Nanoparticles, an Emerging Control Method for Harmful Algal Blooms: Current Technologies, Challenges, and Perspectives
Abstract
:1. Introduction
2. Algae Blooms: Causes and Effects
2.1. Causes of Algae Blooms
2.2. Harmful Effects
3. Treatment Methods
3.1. Restricting Eutrophication
3.2. Biological Control
3.3. Disrupting Living Conditions
4. Nanoparticles to Control HABs
4.1. Photocatalysis to Produce ROS
4.2. Nutrient Control Methods
4.3. Flocculation/Coagulant-Based Algae Removal
5. Conclusions and Outlook
Funding
Acknowledgments
Conflicts of Interest
References
- Burkholder, J.M.; Noga, E.J.; Hobbs, C.H.; Glasgow, H.B. New Phantom Dinoflagellate is the Causative Agent of Major Estuarine Fish Kills. Nature 1992, 358, 407–410. [Google Scholar] [CrossRef] [PubMed]
- Acuna-Alonso, C.; Alvarez, X.; Valero, E.; Pacheco, F.A.L. Modelling of threats that affect Cyano-HABs in an eutrophicated reservoir: First phase towards water security and environmental governance in watersheds. Sci. Total Environ. 2022, 809, 152155. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.P.; Kumar, S.P.; Nair, G.A. Risk assessment of the amnesic shellfish poison, domoic acid, on animals and humans. J. Environ. Biol. 2009, 30, 319–325. [Google Scholar]
- Sha, J.; Xiong, H.; Li, C.; Lu, Z.; Zhang, J.; Zhong, H.; Zhang, W.; Yan, B. Harmful algal blooms and their eco-environmental indication. Chemosphere 2021, 274, 129912. [Google Scholar] [CrossRef]
- Wang, J.J.; Beusen, A.H.W.; Liu, X.C.; Bouwman, A.F. Aquaculture Production is a Large, Spatially Concentrated Source of Nutrients in Chinese Freshwater and Coastal Seas. Environ. Sci. Technol. 2020, 54, 1464–1474. [Google Scholar] [CrossRef]
- Rosa, M.; Ward, J.E.; Holohan, B.A.; Shumway, S.E.; Wikfors, G.H. Physicochemical surface properties of microalgae and their combined effects on particle selection by suspension-feeding bivalve molluscs. J. Exp. Mar. Biol. Ecol. 2017, 486, 59–68. [Google Scholar] [CrossRef]
- Rajasekhar, P.; Fan, L.H.; Nguyen, T.; Roddick, F.A. A review of the use of sonication to control cyanobacterial blooms. Water Res. 2012, 46, 4319–4329. [Google Scholar] [CrossRef]
- Li, M.L.; Chen, D.Y.; Liu, Y.; Chuang, C.Y.; Kong, F.Z.; Harrison, P.J.; Zhu, X.S.; Jiang, Y.L. Exposure of engineered nanoparticles to Alexandrium tamarense (Dinophyceae): Healthy impacts of nanoparticles via toxin-producing dinoflagellate. Sci. Total Environ. 2018, 610, 356–366. [Google Scholar] [CrossRef]
- Park, Y.H.; Kim, S.; Kim, H.S.; Park, C.; Choi, Y.E. Adsorption Strategy for Removal of Harmful Cyanobacterial Species Microcystis aeruginosa Using Chitosan Fiber. Sustainability 2020, 12, 4587. [Google Scholar] [CrossRef]
- Bauza, L.; Aguilera, A.; Echenique, R.; Andrinolo, D.; Giannuzzi, L. Application of Hydrogen Peroxide to the Control of Eutrophic Lake Systems in Laboratory Assays. Toxins 2014, 6, 2657–2675. [Google Scholar] [CrossRef]
- Coloma, S.E.; Dienstbier, A.; Bamford, D.H.; Sivonen, K.; Roine, E.; Hiltunen, T. Newly isolated Nodularia phage influences cyanobacterial community dynamics. Environ. Microbiol. 2017, 19, 273–286. [Google Scholar] [CrossRef]
- Sun, R.; Sun, P.F.; Zhang, J.H.; Esquivel-Elizondo, S.; Wu, Y.H. Microorganisms-based methods for harmful algal blooms control: A review. Bioresour. Technol. 2018, 248, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Mohan, H.; Vadivel, S.; Rajendran, S. Removal of harmful algae in natural water by semiconductor photocatalysis—A critical review. Chemosphere 2022, 302, 134827. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.R.; Xiao, Z.G.; Yue, L.; Wang, J.; Feng, Y.; Zhu, X.S.; Wang, Z.Y.; Xing, B.S. Algae response to engineered nanoparticles: Current understanding, mechanisms and implications. Environ. Sci.-Nano 2019, 6, 1026–1042. [Google Scholar] [CrossRef]
- Lin, C.; Fugetsu, B.; Su, Y.B.; Watari, F. Studies on toxicity of multi-walled carbon nanotubes on Arabidopsis T87 suspension cells. J. Hazard. Mater. 2009, 170, 578–583. [Google Scholar] [CrossRef]
- Kibuye, F.A.; Zamyadi, A.; Wert, E.C. A critical review on operation and performance of source water control strategies for cyanobacterial blooms: Part I-chemical control methods. Harmful Algae 2021, 109, 102099. [Google Scholar] [CrossRef]
