Zinc Oxide-Encapsulated Copper Nanowires for Stable Transparent Conductors
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qiu, T.; Akinoglu, E.M.; Luo, B.; Konarova, M.; Yun, J.H.; Gentle, I.R.; Wang, L. Nanosphere lithography: A versatile approach to develop transparent conductive films for optoelectronic applications. Adv. Mater. 2022, 34, 2103842. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xu, X.; Wei, Y.; Chen, Y.; Gao, M.; Zhang, Z.; Si, C.; Li, H.; Ji, X.; Liang, J. Tailoring silver nanowire nanocomposite interfaces to achieve superior stretchability, durability, and stability in transparent conductors. Nano Lett. 2022, 22, 3784–3792. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Liu, X.; Wu, M.; Dong, H.; Wang, X.; Li, L. All-solution-processed molybdenum oxide-encapsulated silver nanowire flexible transparent conductors with improved conductivity and adhesion. ACS Appl. Mater. Interfaces 2021, 13, 14470–14478. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Liu, X.; Yang, P.; Zhao, L.; Dong, H.; Wu, C.; Li, X.; Xiong, J. Highly stable silver nanowire networks with tin oxide shells for freestanding transparent conductive nanomembranes through all-solution processes. Chem. Eng. J. 2022, 446, 137481. [Google Scholar] [CrossRef]
- Burwell, G.; Burridge, N.; Bond, E.; Li, W.; Meredith, P.; Armin, A. Parameterization of metallic grids on transparent conductive electrodes for the scaling of organic solar cells. Adv. Electron. Mater. 2021, 7, 2100192. [Google Scholar] [CrossRef]
- Dong, G.; Sang, J.; Peng, C.W.; Liu, F.; Zhou, Y.; Yu, C. Power conversion efficiency of 25.26% for silicon heterojunction solar cell with transition metal element doped indium oxide transparent conductive film as front electrode. Prog. Photovol. Res. Appl. 2022, 30, 1136–1143. [Google Scholar] [CrossRef]
- Azani, M.R.; Hassanpour, A.; Torres, T. Benefits, problems, and solutions of silver nanowire transparent conductive electrodes in indium tin oxide (ITO)-free flexible solar cells. Adv. Energy Mater. 2020, 10, 2002536. [Google Scholar] [CrossRef]
- Raman, V.; Selvaraj, A.R.; Kim, S.W.; Prabakar, K.; Kim, H.K. Self-Encapsulated Cu Grid for Highly Transparent Conductive Electrode for Transparent Heater and Electrochemical Supercapacitor Applications. Adv. Electron. Mater. 2022, 8, 2200504. [Google Scholar] [CrossRef]
- Pozov, S.M.; Andritsos, K.; Theodorakos, I.; Georgiou, E.; Ioakeimidis, A.; Kabla, A.; Melamed, S.; de la Vega, F.; Zergioti, I.; Choulis, S.A. Indium tin oxide-free inverted organic photovoltaics using laser-induced forward transfer silver nanoparticle embedded metal grids. ACS Appl. Electron. Mater. 2022, 4, 2689–2698. [Google Scholar] [CrossRef]
- Zhao, F.; Zuo, L.; Li, Y.; Zhan, L.; Li, S.; Li, X.; Xia, R.; Yip, H.L.; Chen, H. High-Performance Upscaled Indium Tin Oxide–Free Organic Solar Cells with Visual Esthetics and Flexibility. Sol. RRL 2021, 5, 2100339. [Google Scholar] [CrossRef]
- Hao, T.; Wang, S.; Xu, H.; Zhang, X.; Xue, J.; Liu, S.; Song, Y.; Li, Y.; Zhao, J. Highly robust, transparent, and conductive films based on AgNW-C nanowires for flexible smart windows. Appl. Surf. Sci. 2021, 559, 149846. [Google Scholar] [CrossRef]
