Artificial Synapse Emulated by Indium Tin Oxide/SiN/TaN Resistive Switching Device for Neuromorphic System
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sangwan, V.K.; Hersam, M.C. Neuromorphic nanoelectronic materials. Nat. Nanotechnol. 2020, 15, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Loy, D.; Dananjaya, P.; Tan, F.; Ng, C.; Lew, W.J. Oxide-based RRAM materials for neuromorphic computing. Mater. Sci. 2018, 53, 8720–8746. [Google Scholar] [CrossRef]
- Borghetti, J.; Snider, G.S.; Kuekes, P.J.; Yang, J.J.; Stewart, D.R. ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 2010, 464, 873–876. [Google Scholar] [CrossRef]
- Gao, S.; Zeng, F.; Wang, M.; Wang, G.; Song, C.; Pan, F. Implementation of complete Boolean logic functions in single complementary resistive switch. Sci. Rep. 2015, 5, 15467. [Google Scholar] [CrossRef] [PubMed]
- Theis, T.N.; Wong, H.S.P. The end of moore’s law: A new beginning for information technology. Comput. Sci. Eng. 2017, 19, 41–50. [Google Scholar] [CrossRef]
- Fong, S.W.; Neumann, C.M.; Wong, H.S.P. Phase-change memory—Towards a storage-class memory. IEEE Trans. Electron. Devices 2017, 64, 4374–4385. [Google Scholar] [CrossRef]
- Khvalkovskiy, A.V.; Apalkov, D.; Watts, S.; Chepulskii, R.; Beach, R.S.; Ong, A.; Drinskill-Smith, X.A.; Butler, W.H.; Visscher, P.B. Basic principles of STT-MRAM cell operation in memory arrays. J. Phys. D Appl. Phys. 2013, 46, 074001. [Google Scholar] [CrossRef]
- Hiroshi, I.J. Ferroelectric random access memories. Nanosci. Nanotechnol. 2012, 10, 7619–7627. [Google Scholar]
- Sawa, A. Resistive switching in transition metal oxides. Mater. Today 2008, 11, 28–36. [Google Scholar] [CrossRef]
- Park, J.; Park, H.; Chung, D.; Kim, S. Dynamic and Static Switching in ITO/SnOx/ITO and Its Synaptic Application. Int. J. Mol. Sci. 2022, 23, 9995. [Google Scholar] [CrossRef] [PubMed]
- Jhang, W.C.; Hsu, C.C. Dual-Function Device Fabricated Using One Single SiO2 Resistive Switching Layer. IEEE Electron. Device Lett. 2022, 43, 1428–1431. [Google Scholar] [CrossRef]
- Park, M.; Jeon, B.; Park, J.; Kim, S. Memristors with Nociceptor Characteristics Using Threshold Switching of Pt/HfO2/TaOx/TaN Devices. Nanomaterials 2022, 12, 4206. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Shin, J.; Kim, S. Resistive Switching Characteristics of ZnO-Based RRAM on Silicon Substrate. Metals 2021, 11, 1572. [Google Scholar] [CrossRef]
- Jeong, D.S.; Thomas, R.; Katiyar, R.S.; Scott, J.F.; Kohlstedt, H.; Petraru, A.; Hwang, C.S. Emerging memories: Resistive switching mechanisms and current status. Rep. Prog. Phys. 2012, 75, 076502. [Google Scholar] [CrossRef] [PubMed]
- Waser, R.; Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 2007, 6, 833–840. [Google Scholar] [CrossRef]
- Ventra, M.D.; Pershin, Y.V. Memory materials: A unifying description. Mater. Today 2011, 14, 584–591. [Google Scholar] [CrossRef]
