Plasmon-Enhanced Perovskite Solar Cells Based on Inkjet-Printed Au Nanoparticles Embedded into TiO2 Microdot Arrays
Abstract
:1. Introduction
2. Materials and Methods
2.1. Solar Cell Device Structure
2.2. Characterization
2.3. Simulations
3. Results and Discussion
3.1. XRD Studies
3.2. Morphology Analysis
3.3. Grain Size Analysis of MAPI
3.4. FDTD-Simulated Electric Field Response
3.5. Simulated and Estimated Absorption Using FDTD and Reflectance Measurements
3.6. Optical Properties
3.7. Photovoltaic Parameters of PSCs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jena, A.K.; Kulkarni, A.; Miyasaka, T. Halide perovskite photovoltaics: Background, status, and future prospects. Chem. Rev. 2019, 119, 3036–3103. [Google Scholar] [CrossRef]
- Min, H.; Lee, D.Y.; Kim, J.; Kim, G.; Lee, K.S.; Kim, J.; Paik, M.J.; Kim, Y.K.; Kim, K.S.; Kim, M.G.; et al. Perovskite solar cells with atomically coherent interlayers on sno2 electrodes. Nature 2021, 598, 444–450. [Google Scholar] [CrossRef]
- Shockley, W. the shockley-queisser limit. J. Appl. Phys. 1961, 32, 510–519. [Google Scholar] [CrossRef]
- Park, N.G.; Segawa, H. Research direction toward theoretical efficiency in perovskite solar cells. ACS Photonics 2018, 5, 2970–2977. [Google Scholar] [CrossRef]
- Phillips, L.J.; Rashed, A.M.; Treharne, R.E.; Kay, J.; Yates, P.; Mitrovic, I.Z.; Weerakkody, A.; Hall, S.; Durose, K. Maximizing the optical performance of planar ch3nh3pbi3 hybrid perovskite heterojunction stacks. Sol. Energy Mater. Sol. Cells 2016, 147, 327–333. [Google Scholar] [CrossRef]
- Liu, D.; Gangishetty, M.K.; Kelly, T.L. Effect of CH3NH3PBI3 thickness on device efficiency in planar heterojunction perovskite solar cells. J. Mater. Chem. A 2014, 2, 19873–19881. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Li, L.; Gao, S.; Zhu, D.; Yu, X.; Cheng, S.; Zheng, D.; Xiong, Y. An investigation of the effects of zno inverse opal pore size in the composite of zno nanorods/zno inverse opal on the performance of quantum dot-sensitized solar cells. Dalton Trans. 2023, 52, 81–89. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.; Li, L.; Gao, S.; Zheng, D.; Yu, X.; Wu, Q.; Yang, Q.; Zhu, D.; Yang, W.; et al. Highly efficient quantum-dot-sensitized solar cells with composite semiconductor of zno nanorod and oxide inverse opal in photoanode. Electrochim. Acta 2022, 412, 140145. [Google Scholar] [CrossRef]
- Qin, F.; Chen, J.; Liu, J.; Liu, L.; Tang, C.; Tang, B.; Li, G.; Zeng, L.; Li, H.; Yi, Z. Design of high efficiency perovskite solar cells based on inorganic and organic undoped double hole layer. Sol. Energy 2023, 262, 111796. [Google Scholar] [CrossRef]
- Atwater, H.A.; Polman, A. Erratum: Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 865. [Google Scholar] [CrossRef]
- Zhang, H.; Toudert, J. Optical management for efficiency enhancement in hybrid organic-inorganic lead halide perovskite solar cells. Sci. Technol. Adv. Mater. 2018, 19, 411–424. [Google Scholar] [CrossRef] [PubMed]