- Yu, S.; Liu, X.; Dong, H.; Wang, X.; Li, L. Flexible high-performance SnO2/AgNWs bilayer transparent conductors for flexible transparent heater applications. Ceram. Inter. 2021, 47, 20379–20386. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Z.; Ji, C.; Chen, X.; Hou, G.; Li, Y.; Zhou, X.; Cui, X.; Yang, X.; Ren, C.; et al. Low-temperature oxide/metal/oxide multilayer films as highly transparent conductive electrodes for optoelectronic devices. ACS Appl. Energy Mater. 2021, 4, 6553–6561. [Google Scholar] [CrossRef]
- Yu, S.; Li, J.; Zhao, L.; Gong, B.; Li, L. Folding-insensitive, flexible transparent conductive electrodes based on copper nanowires. Sol. Energy Mater. Sol. Cells 2021, 231, 111323. [Google Scholar] [CrossRef]
- Huang, S.; Liu, Y.; Yang, F.; Wang, Y.; Yu, T.; Ma, D. Metal nanowires for transparent conductive electrodes in flexible chromatic devices: A review. Environ. Chem. Lett. 2022, 20, 3005–3037. [Google Scholar] [CrossRef]
- Yu, S.; Liu, Z.; Zhao, L.; Li, L. Degradable, ultra-flexible, transparent and conductive film made of assembling CuNWs on chitosan. Opt. Mater. 2022, 123, 111752. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, P.; Shi, S.; Wang, X.; Yu, S. Enhanced the thermal/chemical stability of Cu NWs with solution-grown Al2O3 nanoshell for application in ultra-flexible temperature detection sensors. Chem. Eng. J. 2023, 473, 145156. [Google Scholar] [CrossRef]
- Zhou, S.; Zeng, X.; Yan, X.; Xie, F.; Fahlman, B.D.; Wang, C.; Li, W. High aspect ratio copper nanowires and copper nanoparticles decorated by reduced graphene oxide for flexible transparent conductive electrodes. Appl. Surf. Sci. 2022, 604, 154597. [Google Scholar] [CrossRef]
- Scardaci, V. Copper nanowires for transparent electrodes: Properties, challenges and applications. Appl. Sci. 2021, 11, 8035. [Google Scholar] [CrossRef]
- Chiu, J.M.; Wahdini, I.; Shen, Y.N.; Tseng, C.Y.; Sharma, J.; Tai, Y. Highly Stable Copper Nanowire-Based Transparent Conducting Electrode Utilizing Polyimide as a Protective Layer. ACS Appl. Energy Mater. 2023, 6, 5058–5066. [Google Scholar] [CrossRef]
- Yu, S.; Li, J.; Zhao, L.; Wu, M.; Dong, H.; Li, L. Simultaneously enhanced performances of flexible CuNW networks by covering ATO layer for polymer solar cells. Sol. Energy Mater. Sol. Cells 2021, 221, 110885. [Google Scholar] [CrossRef]
- Lin, Y.T.; Huang, D.W.; Huang, P.F.; Chang, L.C.; Lai, Y.T.; Tai, N.H. A green approach for high oxidation resistance, flexible transparent conductive films based on reduced graphene oxide and copper nanowires. Nanoscale Res. Lett. 2022, 17, 79. [Google Scholar] [CrossRef] [PubMed]
- Mehta, R.; Chugh, S.; Chen, Z. Enhanced electrical and thermal conduction in graphene-encapsulated copper nanowires. Nano Lett. 2015, 15, 2024–2030. [Google Scholar] [CrossRef] [PubMed]
- Saeed, M.A.; Kim, S.H.; Baek, K.; Hyun, J.K.; Lee, S.Y.; Shim, J.W. PEDOT: PSS: CuNW-based transparent composite electrodes for high-performance and flexible organic photovoltaics under indoor lighting. Appl. Surf. Sci. 2021, 567, 150852. [Google Scholar] [CrossRef]
- Yang, H.; Kwon, H.C.; Ma, S.; Kim, K.; Yun, S.C.; Jang, G.; Park, J.; Lee, H.; Goh, S.; Moon, J. Energy level-graded Al-doped ZnO protection layers for copper nanowire-based window electrodes for efficient flexible perovskite solar cells. ACS Appl. Mater. Interfaces 2020, 12, 13824–13835. [Google Scholar] [CrossRef] [PubMed]