- Yue, Q.; He, X.W.; Yan, N.; Tian, S.D.; Liu, C.C.; Wang, W.X.; Luo, L.; Tang, B.Z. Photodynamic control of harmful algal blooms by an ultra-efficient and degradable AIEgen-based photosensitizer. Chem. Eng. J. 2021, 417, 127890. [Google Scholar] [CrossRef]
- Ren, B.X.; Weitzel, K.A.; Duan, X.D.; Nadagouda, M.N.; Dionysiou, D.D. A comprehensive review on algae removal and control by coagulation-based processes: Mechanism, material, and application. Sep. Purif. Technol. 2022, 293, 121106. [Google Scholar] [CrossRef]
- Suazo-Hernandez, J.; Sepulveda, P.; Caceres-Jensen, L.; Castro-Rojas, J.; Poblete-Grant, P.; Bolan, N.; Mora, M.D. nZVI-Based Nanomaterials Used for Phosphate Removal from Aquatic Systems. Nanomaterials 2023, 13, 399. [Google Scholar] [CrossRef]
- Aruoja, V.; Pokhrel, S.; Sihtmae, M.; Mortimer, M.; Madler, L.; Kahru, A. Toxicity of 12 metal-based nanoparticles to algae, bacteria and protozoa. Environ. Sci.-Nano 2015, 2, 630–644. [Google Scholar] [CrossRef]
- Wang, Y.X.; Zhu, X.S.; Lao, Y.M.; Lv, X.H.; Tao, Y.; Huang, B.M.; Wang, J.X.; Zhou, J.; Cai, Z.H. TiO2 nanoparticles in the marine environment: Physical effects responsible for the toxicity on algae Phaeodactylum tricornutum. Sci. Total Environ. 2016, 565, 818–826. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.J.; Muller, E.B.; Cole, B.; Martin, T.; Nisbet, R.; Bielmyer-Fraser, G.K.; Jarvis, T.A.; Keller, A.A.; Cherr, G.; Lenihan, H.S. Photosynthetic efficiency predicts toxic effects of metal nanomaterials in phytoplankton. Aquat. Toxicol. 2017, 183, 85–93. [Google Scholar] [CrossRef]
- Priyadarshini, E.; Priyadarshini, S.S.; Pradhan, N. Heavy metal resistance in algae and its application for metal nanoparticle synthesis. Appl. Microbiol. Biotechnol. 2019, 103, 3297–3316. [Google Scholar] [CrossRef] [PubMed]
- Azwatul, H.M.; Uda, M.; Gopinath, S.C.; Arsat, Z.; Abdullah, F.; Muttalib, M.F.A.; Hashim, M.; Hashim, U.; Yaakub, A.R.W.; Ibrahim, N.; et al. Green route synthesis of antimicrobial nanoparticles using sewage alga bloom. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Paerl, H.W.; Otten, T.G. Harmful Cyanobacterial Blooms: Causes, Consequences, and Controls. Microb. Ecol. 2013, 65, 995–1010. [Google Scholar] [CrossRef]
- Hallegraeff, G.; Enevoldsen, H.; Zingone, A. Global harmful algal bloom status reporting. Harmful Algae 2021, 102, 101992. [Google Scholar] [CrossRef]
- Paerl, H.W.; Huisman, J. Climate change: A catalyst for global expansion of harmful cyanobacterial blooms. Environ. Microbiol. Rep. 2009, 1, 27–37. [Google Scholar] [CrossRef]
- Carmichael, W.W. Health effects of toxin-producing cyanobacteria: “The CyanoHABs”. Hum. Ecol. Risk Assess. 2001, 7, 1393–1407. [Google Scholar] [CrossRef]
- Pal, M.; Yesankar, P.J.; Dwivedi, A.; Qureshi, A. Biotic control of harmful algal blooms (HABs): A brief review. J. Environ. Manag. 2020, 268, 110687. [Google Scholar] [CrossRef]
- Davis, T.W.; Berry, D.L.; Boyer, G.L.; Gobler, C.J. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 2009, 8, 715–725. [Google Scholar] [CrossRef]
- Schmale, D.G.; Ault, A.P.; Saad, W.; Scott, D.T.; Westrick, J.A. Perspectives on Harmful Algal Blooms (HABs) and the Cyberbiosecurity of Freshwater Systems. Front. Bioeng. Biotechnol. 2019, 7, 128. [Google Scholar] [CrossRef]
- Tang, Y.Z.; Gu, H.F.; Wang, Z.H.; Liu, D.Y.; Wang, Y.; Lu, D.D.; Hu, Z.X.; Deng, Y.Y.; Shang, L.X.; Qi, Y.Z. Exploration of resting cysts (stages) and their relevance for possibly HABs-causing species in China. Harmful Algae 2021, 107, 102050. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Wang, M.; Tang, Y.Z.; Zhang, Q.; Duan, S.S.; Gobler, C.J. Acute toxicity of the cosmopolitan bloom-forming dinoflagellate Akashiwo sanguinea to finfish, shellfish, and zooplankton. Aquat. Microb. Ecol. 2018, 80, 209–222. [Google Scholar] [CrossRef]
- Inaba, N.; Trainer, V.L.; Onishi, Y.; Ishii, K.I.; Wyllie-Echeverria, S.; Imai, I. Algicidal and growth-inhibiting bacteria associated with seagrass and macroalgae beds in Puget Sound, WA, USA. Harmful Algae 2017, 62, 136–147. [Google Scholar] [CrossRef]
- Kouakou, C.R.C.; Poder, T.G. Economic impact of harmful algal blooms on human health: A systematic review. J. Water Health 2019, 17, 499–516. [Google Scholar] [CrossRef] [PubMed]
- Belin, C.; Soudant, D.; Amzil, Z. Three decades of data on phytoplankton and phycotoxins on the French coast: Lessons from REPHY and REPHYTOX. Harmful Algae 2021, 102, 101733. [Google Scholar] [CrossRef] [PubMed]