- Pan, F.; Gao, S.; Chen, C.; Song, C.; Zeng, F. Recent progress in resistive random access memories: Materials, switching mechanisms, and performance. Mater. Sci. Eng. R-Rep. 2014, 83, 1–59. [Google Scholar] [CrossRef]
- Chand, U.; Huang, C.Y.; Jieng, J.H.; Jang, W.Y.; Lin, C.H.; Tseng, T.Y. Suppression of endurance degradation by utilizing oxygen plasma treatment in HfO2 resistive switching memory. Appl. Phys. Lett. 2015, 106, 153502. [Google Scholar] [CrossRef]
- Choi, J.; Le, Q.V.; Hong, K.; Moon, C.W.; Han, J.S.; Kwon, K.C.; Cha, P.R.; Kwon, Y.; Kim, S.Y.; Jang, H.W. Enhanced endurance organolead halide perovskite resistive switching memories operable under an extremely low bending radius. ACS Appl. Mater. Interfaces 2017, 9, 30764–30771. [Google Scholar] [CrossRef]
- Yu, M.J.; Son, K.R.; Khot, A.C.; Kang, D.Y.; Sung, J.H.; Jang, I.G.; Dange, Y.D.; Dongale, T.D.; Kim, T.G. Three Musketeers: Demonstration of multilevel memory, selector, and synaptic behaviors from an Ag-GeTe based chalcogenide material. J. Mater. Res. Technol-JMRT 2021, 15, 1984–1995. [Google Scholar] [CrossRef]
- Zhu, Y.B.; Zheng, K.; Wu, X.; Ang, L.K. Enhanced stability of filament-type resistive switching by interface engineering. Sci. Rep. 2017, 7, 43664. [Google Scholar] [CrossRef]
- Roy, S.; Niu, G.; Wang, Q.; Wang, Y.; Zhang, Y.; Wu, H.; Zhai, S.; Shi, P.; Song, S.; Song, Z.; et al. Toward a Reliable Synaptic Simulation Using Al-Doped HfO2 RRAM. ACS Appl. Mater. Interfaces 2020, 12, 10648–10656. [Google Scholar] [CrossRef]
- Prakash, A.; Jana, D.; Maikap, S. TaO x -based resistive switching memories: Prospective and challenges. Nanoscale Res. Lett. 2013, 8, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.; Du, Y.; Cao, A.; Sun, Y.; Zhang, H.; Zha, G. Resistive switching of the HfOx/HfO 2 bilayer heterostructure and its transmission characteristics as a synapse. RSC Adv. 2018, 8, 41884–41891. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xu, L.; Zhang, H.; Liu, J.; Tan, D.; Chen, L.; Ma, Z.; Li, W. Effect of Joule Heating on Resistive Switching Characteristic in AlOx Cells Made by Thermal Oxidation Formation. Nanoscale Res. Lett. 2020, 15, 1–8. [Google Scholar] [CrossRef]
- Oh, I.; Pyo, J.; Kim, S. Resistive Switching and Synaptic Characteristics in ZnO/TaON-Based RRAM for Neuromorphic System. Nanomaterials 2022, 12, 2185. [Google Scholar] [CrossRef]
- Wang, S.Y.; Tsai, C.H.; Lee, D.Y.; Lin, C.Y.; Lin, C.C.; Tseng, T.Y. Improved resistive switching properties of Ti/ZrO2/Pt memory devices for RRAM application. Microelectron. Eng. 2011, 88, 1628–1632. [Google Scholar] [CrossRef]
- Lin, S.; Wu, C.; Chang, T.; Lien, C.; Yang, C.; Chen, W.; Lin, C.; Huang, W.; Tan, Y.; Wu, P.; et al. Improving Performance by Inserting an Indium Oxide Layer as an Oxygen Ion Storage Layer in HfO2-Based Resistive Random Access Memory. IEEE Trans. Electron. Devices 2021, 68, 1037–1040. [Google Scholar] [CrossRef]
- Chen, P.H.; Su, Y.T.; Chang, F.C. Stabilizing Resistive Switching Characteristics by Inserting Indium-Tin-Oxide Layer as Oxygen Ion Reservoir in HfO2-Based Resistive Random Access Memory. IEEE Trans. Electron. Devices 2019, 66, 1276–1280. [Google Scholar] [CrossRef]