- Niu, Z.; Cui, F.; Yu, Y.; Becknell, N.; Sun, Y.; Khanarian, G.; Kim, D.; Dou, L.; Dehestani, A.; Schierle-Arndt, K.; et al. Ultrathin Epitaxial Cu@Au Core–Shell Nanowires for Stable Transparent Conductors. J. Am. Chem. Soc. 2017, 139, 7348–7354. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, S.; Tian, Y.; Liu, Y.; Wen, J.; Huang, Y.; Hang, C.; Zheng, Z.; Wang, C. Electrodeposition fabrication of Cu@ Ni core shell nanowire network for highly stable transparent conductive films. Chem. Eng. J. 2020, 390, 124495. [Google Scholar] [CrossRef]
- Stewart, I.E.; Ye, S.; Chen, Z.; Flowers, P.F.; Wiley, B.J. Synthesis of Cu–Ag, Cu–Au, and Cu–Pt core–shell nanowires and their use in transparent conducting films. Chem. Mater. 2015, 27, 7788–7794. [Google Scholar] [CrossRef]
- DiGregorio, S.J.; Miller, C.E.; Prince, K.J.; Hildreth, O.J.; Wheeler, L.M. All-atmospheric fabrication of Ag–Cu core–shell nanowire transparent electrodes with Haacke figure of merit > 600 × 10−3 Ω−1. Sci. Rep. 2022, 12, 20962. [Google Scholar] [CrossRef]
- Wang, H.; Wu, C.; Huang, Y.; Sun, F.; Lin, N.; Soomro, A.M.; Zhong, Z.; Yang, X.; Chen, X.; Kang, J.; et al. One-pot synthesis of superfine core–shell Cu@ metal nanowires for highly tenacious transparent LED dimmer. ACS Appl. Mater. Interfaces 2016, 8, 28709–28717. [Google Scholar] [CrossRef]
- Zhao, L.; Li, J.; Song, Z.; Wang, X.; Yu, S. Self-assembled Growth of SnO2 Nanoshells on Copper Nanowires for Stable and Transparent Conductors. ACS Appl. Nano Mater. 2023, 6, 10658–10667. [Google Scholar] [CrossRef]
- Dong, H.; Chang, C.; Tan, Q.; Zhao, L.; Yang, P.; Yu, S. Improved Stability of Copper Nanowires with Solution-Grown NiO Shells as Protective Coating. ACS Appl. Nano Mater. 2023, 6, 10384–10393. [Google Scholar] [CrossRef]
- Pham, A.T.T.; Hoang, D.V.; Nguyen, T.H.; Le, O.K.T.; Wong, D.P.; Kuo, J.L.; Chen, K.H.; Phan, T.B.; Tran, V.C. Hydrogen enhancing Ga doping efficiency and electron mobility in high-performance transparent conducting Ga-doped ZnO films. J. Alloys Compd. 2021, 860, 158518. [Google Scholar] [CrossRef]
- Guermat, N.; Daranfed, W.; Bouchama, I.; Bouarissa, N. Investigation of structural, morphological, optical and electrical properties of Co/Ni co-doped ZnO thin films. J. Mol. Struct. 2021, 1225, 129134. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, M.; Song, X.; Yan, G.; Ding, Y.; Bai, J. High-performance ZnO/Ag Nanowire/ZnO composite film UV photodetectors with large area and low operating voltage. J. Mater. Chem. C 2014, 2, 4312–4319. [Google Scholar] [CrossRef]
- Sahu, D.R.; Huang, J.L. The properties of ZnO/Cu/ZnO multilayer films before and after annealing in the different atmosphere. Thin Solid Films 2007, 516, 208–211. [Google Scholar] [CrossRef]
- Kim, A.; Won, Y.; Woo, K.; Kim, C.H.; Moon, J. Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells. ACS Nano 2013, 7, 1081–1091. [Google Scholar] [CrossRef]
- Xiang, H.; Guo, T.; Xu, M.; Lu, H.; Liu, S.; Yu, G. Ultrathin copper nanowire synthesis with tunable morphology using organic amines for transparent conductors. ACS Appl. Nano Mater. 2018, 1, 3754–3759. [Google Scholar] [CrossRef]
- Geng, C.; Jiang, Y.; Yao, Y.; Meng, X.; Zapien, J.A.; Lee, C.S.; Lifshitz, Y.; Lee, S.T. Well-Aligned ZnO Nanowire Arrays Fabricated on Silicon Substrates. Adv. Funct. Mater. 2004, 14, 589–594. [Google Scholar] [CrossRef]
- Farazmand, P.; Khanlary, M.; Fehli, S.; Salar Elahi, A.; Ghoranneviss, M. Synthesis of carbon nanotube and zinc oxide (CNT–ZnO) nanocomposite. J. Inorg. Organomet. Polym. Mater. 2015, 25, 942–947. [Google Scholar] [CrossRef]