- Zingone, A.; Escalera, L.; Aligizaki, K.; Fernandez-Tejedor, M.; Ismael, A.; Montresor, M.; Mozetic, P.; Tas, S.; Totti, C. Toxic marine microalgae and noxious blooms in the Mediterranean Sea: A contribution to the Global HAB Status Report. Harmful Algae 2021, 102, 101843. [Google Scholar] [CrossRef]
- Sakamoto, S.; Lim, W.A.; Lu, D.D.; Dai, X.F.; Orlova, T.; Iwataki, M. Harmful algal blooms and associated fisheries damage in East Asia: Current status and trends in China, Japan, Korea and Russia. Harmful Algae 2021, 102, 101787. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.Y.; Wang, P.F.; Zhang, S.H. Multiple Effects of Environmental Factors on Algal Growth and Nutrient Thresholds for Harmful Algal Blooms: Application of Response Surface Methodology. Environ. Model. Assess. 2016, 21, 247–259. [Google Scholar] [CrossRef]
- Sunesen, I.; Mendez, S.M.; Mancera-Pineda, J.E.; Bottein, M.Y.D.; Enevoldsen, H. The Latin America and Caribbean HAB status report based on OBIS and HAEDAT maps and databases. Harmful Algae 2021, 102, 101920. [Google Scholar] [CrossRef]
- Daniel, T.C.; Sharpley, A.N.; Lemunyon, J.L. Agricultural phosphorus and eutrophication: A symposium overview. J. Environ. Qual. 1998, 27, 251–257. [Google Scholar] [CrossRef]
- Rathod, M.; Mody, K.; Basha, S. Efficient removal of phosphate from aqueous solutions by red seaweed, Kappaphycus alverezii. J. Clean. Prod. 2014, 84, 484–493. [Google Scholar] [CrossRef]
- Wu, B.L.; Wan, J.; Zhang, Y.Y.; Pan, B.C.; Lo, I.M.C. Selective Phosphate Removal from Water and Wastewater using Sorption: Process Fundamentals and Removal Mechanisms. Environ. Sci. Technol. 2020, 54, 50–66. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Y.; Xie, Y.H.; Jiang, F.; Wang, B.; Hu, Q.L.; Tang, Y.; Luo, T.; Wu, T. Enhanced phosphate removal from aqueous solution using resourceable nano-CaO2/BC composite: Behaviors and mechanisms. Sci. Total Environ. 2020, 709, 136123. [Google Scholar] [CrossRef] [PubMed]
- Loganathan, P.; Vigneswaran, S.; Kandasamy, J.; Bolan, N.S. Removal and Recovery of Phosphate from Water Using Sorption. Crit. Rev. Environ. Sci. Technol. 2014, 44, 847–907. [Google Scholar] [CrossRef]
- Xu, W.J.; Wang, J.T.; Tan, L.J.; Guo, X.; Xue, Q.N. Variation in allelopathy of extracellular compounds produced by Cylindrotheca closterium against the harmful-algal-bloom dinoflagellate Prorocentrum donghaiense. Mar. Environ. Res. 2019, 148, 19–25. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Xiao, H.; Chen, Q.; Zhao, M.; Sun, D.; Duan, S.S. Growth Inhibition of Phaeocystis Globosa Induced by Luteolin-7-O-glucuronide from Seagrass Enhalus acoroides. Int. J. Environ. Res. Public Health 2019, 16, 2615. [Google Scholar] [CrossRef]
- Chambonniere, P.; Bronlund, J.; Guieysse, B. Pathogen removal in high-rate algae pond: State of the art and opportunities. J. Appl. Phycol. 2021, 33, 1501–1511. [Google Scholar] [CrossRef]
- Xiao, X.; Li, C.; Huang, H.M.; Lee, Y.P. Inhibition effect of natural flavonoids on red tide alga Phaeocystis globosa and its quantitative structure-activity relationship. Environ. Sci. Pollut. Res. 2019, 26, 23763–23776. [Google Scholar] [CrossRef]
- Jeon, S.; Lim, J.M.; Lee, H.G.; Shin, S.E.; Kang, N.K.; Park, Y.I.; Oh, H.M.; Jeong, W.J.; Jeong, B.R.; Chang, Y.K. Current status and perspectives of genome editing technology for microalgae. Biotechnol. Biofuels 2017, 10, 267. [Google Scholar] [CrossRef]
- Grattan, L.M.; Holobaugh, S.; Morris, J.G. Harmful algal blooms and public health. Harmful Algae 2016, 57, 2–8. [Google Scholar] [CrossRef]
- Reddy, P.V.L.; Kavitha, B.; Reddy, P.A.K.; Kim, K.H. TiO2-based photocatalytic disinfection of microbes in aqueous media: A review. Environ. Res. 2017, 154, 296–303. [Google Scholar] [CrossRef]
- Li, L.; Pan, G. A Universal Method for Flocculating Harmful Algal Blooms in Marine and Fresh Waters Using Modified Sand. Environ. Sci. Technol. 2013, 47, 4555–4562. [Google Scholar] [CrossRef]
- Edzwald, J.K. Aluminum in Drinking Water: Occurrence, Effects, and Control. J. Am. Water Work. Assoc. 2020, 112, 34–41. [Google Scholar] [CrossRef]
- Bolto, B.; Gregory, J. Organic polyelectrolytes in water treatment. Water Res. 2007, 41, 2301–2324. [Google Scholar] [CrossRef]