- Yang, S.; Park, J.; Cho, Y.; Lee, Y.; Kim, S. Enhanced Resistive Switching and Synaptic Characteristics of ALD Deposited AlN-Based RRAM by Positive Soft Breakdown Process. Int. J. Mol. Sci. 2022, 23, 13249. [Google Scholar] [CrossRef]
- Sun, B.; Han, X.; Xu, R.; Qian, K. Uncovering the Indium Filament Formation and Dissolution in Transparent ITO/SiNx/ITO Resistive Random Access Memory. ACS Appl. Electron. Mater. 2020, 2, 1603–1608. [Google Scholar]
- Park, J.; Lee, S.; Lee, K.; Kim, S. Conductance quantization behavior in pt/sin/tan rram device for multilevel cell. Metals 2021, 11, 1918. [Google Scholar] [CrossRef]
- Hong, S.M.; Kim, H.D.; An, H.M.; Kim, T.G. Resistive switching phenomena of tungsten nitride thin films with excellent CMOS compatibility. Mater. Res. Bull. 2013, 48, 5080–5083. [Google Scholar] [CrossRef]
- Yang, M.; Wang, H.; Ma, X.; Gao, H.; Wang, B. Effect of nitrogen-accommodation ability of electrodes in SiNx-based resistive switching devices. Appl. Phys. Lett. 2017, 111, 233510. [Google Scholar] [CrossRef]
- Kim, H.D.; An, H.M.; Lee, E.B.; Kim, T.G. Stable bipolar resistive switching characteristics and resistive switching mechanisms observed in aluminum nitride-based ReRAM devices. IEEE Trans. Electron. Devices 2011, 58, 3566–3573. [Google Scholar] [CrossRef]
- Yoom, S.O.; Morrow, E.S. Evidence of preserved audience design with aging in interactive conversation. Psychol. Aging 2019, 34, 613. [Google Scholar]
- Jiang, X.; Ma, Z.; Xu, J.; Chen, K.; Xu, L.; Li, W.; Huang, X.; Feng, D. a-SiNx:H-based ultra-low power resistive random access memory with tunable Si dangling bond conduction paths. Sci. Rep. 2015, 5, 1–10. [Google Scholar] [CrossRef]
- Vasileiadis, N.; Karakolis, P.; Mandylas, P.; Ioannou-Sougleridis, V.; Normand, P.; Perego, M.; Komninou, P.; Ntinas, V.; Fyrigos, I.A.; Karafyllidis, I.; et al. Understanding the role of defects in silicon nitride-based resistive switching memories through oxygen doping. IEEE Trans. Nanotechnol. 2021, 20, 356–364. [Google Scholar] [CrossRef]
- Xia, G.; Ma, Z.; Jiang, X.; Yang, H.; Xu, J.; Xu, L.; Li, W.; Chen, K.; Feng, D.D.J. Direct observation of resistive switching memories behavior from nc-Si embedded in SiO2 at room temperature. Non-Cryst. Solids 2012, 358, 2348–2352. [Google Scholar] [CrossRef]
- Chang, Y.F.; Fowler, B.; Chen, Y.C.; Chen, Y.T.; Wang, Y.; Xue, F.; Zhou, F.; Lee, J.C. Intrinsic SiOx-based unipolar resistive switching memory. II. Thermal effects on charge transport and characterization of multilevel programing. J. Appl. Phys. 2014, 116, 043709. [Google Scholar] [CrossRef]
- Kim, H.D.; An, H.M.; Hong, S.M.; Kim, T.G. Unipolar resistive switching phenomena in fully transparent SiN-based memory cells. Semicond. Sci. Technol. 2012, 27, 125020. [Google Scholar] [CrossRef]
- Choi, J.; Kim, S. Coexistence of Long-Term Memory and Short-Term Memory in an SiNx-Based Memristor. Phys. Status Solidi-Rapid Res. Lett. 2020, 14, 2000357. [Google Scholar] [CrossRef]