- Liu, G.; Wang, J.; Ge, Y.; Wang, Y.; Lu, S.; Zhao, Y.; Tang, Y.; Soomro, A.M.; Hong, Q.; Yang, X.; et al. Cu nanowires passivated with hexagonal boron nitride: An ultrastable, selectively transparent conductor. ACS Nano 2020, 14, 6761–6773. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhao, L.; Zhang, N.; Chang, C.; Song, Z.; An, W.; Dong, Q.; Yu, S. Self-assembled growing ultrathin Ag@NiO core-shell nanowires for stable freestanding transparent conductive colorless polyimide nanomembranes. J. Alloys Compd. 2023, 935, 168012. [Google Scholar] [CrossRef]
- Hu, L.; Hecht, D.S.; Grüner, G. Percolation in transparent and conducting carbon nanotube networks. Nano Lett. 2004, 4, 2513–2517. [Google Scholar] [CrossRef]
- Kim, Y.; Hyeong, S.K.; Choi, Y.; Lee, S.K.; Lee, J.H.; Yu, H.K. Transparent and flexible electromagnetic interference shielding film using ITO nanobranches by internal scattering. ACS Appl. Mater. Interfaces 2021, 13, 61413–61421. [Google Scholar] [CrossRef]
- These, A.; Khansur, N.H.; Almora, O.; Luer, L.; Matt, G.J.; Eckstein, U.; Barabash, A.; Osvet, A.; Webber, K.G.; Brabec, C.J. Characterization of Aerosol Deposited Cesium Lead Tribromide Perovskite Films on Interdigited ITO Electrodes. Adv. Electron. Mater. 2021, 7, 2001165. [Google Scholar] [CrossRef]
- Nassar, J.M.; Rojas, J.P.; Hussain, A.M.; Hussain, M.M. From stretchable to reconfigurable inorganic electronics. Extrem. Mech. Lett. 2016, 9, 245–268. [Google Scholar] [CrossRef]
- Gong, S.; Cheng, W. One-dimensional nanomaterials for soft electronics. Adv. Electr. Mater. 2017, 3, 1600314. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Z.; Ji, Y.; Jin, Z.; Zou, S.; Zhong, Z.; Su, F. One-dimensional Cu-based catalysts with layered Cu–Cu2O–CuO walls for the Rochow reaction. Nano Res. 2016, 9, 1377–1392. [Google Scholar] [CrossRef]
- Feng, T.; Wang, J.; Wang, Y.; Yu, C.; Zhou, X.; Xu, B.; László, K.; Li, F.; Zhang, W. Selective electrocatalytic reduction of nitrate to dinitrogen by Cu2O nanowires with mixed oxidation-state. Chem. Eng. J. 2022, 433, 133495. [Google Scholar] [CrossRef]
- Fiaud, C.; Safavi, M.; Vedel, J. Identification of the corrosion products formed on copper in sulfur containing environments. Mater. Corros. 1984, 35, 361–366. [Google Scholar] [CrossRef]
- Zhang, C.; Yan, A.; Guo, H.; Lei, Y.; Hao, H.; Liu, F. DFT combined with XPS to investigate sulfur removal and sulfur-fixation mechanisms of copper oxide during coal pyrolysis and semi-coke combustion. Fuel 2022, 317, 123482. [Google Scholar] [CrossRef]
- Li, Z.; Yu, J.; Khuje, S.; Sheng, A.; Navarro, M.; Zhuang, C.G.; Ren, S. Surface-passivated Cu conductors for high-temperature sulfurous environments. Nanoscale Adv. 2022, 4, 5132–5136. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Yu, S.; Huang, L. Zinc Oxide-Encapsulated Copper Nanowires for Stable Transparent Conductors. Nanomaterials 2023, 13, 2659. https://doi.org/10.3390/nano13192659
Wang B, Yu S, Huang L. Zinc Oxide-Encapsulated Copper Nanowires for Stable Transparent Conductors. Nanomaterials. 2023; 13(19):2659. https://doi.org/10.3390/nano13192659
Chicago/Turabian StyleWang, Bo, Shihui Yu, and Liang Huang. 2023. "Zinc Oxide-Encapsulated Copper Nanowires for Stable Transparent Conductors" Nanomaterials 13, no. 19: 2659. https://doi.org/10.3390/nano13192659
APA StyleWang, B., Yu, S., & Huang, L. (2023). Zinc Oxide-Encapsulated Copper Nanowires for Stable Transparent Conductors. Nanomaterials, 13(19), 2659. https://doi.org/10.3390/nano13192659