- Jiang, J.Q. The role of coagulation in water treatment. Curr. Opin. Chem. Eng. 2015, 8, 36–44. [Google Scholar] [CrossRef]
- Agbakpe, M.; Ge, S.J.; Zhang, W.; Zhang, X.Z.; Kobylarz, P. Algae harvesting for biofuel production: Influences of UV irradiation and polyethylenimine (PEI) coating on bacterial biocoagulation. Bioresour. Technol. 2014, 166, 266–272. [Google Scholar] [CrossRef]
- Kurniawan, S.B.; Ahmad, A.; Imron, M.F.; Abdullah, S.R.S.; Othman, A.R.; Abu Hasan, H. Potential of microalgae cultivation using nutrient-rich wastewater and harvesting performance by biocoagulants/bioflocculants: Mechanism, multi-conversion of biomass into valuable products, and future challenges. J. Clean. Prod. 2022, 365, 132806. [Google Scholar] [CrossRef]
- Kim, S.C.; Lee, D.K. Preparation of TiO2-coated hollow glass beads and their application to the control of algal growth in eutrophic water. Microchem. J. 2005, 80, 227–232. [Google Scholar] [CrossRef]
- Song, J.K.; Li, C.Y.; Wang, X.J.; Zhi, S.S.; Wang, X.; Sun, J.H. Visible-light-driven heterostructured g-C3N4/Bi-TiO2 floating photocatalyst with enhanced charge carrier separation for photocatalytic inactivation of Microcystis aeruginosa. Front. Environ. Sci. Eng. 2021, 15, 129. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.J.; Song, J.K.; Li, Y.; Wang, Z.C.; Gao, Y.X. A highly efficient TiOX (X = N and P) photocatalyst for inactivation of Microcystis aeruginosa under visible light irradiation. Sep. Purif. Technol. 2019, 222, 99–108. [Google Scholar] [CrossRef]
- Niu, J.F.; Wang, K.; Ma, Z.T.F.; Yang, F.; Zhang, Y. Application of g-C3N4 Matrix Composites Photocatalytic Performance from Degradation of Antibiotics. Chemistryselect 2020, 5, 12353–12364. [Google Scholar] [CrossRef]
- Pinho, L.X.; Azevedo, J.; Brito, A.; Santos, A.; Tamagnini, P.; Vilar, V.J.P.; Vasconcelos, V.M.; Boaventura, R.A.R. Effect of TiO2 photocatalysis on the destruction of Microcystis aeruginosa cells and degradation of cyanotoxins microcystin-LR and cylindrospermopsin. Chem. Eng. J. 2015, 268, 144–152. [Google Scholar] [CrossRef]
- Jin, Y.; Xu, H.Z.; Ma, C.X.; Sun, J.M.; Li, H.M.; Zhang, S.S.; Pei, H.Y. Using photocatalyst powder to enhance the coagulation and sedimentation of cyanobacterial cells and enable the sludge to be self-purified under visible light. Water Res. 2018, 143, 550–560. [Google Scholar] [CrossRef]
- Fan, G.D.; Cai, C.J.; Chen, Z.Y.; Luo, J.; Du, B.H.; Yang, S.W.; Wu, J.X. Visible-light-drivenself-floating Ag2MoO4/TACN@LF photocatalyst inactivation of Microcystis aeruginosa: Performance and mechanisms. J. Hazard. Mater. 2023, 441, 129932. [Google Scholar] [CrossRef]
- Song, J.K.; Wang, X.J.; Ma, J.X.; Wang, X.; Wang, J.Y.; Zhao, J.F. Visible-light-driven in situ inactivation of Microcystis aeruginosa with the use of floating g-C3N4 heterojunction photocatalyst: Performance, mechanisms and implications. Appl. Catal. B-Environ. 2018, 226, 83–92. [Google Scholar] [CrossRef]
- Qi, J.; Lan, H.C.; Liu, R.P.; Liu, H.J.; Qu, J.H. Efficient Microcystis aeruginosa removal by moderate photocatalysis-enhanced coagulation with magnetic Zn-doped Fe3O4 particles. Water Res. 2020, 171, 115448. [Google Scholar] [CrossRef]
- He, Y.M.; Zhang, L.H.; Teng, B.T.; Fan, M.H. New Application of Z-Scheme Ag3PO4/g-C3N4 Composite in Converting CO2 to Fuel. Environ. Sci. Technol. 2015, 49, 649–656. [Google Scholar] [CrossRef]
- Fan, G.D.; Lin, X.; You, Y.F.; Du, B.H.; Li, X.; Luo, J. Magnetically separable ZnFe2O4/Ag3PO4/g-C3N4 photocatalyst for inactivation of Microcystis aeruginosa: Characterization, performance and mechanism. J. Hazard. Mater. 2022, 421, 126703. [Google Scholar] [CrossRef]
- Fan, G.D.; Zhou, J.J.; Zheng, X.M.; Luo, J.; Hong, L.; Qu, F.S. Fast photocatalytic inactivation of Microcystis aeruginosa by metal-organic frameworks under visible light. Chemosphere 2020, 239, 124721. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Xu, Y.O.; Wang, C.X.; Yue, L.; Liu, T.X.; Lan, Q.Q.; Cao, X.S.; Xing, B.S. Photocatalytic inactivation of harmful algae Microcystis aeruginosa and degradation of microcystin by g-C3N4/Cu-MOF nanocomposite under visible light. Sep. Purif. Technol. 2023, 313, 123515. [Google Scholar] [CrossRef]