- Kim, B.; Choi, H.S.; Kim, Y. A study of conductance update method for Ni/SiNx/Si analog synaptic device. Solid-State Electron. 2020, 171, 107772. [Google Scholar] [CrossRef]
- Rahmani, M.K.; Kim, M.H.; Hussain, F.; Abbas, Y.; Ismail, M.; Hong, K.; Mahata, C.; Choi, C.; Park, B.G.; Kim, S. Memristive and synaptic characteristics of nitride-based heterostructures on si substrate. Nanomaterials 2020, 10, 994. [Google Scholar] [CrossRef]
- Ye, C.; Wu, J.J.; Pan, C.H.; Tsai, T.M.; Chang, K.C.; Wu, H.; Deng, N.; Qian, H. Boosting the performance of resistive switching memory with a transparent ITO electrode using supercritical fluid nitridation. RCS Adv. 2017, 7, 11585–11590. [Google Scholar] [CrossRef]
- Ye, C.; Zhan, C.; Tsai, T.M.; Chang, K.C.; Chen, M.C.; Chang, T.C.; Deng, T.; Wang, H. Low-power bipolar resistive switching TiN/HfO2/ITO memory with self-compliance current phenomenon. Appl. Phys. Express 2014, 7, 034101. [Google Scholar] [CrossRef]
- Lin, C.Y.; Chen, J.; Chen, P.H.; Chang, T.C.; Wu, Y.; Eshraghian, J.K.; Moon, J.; Yoo, S.; Wang, Y.H.; Chen, W.C.; et al. Adaptive synaptic memory via lithium ion modulation in RRAM devices. Small 2020, 16, 2003964. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Mao, J.Y.; Yang, J.; Zhang, S.; Zhou, Y.; Liao, Q.; Zeng, Y.; Shan, H.; Xu, Z.; Fu, J.; et al. Biological spiking synapse constructed from solution processed bimetal core–shell nanoparticle based composites. Small 2018, 14, 1800288. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Park, J.; Chung, D.; Lee, K.; Kim, S. Multi-level cells and quantized conductance characteristics of Al2O3-based RRAM device for neuromorphic system. Nanoscale Res. Lett. 2022, 17, 84. [Google Scholar] [CrossRef] [PubMed]
- Lian, X.; Shen, X.; Fu, J.; Gao, Z.; Wan, X.; Liu, X.; Hu, E.; Xu, J.; Tong, Y.Y. Electrical properties and biological synaptic simulation of Ag/MXene/SiO2/Pt RRAM devices. Electronics 2020, 9, 2098. [Google Scholar] [CrossRef]
- Sejnowski, T.J.; Tesauro, G. The Hebb rule for synaptic plasticity: Algorithms and implementations. Neural Models Plast. 1989, 6, 94–103. [Google Scholar]
- Park, J.; Kwak, M.; Moon, K.; Woo, J.; Lee, D.; Hwang, H. TiO x-based RRAM synapse with 64-levels of conductance and symmetric conductance change by adopting a hybrid pulse scheme for neuromorphic computing. IEEE Electron. Device Lett. 2016, 37, 1559–1562. [Google Scholar] [CrossRef]
- Kim, D.; Lee, H.J.; Yang, T.J.; Choi, W.S.; Kim, C.; Choi, S.J.; Bae, J.H.; Kim, D.M.; Kim, S.; Kim, D.H. Effect of post-annealing on barrier modulations in Pd/IGZO/SiO2/p+-Si memristors. Nanomaterials 2022, 12, 3582. [Google Scholar] [CrossRef]
- Zahoor, F.; Zulkifli, T.Z.; Khanday, F.A. Resistive Random Access Memory (RRAM): An Overview of Materials, Switching Mechanism, Performance, Multilevel Cell (mlc) Storage, Modeling, and Applications. Nanoscale Res. Lett. 2020, 15, 1–26. [Google Scholar] [CrossRef]
