The Controllable Mechanical Properties of Coiled Carbon Nanotubes with Stone–Wales and Vacancy Defects
Abstract
:1. Introduction
2. Molecular Models and Methods
3. Results and Discussion
3.1. The Effect of Defects on Elastic Properties of CCNTs
3.2. The Effect of Defects on the Plasticity and Fracture Processes of CCNTs
4. Conclusions
- (a)
- The defected CCNTs generally possess slightly smaller stiffness (from 1.48 nN/nm to 1.93 nN/nm) and smaller elastic limit (75.2% to 88.7%) than perfect CCNT (1.89 nN/nm and 86.3%, respectively) because introducing the defects changes the stress distribution and causes premature breakages of C-C bonds. Also, the energy storage capacity of defected CCNTs (842.74 J/g to 1433 J/g) is generally lower than that of perfect CCNT (1412.59 J/g) due to the smaller elastic limit and force of crack initiation.
- (b)
- The ductility of defected CCNTs is generally better than that of perfect CCNTs, and more energy is consumed during the fracture progression for the defective CCNTs due to the high residual load-carrying capacity and large plastic deformation. Among the defected CCNTs, both (2,3,7,1)/sw3 and (2,3,7,1)/v2 possess the better stiffness (1.93 nN/nm and 1.63 nN/nm, respectively), elastic limit (79.7% and 77.9%, respectively), ductility (up to 138.9%) and excellent energy absorbing capacity (up to 1539.93 J/g).
- (c)
- The deformation pattern of defected CCNTs is obviously different under tensile loads. There is an obvious yielding stage within the elastic range in the tensile force–elongation curves of CCNTs with the SW defects, which is not observed for CCNTs with vacancy defects. During the fracture process, the partial fracture usually initiates from the defect position, which can break the CNT segments sufficiently for (2,3,7,1)/sw1 and (2,3,7,1)/v1 with the defects at the center of the CNT segments. The deformation process of (2,3,7,1)/v3 is similar to that of perfect CCNT since the defects under the CNT segments do not affect the stress concentration on the central area of the inner edge of CCNTs.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Bernaerts, D.; van Tendeloo, G.; Amelinckx, S.; van Landuyt, J.; Ivanov, V.; Nagy, J.B.; Lambin, P.; Lucas, A. The Texture of Catalytically Grown Coil-Shaped Carbon Nanotubules. EPL Europhys. Lett. 1994, 27, 141–146. [Google Scholar] [CrossRef]
- Amelinckx, S.; Zhang, X.B.; Bernaerts, D.; Zhang, X.F.; Ivanov, V.; Nagy, J.B. A Formation Mechanism for Catalytically Grown Helix-Shaped Graphite Nanotubes. Science 1994, 265, 635–639. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.P.; Wang, Z.L.; Fan, S.S. Kinetically Controlled Growth of Helical and Zigzag Shapes of Carbon Nanotubes. J. Phys. Chem. B 2000, 104, 1227–1234. [Google Scholar] [CrossRef]
- Pan, L.P.L.; Hayashida, T.H.T.; Zhang, M.Z.M.; Nakayama, Y.N.Y. Field Emission Properties of Carbon Tubule Nanocoils. Jpn. J. Appl. Phys. 2001, 40, L235–L237. [Google Scholar] [CrossRef]
- Hayashida, T.; Pan, L.; Nakayama, Y. Mechanical and electrical properties of carbon tubule nanocoils. Phys. B Condens. Matter 2002, 323, 352–353. [Google Scholar] [CrossRef]
- Bell, D.; Sun, Y.; Zhang, L.; Dong, L.; Nelson, B.; Grützmacher, D. Three-dimensional nanosprings for electromechanical sensors. Sens. Actuators A Phys. 2006, 130–131, 54–61. [Google Scholar] [CrossRef]