- Hu, L.J.; Chen, J.F.; Wei, Y.S.; Wang, M.J.; Xu, Y.L.; Wang, C.; Gao, P.K.; Liu, Y.Y.; Liu, C.C.; Song, Y.H.; et al. Photocatalytic degradation effect and mechanism of Karenia mikimotoi by non-noble metal modified TiO2 loading onto copper metal organic framework (SNP-TiO2@Cu-MOF) under visible light. J. Hazard. Mater. 2023, 442, 130059. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.J.; Zhao, J.F.; Song, J.K.; Wang, J.Y.; Ma, R.R.; Ma, J.X. Solar light-driven photocatalytic destruction of cyanobacteria by F-Ce-TiO2/expanded perlite floating composites. Chem. Eng. J. 2017, 320, 253–263. [Google Scholar] [CrossRef]
- Wang, X.; Song, J.K.; Zhao, J.F.; Wang, Z.C.; Wang, X.J. In-situ active formation of carbides coated with NP-TiO2 nanoparticles for efficient adsorption-photocatalytic inactivation of harmful algae in eutrophic water. Chemosphere 2019, 228, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Baniamerian, H.; Tsapekos, P.; Alvarado-Morales, M.; Shokrollahzadeh, S.; Safavi, M.; Angelidaki, I. Anti-algal activity of Fe2O3-TiO2 photocatalyst on Chlorella vulgaris species under visible light irradiation. Chemosphere 2020, 242, 125119. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Ahn, C.H.; Kim, E.J.; Park, J.R.; Joo, J.C. Growth inhibition of harmful algae using TiO2-embedded expanded polystyrene balls in the hypereutrophic stream. J. Hazard. Mater. 2020, 398, 123172. [Google Scholar] [CrossRef]
- Asgodom, M.E.; Liu, D.Y.; Fu, H.B.; Xie, H.F.; Kong, J.M. Effect of the near-infrared activated photocatalyst Cu-2(OH)PO4 nanoparticles on the growth of harmful algal blooms causing Microcystis aeruginosa. Environ. Sci. Pollut. Res. 2021, 28, 20762–20771. [Google Scholar] [CrossRef]
- Fan, G.D.; Zhan, J.J.; Luo, J.; Lin, J.Y.; Qu, F.S.; Du, B.H.; You, Y.F.; Yan, Z.S. Fabrication of heterostructured Ag/AgCl@g-C3N4@UIO-66(NH2) nanocomposite for efficient photocatalytic inactivation of Microcystis aeruginosa under visible light. J. Hazard. Mater. 2021, 404, 124062. [Google Scholar] [CrossRef]
- Ibrahim, N.H.; Iqbal, A.; Mohammad-Noor, N.; Razali, R.M.; Sreekantan, S.; Yanto, D.H.Y.; Mahadi, A.H.; Wilson, L.D. Photocatalytic Remediation of Harmful Alexandrium minutum Bloom Using Hybrid Chitosan-Modified TiO2 Films in Seawater: A Lab-Based Study. Catalysts 2022, 12, 707. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, X.; Cai, M.; Cui, N.X.; Zou, G.Y.; Zhao, Z.Y. Enhanced photocatalytic inactivation of Cylindrospermopsis raciborskii by modified TiO2/Ag3PO4: Efficiency and mechanism. Chem. Eng. J. 2023, 458, 141464. [Google Scholar] [CrossRef]
- Hauda, J.K.; Safferman, S.I.; Ghane, E. Adsorption Media for the Removal of Soluble Phosphorus from Subsurface Drainage Water. Int. J. Environ. Res. Public Health 2020, 17, 7693. [Google Scholar] [CrossRef] [PubMed]
- Chiavola, A.; Bongirolami, S.; Di Francesco, G. Technical-economic comparison of chemical precipitation and ion exchange processes for the removal of phosphorus from wastewater. Water Sci. Technol. 2020, 81, 1329–1335. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Yu, Q.L.; Gauvin, F.; Brouwers, H.J.H.; Liu, C.W. Phosphorus removal from aqueous solutions by adsorptive concrete aggregates. J. Clean. Prod. 2021, 278, 123933. [Google Scholar] [CrossRef]
- Vunain, E.; Mishra, A.K.; Mamba, B.B. Dendrimers, mesoporous silicas and chitosan-based nanosorbents for the removal of heavy-metal ions: A review. Int. J. Biol. Macromol. 2016, 86, 570–586. [Google Scholar] [CrossRef]
- Seow, Y.X.; Tan, Y.H.; Mubarak, N.M.; Kansedo, J.; Khalid, M.; Ibrahim, M.L.; Ghasemi, M. A review on biochar production from different biomass wastes by recent carbonization technologies and its sustainable applications. J. Environ. Chem. Eng. 2022, 10, 107017. [Google Scholar] [CrossRef]
- Franklin, N.M.; Rogers, N.J.; Apte, S.C.; Batley, G.E.; Gadd, G.E.; Casey, P.S. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): The importance of particle solubility. Environ. Sci. Technol. 2007, 41, 8484–8490. [Google Scholar] [CrossRef]
- Xiao, H.X.; Liu, N.; Tian, K.; Liu, S.X.; Ge, F. Accelerated effects of nano-ZnO on phosphorus removal by Chlorella vulgaris: Formation of zinc phosphate crystallites. Sci. Total Environ. 2018, 635, 559–566. [Google Scholar] [CrossRef]