- Ishibe, T.; Uematsu, Y.; Naruse, N.; Mera, Y.; Nakamura, Y. Impact of metal silicide nanocrystals on the resistance ratio in resistive switching of epitaxial Fe3O4 films on Si substrates. Appl. Phys. Lett. 2020, 116, 181601. [Google Scholar] [CrossRef]
- Yoon, J.H.; Han, J.H.; Jung, J.S.; Jeon, W.; Kim, G.H.; Song, S.J.; Seok, J.Y.; Yoon, K.J.; Lee, M.H.; Hwang, C.S. Highly Improved Uniformity in the Resistive Switching Parameters of TiO2 Thin Films by Inserting Ru Nanodots. Adv. Mater. 2013, 25, 1987–1992. [Google Scholar] [CrossRef]
- Kim, S.; Jung, S.; Kim, M.H.; Kim, T.H.; Bang, S.; Cho, S.; Park, B.G. Nano-cone resistive memory for ultralow power operation. Nanotechnology 2017, 28, 125207. [Google Scholar] [CrossRef]
- Abbas, Y.; Jeon, Y.R.; Sokolov, A.S.; Kim, S.; Ku, B.; Choi, C. Compliance-free, digital SET and analog RESET synaptic characteristics of sub-tantalum oxide based neuromorphic device. Sci. Rep. 2018, 8, 1228. [Google Scholar] [CrossRef]
- Ismail, M.; Mahata, C.; Kim, S.J. Forming-free Pt/Al2O3/HfO2/HfAlOx/TiN memristor with controllable multilevel resistive switching and neuromorphic characteristics for artificial synapse. J. Alloys Compd. 2022, 892, 162141. [Google Scholar] [CrossRef]
- Padovani, A.; Larcher, L.; Pirrotta, O.; Vandelli, L.; Bersuker, G. Microscopic Modeling of HfOx RRAM Operations: From Forming to Switching. IEEE Trans. Electron. Devices 2015, 62, 1998–2006. [Google Scholar] [CrossRef]
- Raghavan, N.; Fantini, A.; Degraeve, R.; Roussel, P.J.; Goux, L.; Govoreanu, B.; Wouters, D.J.; Groeseneken, G.; Jurczak, M. Statistical insight into controlled forming and forming free stacks for HfOx RRAM. Microelectron. Eng. 2013, 109, 177–181. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, B.; Fang, Z.; Wang, X.; Tang, Y.; Sohn, J.; Wong, H.S.; Wong, S.S.; Lo, G.Q. All-metal-nitride RRAM devices. IEEE Electron. Device Lett. 2014, 36, 29–31. [Google Scholar] [CrossRef]
- Lin, J.; Wang, S.; Liu, H. Multi-Level Switching of Al-Doped HfO2 RRAM with a Single Voltage Amplitude Set Pulse. Electronics 2021, 10, 731. [Google Scholar] [CrossRef]
- Wu, J.; Ye, C.; Zhang, J.; Deng, T.; He, P.; Wang, H. Multilevel characteristics for bipolar resistive random access memory based on hafnium doped SiO2 switching layer. Mater. Sci. Semicond. Process 2016, 43, 144–148. [Google Scholar] [CrossRef]
- Gentili, P.L. Establishing a New Link between Fuzzy Logic, Neuroscience, and Quantum Mechanics through Bayesian Probability: Perspectives in Artificial Intelligence and Unconventional Computing. Molecules 2021, 26, 5987. [Google Scholar] [CrossRef] [PubMed]
- Chreistensen, D.V.; Dittmann, R.; Barranco, B.L.; Sebastian, A.; Gallo, M.L.; Redaelli, A.; Slesazeck, S.; Mikolajick, T.; Spiga, S.; Menzel, S. 2022 roadmap on neuromorphic computing and engineering. Neuromorphic Comput. Eng. 2022, 2, 022501. [Google Scholar] [CrossRef]
- Hong, S.; Shin, D. International Workshop on Storage Network Architecture and Parallel I/Os; IEEEs: Piscataway, NJ, USA, 2010; pp. 21–30. [Google Scholar]