- Ai, B.; Fan, Z.; Wong, Z.J. Plasmonic–perovskite solar cells, light emitters, and sensors. Microsyst. Nanoeng. 2022, 8, 5. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Jiang, X.; Huang, S.; Liu, Y.; Fu, N. Plasmonic perovskite solar cells: An overview from metal particle structure to device design. Surf. Interfaces 2021, 25, 101287. [Google Scholar] [CrossRef]
- Yuan, Z.; Wu, Z.; Bai, S.; Xia, Z.; Xu, W.; Song, T.; Wu, H.; Xu, L.; Si, J.; Jin, Y.; et al. Hot-electron injection in a sandwiched tiox-au-tiox structure for high-performance planar perovskite solar cells. Adv. Energy Mater. 2015, 5, 1500038. [Google Scholar] [CrossRef]
- Luo, Q.; Zhang, C.; Deng, X.; Zhu, H.; Li, Z.; Wang, Z.; Chen, X.; Huang, S. Plasmonic effects of metallic nanoparticles on enhancing performance of perovskite solar cells. ACS Appl. Mater. Interfaces 2017, 9, 34821–34832. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Yu, M.; Zheng, L.; Li, M.; Dai, S.J.; Chen, D.; Lee, T.C.; Yun, D.Q. Enhanced efficiency and stability of planar perovskite solar cells using a dual electron transport layer of gold nanoparticles embedded in anatase tio2 films. ACS Appl. Energy Mater. 2020, 3, 9568–9575. [Google Scholar] [CrossRef]
- Zhang, W.; Saliba, M.; Stranks, S.D.; Sun, Y.; Shi, X.; Wiesner, U.; Snaith, H.J. Enhancement of perovskite-based solar cells employing core–shell metal nanoparticles. Nano Lett. 2013, 13, 4505–4510. [Google Scholar] [CrossRef]
- Kim, C.S.; Lee, S.S.; Gomez, E.D.; Kim, J.B.; Loo, Y.L. Transient photovoltaic behavior of air-stable, inverted organic solar cells with solution-processed electron transport layer. Appl. Phys. Lett. 2009, 94, 113302. [Google Scholar] [CrossRef]
- Cui, X.; Chen, Y.; Zhang, M.; Harn, Y.W.; Qi, J.; Gao, L.; Wang, Z.L.; Huang, J.; Yang, Y.; Lin, Z. Tailoring carrier dynamics in perovskite solar cells via precise di-mension and architecture control and interfacial positioning of plasmonic nanoparticles. Energy Environ. Sci. 2020, 13, 1743–1752. [Google Scholar] [CrossRef]
- Rubtsov, S.; Musin, A.; Zinigrad, M.; Kalashnikov, A.; Danchuk, V. New strategy for creating tio2 thin films with embedded au nanoparticles. Coatings 2021, 11, 1525. [Google Scholar] [CrossRef]
- Tomulescu, A.G.; Stancu, V.; Besleaga, C.; Enculescu Nemnes, G.A.; Florea, M.; Dumitru, V.; Pintilie, L.; Pintilie, I.; Leonat, L. Reticulated mesoporous TIO2 scaffold, fabricated by spraycoating, for large area perovskite solar cells. Energy Technol. 2019, 8, 1900922. [Google Scholar] [CrossRef]
- van de Hulst, H.C. Light Scattering by Small Particles; John Wiley: Hoboken, NJ, USA, 1957; The 1981 edition is available through Google Books. [Google Scholar]
- ANSYS, Inc. Commercial Computer Software, FDTD Solutions Reference Guide. 2022. Available online: https://www.ansys.com/ (accessed on 1 May 2022).