- Razanajatovo, M.R.; Gao, W.Y.; Song, Y.R.; Zhao, X.; Sun, Q.N.; Zhang, Q.R. Selective adsorption of phosphate in water using lanthanum-based nanomaterials: A critical review. Chin. Chem. Lett. 2021, 32, 2637–2647. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.H.; Wang, Y.L.; Li, X.H.; Wang, Y.Y. Investigation of phosphate removal mechanisms by a lanthanum hydroxide adsorbent using p-XRD, FTIR and XPS. Appl. Surf. Sci. 2021, 557, 149838. [Google Scholar] [CrossRef]
- Chen, L.; Li, Y.Z.; Sun, Y.B.; Chen, Y.; Qian, J.S. La(OH)(3) loaded magnetic mesoporous nanospheres with highly efficient phosphate removal properties and superior pH stability. Chem. Eng. J. 2019, 360, 342–348. [Google Scholar] [CrossRef]
- Maamoun, I.; Eljamal, R.; Falyouna, O.; Bensaida, K.; Sugihara, Y.; Eljamal, O. Insights into kinetics, isotherms and thermodynamics of phosphorus sorption onto nanoscale zero-valent iron. J. Mol. Liq. 2021, 328, 115402. [Google Scholar] [CrossRef]
- Zhou, R.; Li, H.; Yu, J.; Chi, R. Nanoscale zero-valent-iron-loaded sugarcane bagasse composite as an efficient adsorbent for phosphate sorption from aqueous solution. Int. J. Environ. Sci. Technol. 2023, 20, 451–460. [Google Scholar] [CrossRef]
- Xia, P.; Wang, X.J.; Wang, X.; Song, J.K.; Wang, H.; Zhang, J.; Zhao, J.F. Struvite crystallization combined adsorption of phosphate and ammonium from aqueous solutions by mesoporous MgO-loaded diatomite. Colloids Surf. A Physicochem. Eng. Asp. 2016, 506, 220–227. [Google Scholar] [CrossRef]
- Zahed, M.A.; Salehi, S.; Tabari, Y.; Farraji, H.; Ataei-Kachooei, S.; Zinatizadeh, A.A.; Kamali, N.; Mahjouri, M. Phosphorus removal and recovery: State of the science and challenges. Environ. Sci. Pollut. Res. 2022, 29, 58561–58589. [Google Scholar] [CrossRef]
- Si, Q.S.; Zhu, Q.; Xing, Z.P. Design and Synthesis of a Novel Silicate Material from Red Mud for Simultaneous Removal of Nitrogen and Phosphorus in Wastewater. ACS Sustain. Chem. Eng. 2017, 5, 11422–11432. [Google Scholar] [CrossRef]
- Zong, E.M.; Huang, G.B.; Liu, X.H.; Lei, W.W.; Jiang, S.T.; Ma, Z.Q.; Wang, J.F.; Song, P.G. A lignin-based nano-adsorbent for superfast and highly selective removal of phosphate. J. Mater. Chem. A 2018, 6, 9971–9983. [Google Scholar] [CrossRef]
- Salehi, S.; Hosseinifard, M. Highly efficient removal of phosphate by lanthanum modified nanochitosan-hierarchical ZSM-5 zeolite nanocomposite: Characteristics and mechanism. Cellulose 2020, 27, 4637–4664. [Google Scholar] [CrossRef]
- Tee, K.A.; Badsha, M.A.H.; Khan, M.; Wong, K.C.J.; Lo, I.M.C. Lanthanum carbonate nanoparticles confined within anion exchange resin for phosphate removal from river water: Batch and fixed-bed column study. Process Saf. Environ. Prot. 2022, 159, 640–651. [Google Scholar] [CrossRef]
- Mahmoud, A.S.; Mostafa, M.K.; Nasr, M. Regression model, artificial intelligence, and cost estimation for phosphate adsorption using encapsulated nanoscale zero-valent iron. Sep. Sci. Technol. 2019, 54, 13–26. [Google Scholar] [CrossRef]
- Shanableh, A.; Darwish, N.; Bhattacharjee, S.; Al-Khayyat, G.; Khalil, M.; Mousa, M.; Tayara, A.; Al-Samarai, M. Phosphorous removal by nanoscale zero-valent iron (nZVI) and chitosan-coated nZVI (CS-nZVI). Desalination Water Treat. 2020, 184, 282–291. [Google Scholar] [CrossRef]
- Ma, F.F.; Zhao, B.W.; Diao, J.R.; Jiang, Y.F.; Zhang, J. Mechanism of phosphate removal from aqueous solutions by biochar supported nanoscale zero-valent iron. RSC Adv. 2020, 10, 39217–39225. [Google Scholar] [CrossRef]
- Paerl, H.W.; Gardner, W.S.; Havens, K.E.; Joyner, A.R.; McCarthy, M.J.; Newell, S.E.; Qin, B.Q.; Scott, J.T. Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients. Harmful Algae 2016, 54, 213–222. [Google Scholar] [CrossRef]
- Chao, H.J.; Zhang, X.R.; Wang, W.Q.; Li, D.S.; Ren, Y.Z.; Kang, J.X.; Liu, D.Q. Evaluation of carboxymethylpullulan-AlCl3 as a coagulant for water treatment: A case study with kaolin. Water Environ. Res. 2020, 92, 302–309. [Google Scholar] [CrossRef]
- An, Y.Y.; Zheng, H.L.; Zheng, X.Y.; Sun, Q.; Zhou, Y.H. Use of a floating adsorbent to remove dyes from water: A novel efficient surface separation method. J. Hazard. Mater. 2019, 375, 138–148. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, Y.X.; Gao, B.Y.; Zhao, Q. Enhanced algae removal by Ti-based coagulant: Comparison with conventional Al- and Fe-based coagulants. Environ. Sci. Pollut. Res. 2018, 25, 13147–13158. [Google Scholar] [CrossRef]