- Sedghi, N.; Li, H.; Brunell, I.F.; Dawson, K.; Potter, R.J.; Guo, Y.; Gibbon, J.T.; Dhanak, V.R.; Zhang, W.D.; Zhang, J.F.; et al. The role of nitrogen doping in ALD Ta2O5 and its influence on multilevel cell switching in RRAM. Appl. Phys. Lett. 2017, 110, 102902. [Google Scholar]
- Prakash, A.; Hwang, H. Multilevel cell storage and resistance variability in resistive random access memory. Phys. Sci. Rev. 2019, 1, 20160010. [Google Scholar]
- Malenka, R.C. Synaptic plasticity in the hippocampus: LTP and LTD. Cell 1994, 78, 535–538. [Google Scholar] [CrossRef]
- Malenka, R.C. Review: LTP and LTD: Dynamic and interactive processes of synaptic plasticity. Neuroscientist 1995, 1, 35–42. [Google Scholar] [CrossRef]
- Ismail, M.; Abbas, H.; Sokolov, A.; Mahata, C.; Choi, C.; Kim, S. Emulating synaptic plasticity and resistive switching characteristics through amorphous Ta2O5 embedded layer for neuromorphic computing. Ceram. Int. 2021, 47, 30764–30776. [Google Scholar] [CrossRef]
- Du, C.; Cai, F.; Zidan, M.A.; Ma, W.; Lee, S.H.; Lu, W.D. Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun. 2017, 8, 2204. [Google Scholar] [CrossRef]
- Prakash, C.; Dixit, A. Multifunctional BiFeO3 Thin Film-Based Memristor Device as an Efficient Synapse: Potential for Beyond von Neumann Computing in Neuromorphic Systems. ACS Appl. Electron. Mater. 2022, 4, 5763–5774. [Google Scholar] [CrossRef]
- McGaugh, J.L. Memory--a century of consolidation. Science 2000, 287, 248–251. [Google Scholar] [CrossRef]
- Sun, J.; Fu, Y.; Wan, Q.Q.J. Organic synaptic devices for neuromorphic systems. Phys. D-Appl. Phys. 2018, 51, 314004. [Google Scholar] [CrossRef]
- Zarudnyi, K.; Mehonic, A.; Montesi, L.; Buckwell, M.; Hudziak, S.; Kenyon, A.J. Spike-timing dependent plasticity in unipolar silicon oxide RRAM devices. Front Neurosci. 2018, 12, 57. [Google Scholar] [CrossRef] [PubMed]
- Ju, D.; Kim, J.H.; Kim, S.J. Highly uniform resistive switching characteristics of Ti/TaOx/ITO memristor devices for neuromorphic system. J. Alloys Compd. 2023, 961, 170920. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ju, D.; Kim, S.; Kim, S. Artificial Synapse Emulated by Indium Tin Oxide/SiN/TaN Resistive Switching Device for Neuromorphic System. Nanomaterials 2023, 13, 2477. https://doi.org/10.3390/nano13172477
Ju D, Kim S, Kim S. Artificial Synapse Emulated by Indium Tin Oxide/SiN/TaN Resistive Switching Device for Neuromorphic System. Nanomaterials. 2023; 13(17):2477. https://doi.org/10.3390/nano13172477
Chicago/Turabian StyleJu, Dongyeol, Sunghun Kim, and Sungjun Kim. 2023. "Artificial Synapse Emulated by Indium Tin Oxide/SiN/TaN Resistive Switching Device for Neuromorphic System" Nanomaterials 13, no. 17: 2477. https://doi.org/10.3390/nano13172477
APA StyleJu, D., Kim, S., & Kim, S. (2023). Artificial Synapse Emulated by Indium Tin Oxide/SiN/TaN Resistive Switching Device for Neuromorphic System. Nanomaterials, 13(17), 2477. https://doi.org/10.3390/nano13172477