- Sarapat, P.; Hill, J.M.; Baowan, D. A Review of Geometry, Construction and Modelling for Carbon Nanotori. Appl. Sci. 2019, 9, 2301. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Q.S.; Liew, K.M.; He, X.Q. Superstretchability and stability of helical structures of carbon nanotube/polymer composite fibers: Coarse-grained molecular dynamics modeling and simulation. Carbon 2017, 115, 220–228. [Google Scholar] [CrossRef]
- Volodin, A.; Buntinx, D.; Ahlskog, M.; Fonseca, A.; Nagy, J.B.; Van Haesendonck, C. Coiled Carbon Nanotubes as Self-Sensing Mechanical Resonators. Nano Lett. 2004, 4, 1775–1779. [Google Scholar] [CrossRef]
- Krishna, V.M.; Somanathan, T.; Manikandan, E.; Umar, A.; Maaza, M. Large-scale synthesis of coiled-like shaped carbon nanotubes using bi-metal catalyst. Appl. Nanosci. 2018, 8, 105–113. [Google Scholar] [CrossRef]
- Meng, F.; Wang, Y.; Wang, Q.; Xu, X.; Jiang, M.; Zhou, X.; He, P.; Zhou, Z. High-purity helical carbon nanotubes by trace-water-assisted chemical vapor deposition: Large-scale synthesis and growth mechanism. Nano Res. 2018, 11, 3327–3339. [Google Scholar] [CrossRef]
- Bajpai, V.; Dai, L.; Ohashi, T. Large-Scale Synthesis of Perpendicularly Aligned Helical Carbon Nanotubes. J. Am. Chem. Soc. 2004, 126, 5070–5071. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, S.; Dikin, D.A.; Ding, W.; Ruoff, R.S.; Pan, L.; Nakayama, Y. Mechanics of a Carbon Nanocoil. Nano Lett. 2003, 3, 1299–1304. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, L.; Kim, S.M.; Park, S. Helical metallic micro- and nanostructures: Fabrication and application. Nanoscale 2014, 6, 9355–9365. [Google Scholar] [CrossRef]
- Ren, Z.; Gao, P.-X. A review of helical nanostructures: Growth theories, synthesis strategies and properties. Nanoscale 2014, 6, 9366–9400. [Google Scholar] [CrossRef]
- Liu, L.Z.; Gao, H.L.; Zhao, J.J.; Lu, J.P. Superelasticity of Carbon Nanocoils from Atomistic Quantum Simulations. Nanoscale Res. Lett. 2010, 5, 478–483. [Google Scholar] [CrossRef]
- da Fonseca, A.F.; Galvao, D.S. Mechanical properties of nanosprings. Phys. Rev. Lett. 2004, 92, 175502. [Google Scholar] [CrossRef]
- Wu, J.; Nagao, S.; He, J.; Zhang, Z. Nanohinge-Induced Plasticity of Helical Carbon Nanotubes. Small 2013, 9, 3561–3566. [Google Scholar] [CrossRef]
- Wu, J.; He, J.; Odegard, G.M.; Nagao, S.; Zheng, Q.; Zhang, Z. Giant Stretchability and Reversibility of Tightly Wound Helical Carbon Nanotubes. J. Am. Chem. Soc. 2013, 135, 13775–13785. [Google Scholar] [CrossRef]
- Wu, J.; Zhao, H.; Liu, J.; Zhang, Z.; Ning, F.; Liu, Y. Nanotube-chirality-controlled tensile characteristics in coiled carbon metastructures. Carbon 2018, 133, 335–349. [Google Scholar] [CrossRef]
- Sharifian, A.; Baghani, M.; Wu, J.; Odegard, G.M.; Baniassadi, M. Insight into Geometry-Controlled Mechanical Properties of Spiral Carbon-Based Nanostructures. J. Phys. Chem. C 2019, 123, 3226–3238. [Google Scholar] [CrossRef]
- Wu, J.; Shi, Q.; Zhang, Z.; Wu, H.-H.; Wang, C.; Ning, F.; Xiao, S.; He, J.; Zhang, Z. Nature-inspired entwined coiled carbon mechanical metamaterials: Molecular dynamics simulations. Nanoscale 2018, 10, 15641–15653. [Google Scholar] [CrossRef] [PubMed]
- Bie, Z.; Liu, X.; Tao, J.; Zhu, J.; Yang, D.; He, X. Investigation of carbon nanosprings with the tunable mechanical properties controlled by the defect distribution. Carbon 2021, 179, 240–255. [Google Scholar] [CrossRef]