- Lin, J.L.; Ika, A.R. Enhanced Coagulation of Low Turbid Water for Drinking Water Treatment: Dosing Approach on Floc Formation and Residuals Minimization. Environ. Eng. Sci. 2019, 36, 732–738. [Google Scholar] [CrossRef]
- Ma, J.Y.; Xia, W.; Fu, X.; Ding, L.; Kong, Y.L.; Zhang, H.W.; Fu, K. Magnetic flocculation of algae-laden raw water and removal of extracellular organic matter by using composite flocculant of Fe3O4/cationic polyacrylamide. J. Clean. Prod. 2020, 248, 119276. [Google Scholar] [CrossRef]
- Chen, L.; Liu, C.Y.; Sun, Y.J.; Sun, W.Q.; Xu, Y.H.; Zheng, H.L. Synthesis and Characterization of Ampholytic Flocculant CPCTS-g-P (CTA-DMDAAC) and Its Flocculation Properties for Microcystis aeruginosa Removal. Processes 2018, 6, 54. [Google Scholar] [CrossRef]
- Singh, G.; Patidar, S.K. Microalgae harvesting techniques: A review. J. Environ. Manag. 2018, 217, 499–508. [Google Scholar] [CrossRef]
- Barros, A.I.; Goncalves, A.L.; Simoes, M.; Pires, J.C.M. Harvesting techniques applied to microalgae: A review. Renew. Sustain. Energy Rev. 2015, 41, 1489–1500. [Google Scholar] [CrossRef]
- Yang, Z.J.; Hou, J.; Wu, M.; Miao, L.Z.; Wu, J.; Li, Y.P. A novel co-graft tannin-based flocculant for the mitigation of harmful algal blooms (HABs): The effect of charge density and molecular weight. Sci. Total Environ. 2022, 806, 150518. [Google Scholar] [CrossRef]
- Lin, M.Z.; Li, W.X.; Hu, T.; Bu, H.T.; Li, Z.L.; Wu, T.F.; Wu, X.X.; Sun, C.; Li, Y.T.; Jiang, G.B. One-step removal of harmful algal blooms by dual-functional flocculant based on self-branched chitosan integrated with flotation function. Carbohydr. Polym. 2021, 259, 117710. [Google Scholar] [CrossRef]
- Li, Y.L.; Xu, Z.T.; Wang, W.X. Effective flocculation of harmful algae Microcystis aeruginosa by nanoscale metal-organic framework NH2-MIL-101(Cr). Chem. Eng. J. 2022, 433, 134584. [Google Scholar] [CrossRef]
- Chen, L.; Sun, Y.J.; Sun, W.Q.; Shah, K.J.; Xu, Y.H.; Zheng, H.L. Efficient cationic flocculant MHCS-g-P(AM-DAC) synthesized by UV-induced polymerization for algae removal. Sep. Purif. Technol. 2019, 210, 10–19. [Google Scholar] [CrossRef]
- Tian, X.M.; Li, Y.Z.; Xu, H.Z.; Pang, Y.M.; Zhang, J.; Pei, H.Y. Fe2+ activating sodium percarbonate (SPC) to enhance removal of Microcystis aeruginosa and microcystins with pre-oxidation and in situ coagulation. J. Hazard. Mater. 2021, 412, 125206. [Google Scholar] [CrossRef]
- Jin, Y.; Li, P.J.; Xu, B.; Wang, L.; Ma, G.X.; Chen, S.H.; Tan, F.X.; Shao, Y.Y.; Zhang, L.J.; Yang, Z.G.; et al. A novel technology using iron in a coupled process of moderate preoxidation-hybrid coagulation to remove cyanobacteria in drinking water treatment plants. J. Clean. Prod. 2022, 342, 130947. [Google Scholar] [CrossRef]
- Lu, S.H.; Li, X.Z.; Yu, B.Z.; Ding, J.F.; Zhong, Y.C.; Zhang, H.J.; Liu, G. Efficient Microcystis aeruginosa coagulation and removal by palladium clusters doped g-C3N4 with no light irradiation. Ecotoxicol. Environ. Saf. 2022, 246, 114148. [Google Scholar] [CrossRef]
- Ma, J.Y.; Zhang, R.; Xia, W.; Kong, Y.L.; Nie, Y.; Zhou, Y.H.; Zhang, C. Coagulation performance of Al/Fe based covalently bonded composite coagulants for algae removal. Sep. Purif. Technol. 2022, 285, 120401. [Google Scholar] [CrossRef]
- You, Y.H.; Yang, L.; Sun, X.B.; Chen, H.; Wang, H.; Wang, N.Q.; Li, S.Q. Synthesized cationic starch grafted tannin as a novel flocculant for efficient microalgae harvesting. J. Clean. Prod. 2022, 344, 131042. [Google Scholar] [CrossRef]
- Du, B.; Tang, Q.; Chen, W.; Rong, X.; Zhang, K.; Ma, D.D.; Wei, Z.L. Insight into the purification of algael water by a novel flocculant with enhanced branched nanochitosan structure. J. Environ. Manag. 2023, 331, 117283. [Google Scholar] [CrossRef]
Photocatalyst | Algae Specie | Algicidal Rate (%) | Action Time (h) | Dose (mg/L) | Reference |
---|---|---|---|---|---|
TiO2 | Microcystis aeruginosa | - | - | 100 | Phinho et al. (2015) [63] |
F-Ce-TiO2/EP450 | Chattonella marina | 98.10 | 9 | 4000 | Wang et al. (2017) [73] |
N-TiO2 | Microcystis aeruginosa | 97 | 32 | 200 | Jin et al. (2018) [64] |
g-C3N4 | Microcystis aeruginosa | 74.4 | 6 | 2000 | Song et al. (2018) [66] |
NP-TiO2/C | Microcystis aeruginosa | 92.6 | 6 | - | Wang et al. (2019) [74] |
Fe2O3-TiO2 | Chlorella vulgaris | 99 | 24 | 25 | Baniamerian et al. (2019) [75] |
