358
APA StyleMuroni, A., Brozzesi, S., Bechstedt, F., Gori, P., & Pulci, O. (2023). Tuning Gaps and Schottky Contacts of Graphene/Phosphorene Heterostructures by Vertical Electric Field and Strain. Nanomaterials, 13(16), 2358. https://doi.org/10.3390/nano13162358