- Ghaderi, S.H.; Hajiesmaili, E. Molecular structural mechanics applied to coiled carbon nanotubes. Comput. Mater. Sci. 2012, 55, 344–349. [Google Scholar] [CrossRef]
- Ju, S.-P.; Lin, J.-S.; Chen, H.-L.; Hsieh, J.-Y.; Chen, H.-T.; Weng, M.-H.; Zhao, J.-J.; Liu, L.-Z.; Chen, M.-C. A molecular dynamics study of the mechanical properties of a double-walled carbon nanocoil. Comput. Mater. Sci. 2013, 82, 92–99. [Google Scholar] [CrossRef]
- Ihara, S.; Itoh, S.; Kitakami, J.-I. Helically coiled cage forms of graphitic carbon. Phys. Rev. B 1993, 48, 5643. [Google Scholar] [CrossRef]
- Pan, L.; Zhang, M.; Nakayama, Y. Growth mechanism of carbon nanocoils. J. Appl. Phys. 2002, 91, 10058–10061. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, J. Toroidal and Coiled Carbon Nanotubes. In Syntheses and Applications of Carbon Nanotubes and Their Composites; Suzuki, S., Ed.; InTech: Rijeka, Croatia, 2013; pp. 257–281. [Google Scholar]
- Haugan, T.; Barnes, P.N.; Wheeler, R.; Meisenkothen, F.; Sumption, M. Addition of nanoparticle dispersions to enhance flux pinning of the YBa2Cu3O7-x superconductor. Nature 2004, 430, 867–870. [Google Scholar] [CrossRef]
- Kelly, K.; NHalas, N. Determination of α and β site defects on graphite using C60-adsorbed STM tips. Surf. Sci. 1998, 416, L1085–L1089. [Google Scholar] [CrossRef]
- Ouyang, M.; Huang, J.-L.; Cheung, C.L.; Lieber, C.M. Atomically Resolved Single-Walled Carbon Nanotube Intramolecular Junctions. Science 2001, 291, 97–100. [Google Scholar] [CrossRef]
- Shi, X.; He, X.; Wang, L.; Sun, L. Hierarchical-structure induced adjustable deformation of super carbon nanotubes with radial shrinkage up to 66%. Carbon 2017, 125, 289–298. [Google Scholar] [CrossRef]
- Krasheninnikov, A.V.; Nordlund, K.; Sirviö, M.; Salonen, E.; Keinonen, J. Formation of ion-irradiation-induced atomic-scale defects on walls of carbon nanotubes. Phys. Rev. B 2001, 63, 245405. [Google Scholar] [CrossRef]
- Lu, Q.; Bhattacharya, B. Effect of randomly occurring Stone–Wales defects on mechanical properties of carbon nanotubes using atomistic simulation. Nanotechnology 2005, 16, 555–566. [Google Scholar] [CrossRef]
- Talukdar, K.; Mitra, A.K. Molecular Dynamics Simulation of Elastic Properties and Fracture Behavior of Single Wall Carbon Nanotubes with Vacancy and Stone–Wales Defect. Adv. Compos. Mater. 2011, 20, 29–38. [Google Scholar] [CrossRef]
- Ghavamian, A.; Rahmandoust, M.; Öchsner, A. A numerical evaluation of the influence of defects on the elastic modulus of single and multi-walled carbon nanotubes. Comput. Mater. Sci. 2012, 62, 110–116. [Google Scholar] [CrossRef]
- Belytschko, T.; Xiao, S.P.; Schatz, G.C.; Ruoff, R.S. Atomistic simulations of nanotube fracture. Phys. Rev. B 2002, 65, 235430. [Google Scholar] [CrossRef]
- Kundalwal, S.I.; Choyal, V. Transversely isotropic elastic properties of carbon nanotubes containing vacancy defects using MD. Acta Mech. 2018, 229, 2571–2584. [Google Scholar] [CrossRef]
- Sakharova, N.; Pereira, A.; Antunes, J.; Fernandes, J. Numerical simulation study of the elastic properties of single-walled carbon nanotubes containing vacancy defects. Compos. Part B Eng. 2016, 89, 155–168. [Google Scholar] [CrossRef]