Ag/AgCl@ZIF-8 | Microcystis aeruginosa | 93.1 | 6 | 10 | Fan et al. (2020) [70] |
TiO2 | Microcystis aeruginosa | - | - | - | Lee et al. (2020) [76] |
Zn-doped Fe3O4 | Microcystis aeruginosa | 96 | 6 | 50 | Qi et al. (2020) [67] |
Cu2(OH)PO4 | Microcystis aeruginosa | 90.40 | 3 | 32 | Asogdom et al. (2021) [77] |
Ag/AgCl@C4N4@UIO-66(NH2~) | Microcystis aeruginosa | 99.90 | 3 | 30 | Fan et al. (2021) [78] |
ZnFe2O4/Ag3PO4/g-C3N4 | Microcystis aeruginosa | 94.31 | 3 | 100 | Fan et al. (2022) [69] |
TiO2 | Alexandrium minutum | 75.1 ± 13.8 | 72 | - | Ibrahim et al. (2022) [79] |
Bi2O~3@CU-MOF | Karenia mikimotoi | 96.35 | 4 | 60 | Wang et al. (2022) [72] |
Ag2MoO4/TACN@LF | Microcystis aeruginosa | 100 | 4 | 6000 | Fan et al. (2023) [65] |
g-C3N4/Cu-MOF | Microcystis aeruginosa | 92.4 | 6 | 6 | Wang et al. (2023) [71] |
TiO2/Ag3PO4 | Cylindrospermopsis raciborskii | 91.75 | 5 | 300 | Zhou et al. (2023) [80] |
SNP-TiO2@Cu-MOF | Karenia mikimotoi | 93.75 | 6 | 100 | Hu et al. (2023) [72] |
Adsorbent | Adsorption Capacity (mg/g) | Removal Rate | Action Time (min) | pH Value | Dose (mg/L) | Reference |
---|---|---|---|---|---|---|
MgO-D | 73.8 | 161 mg/g | 120 | 7 | 300 | Xia et al. (2016) [93] |
Porous MgO | - | 236 mg/g | 180 | 5 | 100 | Ahmed et al. (2017) [94] |
CSH@SiO2@MgO | - | 93.9 mg/g | 60 | 8 | 400 | Si et al. (2017) [95] |
LBR-Zr | 72.8 | 65.8% | 60 | 6 | 1250 | Zong et al. (2018) [96] |
Lanthanum-based flocculant | ||||||
Mag-MSNs-42%La | 54.2 | - | 100 | 4–10 | 500 | Chen et al. (2018) [90] |
NCS@ZSM-5-H/La | - | 144.92 mg/g | 20 | 4 | 500 | Salehi et al. (2020) [97] |
La@201 | - | 122 mg/g | 1440 | 4 | 500 | Zhang et al. (2021) [89] |
LC@ARE (1:2) | 77.43 | 91 mg/g | 720 | 7 | 500 | Teea et al. (2022) [98] |
nZVI-based flocculant | ||||||
Alginate-nZVI | - | 60% | 30 | 6.5 | 5000 | Ahmed et al. (2018) [99] |
Chitosan-coated nZVI | 437 | 80% | 30 | 5 | 300 | Shanableh et al. (2019) [100] |
RSBC-nZVI | 12.14 | - | 180 | 3–8 | 2500 | Ma et al. (2020) [101] |
nZVI | - | 76.8% | 180 | 7 | 1000 | Maamoun et al. (2020) [91] |
Sugarcane bagasse nZVI | 205.2 | 98.6% | 90 | 3 | 1600 | Zhou et al. (2022) [92] |
Flocculants/ Coagulants | Algae Specie | Removal Rate | Action Time (min) | pH | Dose (mg/L) | Reference |
---|---|---|---|---|---|---|
CTA-DMDAAC | Microcystis aeruginosa | 98.80 | 20 | 7 | 4 | Chen et al. (2018) [108] |
TiCl4 | Microcystis aeruginosa | 85.00 | 5 | - | 60 | Xu et al. (2018) [105] |
MHCS-g-P | Multiple algae species | 93.60 | 15 | 7–8 | 4 | Chen et al. (2019) [114] |
Fe3O4/CPAM | Chlamydomonas | 97.00 | 9 | 4–9 | 1.2 | Ma et al. (2019) [107] |
CaO2@PEG | Multiple algae species | 98.84 | 120 | 10 | 8 | Lin et al. (2021) [112] |
SPC/Fe2+ | Microcystis aeruginosa | 98.50 | 5 | - | 56 | Tian et al. (2021) [115] |
AM-DMDAAC | Microcystis aeruginosa | 90.00 | 10 | 3–11 | 4 | Yang et al. (2021) [111] |
Fe (VI) | Microcystis aeruginosa | 92.60 | 20 | - | 0.8 | Jin et al. (2022) [116] |
NH2-MIL-101(Cr) MOFs | Microcystis aeruginosa | 95.00 | 90 | 4–10 | 30 | Li et al. (2022) [113] |
Pd/g-C3N4 | Microcystis aeruginosa | 95.17 | 10 | 7 | 4000 | Lu et al. (2022) [117] |
CAFM | Microcystis aeruginosa | 96.00 | 17 | 7.5–8.5 | 40 | Ma et al. (2022) [118] |
TCCs | Microcystis aeruginosa | 90.00 | 15 | 7–10 | 4 | You et al. (2022) [119] |
PAD-g-MNC | Multiple algae species | 97.31 | 30 | 4–11 | 5 | Du et al. (2023) [120] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Xu, Z.; Chen, Y.; Guo, J. Nanoparticles, an Emerging Control Method for Harmful Algal Blooms: Current Technologies, Challenges, and Perspectives. Nanomaterials 2023, 13, 2384. https://doi.org/10.3390/nano13162384
Song J, Xu Z, Chen Y, Guo J. Nanoparticles, an Emerging Control Method for Harmful Algal Blooms: Current Technologies, Challenges, and Perspectives. Nanomaterials. 2023; 13(16):2384. https://doi.org/10.3390/nano13162384
Chicago/Turabian StyleSong, Jun, Zhibin Xu, Yu Chen, and Jiaqing Guo. 2023. "Nanoparticles, an Emerging Control Method for Harmful Algal Blooms: Current Technologies, Challenges, and Perspectives" Nanomaterials 13, no. 16: 2384. https://doi.org/10.3390/nano13162384
APA StyleSong, J., Xu, Z., Chen, Y., & Guo, J. (2023). Nanoparticles, an Emerging Control Method for Harmful Algal Blooms: Current Technologies, Challenges, and Perspectives. Nanomaterials, 13(16), 2384. https://doi.org/10.3390/nano13162384