- Bocko, J.; Lengvarský, P. Buckling of single-walled carbon nanotubes with and without defects. J. Mech. Sci. Technol. 2017, 31, 1825–1833. [Google Scholar] [CrossRef]
- Kai, M.; Zhang, L.; Liew, K. Carbon nanotube-geopolymer nanocomposites: A molecular dynamics study of the influence of interfacial chemical bonding upon the structural and mechanical properties. Carbon 2020, 161, 772–783. [Google Scholar] [CrossRef]
- Zhan, H.; Zhang, G.; Bell, J.M.; Tan, V.B.C.; Gu, Y. High density mechanical energy storage with carbon nanothread bundle. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, C.; Miao, L.; Li, J.; Xu, Z.; Sui, C.; He, X. Molecular Dynamics Simulations of Twisting-Induced Helical Carbon Nanotube Fibers for Reinforced Nanocomposites. ACS Appl. Nano Mater. 2020, 3, 5521–5529. [Google Scholar] [CrossRef]
- Brenner, D.W.; Shenderova, O.A.; Harrison, J.A.; Stuart, S.J.; Ni, B.; Sinnott, S.B. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter 2002, 14, 783–802. [Google Scholar] [CrossRef]
- Shenderova, O.A.; Brenner, D.W.; Omeltchenko, A.; Su, X.; Yang, L.H. Atomistic modeling of the fracture of polycrystalline diamond. Phys. Rev. B 2000, 61, 3877–3888. [Google Scholar] [CrossRef]
- Cao, A.; Qu, J. Atomistic simulation study of brittle failure in nanocrystalline graphene under uniaxial tension. Appl. Phys. Lett. 2013, 102, 071902. [Google Scholar] [CrossRef]
CCNTs | Number of Atoms | Tube Radius (Å) | Effective Radius (Å) | Pitch Length (Å) |
---|---|---|---|---|
(2,3,7,1) | 1800 | 4.10 | 13.12 | 40.65 |
(2,3,7,1)/sw1 | 1800 | 4.10 | 13.15 | 41.23 |
(2,3,7,1)/sw2 | 1800 | 4.10 | 13.18 | 41.56 |
(2,3,7,1)/sw3 | 1800 | 4.10 | 13.17 | 41.54 |
(2,3,7,1)/v1 | 1788 | 4.10 | 13.17 | 40.64 |
(2,3,7,1)/v2 | 1788 | 4.10 | 13.15 | 40.66 |
(2,3,7,1)/v3 | 1788 | 4.10 | 13.16 | 40.10 |
CCNTs | Spring Constant (nN/nm) | Elastic Limit | Elastic Energy Density (J/g) | Irreversible Energy Density (J/g) | Maximum Strain |
---|---|---|---|---|---|
(2,3,7,1) | 1.89 | 0.86 | 1412.59 | 929.88 | 1.285 |
(2,3,7,1)/sw1 | 1.70 | 0.81 | 1089.50 | 1082.56 | 1.264 |
(2,3,7,1)/sw2 | 1.75 | 0.81 | 1103.89 | 1310.32 | 1.381 |
(2,3,7,1)/sw3 | 1.93 | 0.80 | 1177.97 | 1308.24 | 1.318 |
(2,3,7,1)/v1 | 1.48 | 0.75 | 842.74 | 1249.20 | 1.358 |
(2,3,7,1)/v2 | 1.63 | 0.78 | 1042.32 | 1539.93 | 1.389 |
(2,3,7,1)/v3 | 1.82 | 0.887 | 1433.42 | 501.37 | 1.085 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bie, Z.; Deng, Y.; Liu, X.; Zhu, J.; Tao, J.; Shi, X.; He, X. The Controllable Mechanical Properties of Coiled Carbon Nanotubes with Stone–Wales and Vacancy Defects. Nanomaterials 2023, 13, 2656. https://doi.org/10.3390/nano13192656
Bie Z, Deng Y, Liu X, Zhu J, Tao J, Shi X, He X. The Controllable Mechanical Properties of Coiled Carbon Nanotubes with Stone–Wales and Vacancy Defects. Nanomaterials. 2023; 13(19):2656. https://doi.org/10.3390/nano13192656
Chicago/Turabian StyleBie, Zhiwu, Yajie Deng, Xuefeng Liu, Jiaqi Zhu, Jixiao Tao, Xian Shi, and Xiaoqiao He. 2023. "The Controllable Mechanical Properties of Coiled Carbon Nanotubes with Stone–Wales and Vacancy Defects" Nanomaterials 13, no. 19: 2656. https://doi.org/10.3390/nano13192656
APA StyleBie, Z., Deng, Y., Liu, X., Zhu, J., Tao, J., Shi, X., & He, X. (2023). The Controllable Mechanical Properties of Coiled Carbon Nanotubes with Stone–Wales and Vacancy Defects. Nanomaterials, 13(19), 2656. https://doi.org/10.3390/nano13192656