- Siefke, T.; Kroker, S.; Pfeiffer, K.; Puffky, O.; Dietrich, K.; Franta, D.; Ohlidal, I.; Szeghalmi, A.; Kley, E.B.; Tünnermann, A. Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range. Adv. Opt. Mater. 2016, 4, 1780–1786. [Google Scholar] [CrossRef]
- Johnson, P.B.; Christy, R.W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- D Travis, L. Absorption and scattering of light by small particles. Icarus 1984, 60, 721–722. [Google Scholar] [CrossRef]
- Sato, Y.; Naya, S.; Tada, H. A New bimetallic plasmonic photocatalyst consisting of gold(core)-copper(shell) nanoparticle and titanium(iv) oxide support. APL Mater. 2015, 3, 104502. [Google Scholar] [CrossRef]
- He, J.; Du, Y.; Bai, Y.; An, J.; Cai, X.; Chen, Y.; Wang, P.; Yang, X.; Feng, Q. Facile formation of anatase/rutile tio2 nanocomposites with enhanced photocatalytic activity. Molecules 2019, 24, 2996. [Google Scholar] [CrossRef]
- Mali, S.S.; Shim, C.S.; Kim, H.; Patil, P.S.; Hong, C.K. In situ processed gold nanoparticle-embedded tio2 nanofibers enabling plasmonic perovskite solar cells to exceed 14% conversion efficiency. Nanoscale 2016, 8, 2664–2677. [Google Scholar] [CrossRef]
- Ren, X.; Yang, Z.; Yang, D.; Zhang, X.; Cui, D.; Liu, Y.; Wei, Q.; Fan, H.; Liu, S.F. Modulating crystal grain size and optoelectronic properties of perovskite films for solar cells by reaction temperature. Nanoscale 2016, 8, 3816–3822. [Google Scholar] [CrossRef]
- Carretero-Palacios, S.; Jiménez-Solano, A.; Míguez, H. Plasmonic nanoparticles as light-harvesting enhancers in perovskite solar cells: A user’s guide. ACS Energy Lett. 2016, 1, 323–331. [Google Scholar] [CrossRef]
- Yao, G.Y.; Liu, Q.L.; Zhao, Z.Y. Studied localized surface plasmon resonance effects of au nanoparticles on tio2 by fdtd simulations. Catalysts 2018, 8, 236. [Google Scholar] [CrossRef]
- Zarick, H.F.; Hurd, O.; Webb, J.A.; Hungerford, C.; Erwin, W.R.; Bardhan, R. Enhanced efficiency in dye-sensitized solar cells with shape-controlled plasmonic nanostructures. ACS Photonics 2014, 1, 806–811. [Google Scholar] [CrossRef]
- Dang, X.; Qi, J.; Klug, M.T.; Chen, P.Y.; Yun, D.S.; Fang, N.X.; Hammond, P.T.; Belcher, A.M. Tunable localized surface plasmon-enabled broadband light-harvesting enhancement for high-efficiency panchromatic dye-sensitized solar cells. Nano Lett. 2013, 13, 637–642. [Google Scholar] [CrossRef]
- Fan, X.; Zheng, W.; Singh, D.J. Light scattering and surface plasmons on small spherical particles. Light Sci. Appl. 2014, 3, e179. [Google Scholar] [CrossRef]
- Erwin, W.R.; Zarick, H.F.; Talbert, E.M.; Bardhan, R. Light trapping in mesoporous solar cells with plasmonic nanostructures. Energy Environ. Sci. 2016, 9, 1577–1601. [Google Scholar] [CrossRef]
- Hergert, W.; Wriedt, T. (Eds.) The Mie Theory: Basics and Applications; Springer: New York, NY, USA, 2012. [Google Scholar]
- Doyle, W.T. Optical properties of a suspension of metal spheres. Phys. Rev. B 1989, 39, 9852–9858. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Sun, W. Mie theory for light scattering by a spherical particle in an absorbing medium. Appl. Opt. 2001, 40, 1354. [Google Scholar] [CrossRef] [PubMed]
- Jensen, T.R.; Duval, M.L.; Kelly, K.L.; Lazarides, A.A.; Schatz, G.C.; Van Duyne, R.P. Nanosphere lithography: Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles. J. Phys. Chem. B 1999, 103, 9846–9853. [Google Scholar] [CrossRef]
- Keller, K.; Khramenkova, E.V.; Slabov, V.; Musin, A.; Kalashnikov, A.; Vinogradov, A.V.; Pidko, E.A. Inkjet Printing of Sc-Doped TiO2 With Enhanced Photoactivity. Coatings 2019, 9, 78. [Google Scholar] [CrossRef]
- Danchuk, V.; Shatalov, N.; Pogreb, R.; Musin, A. Characterization of Sputtered ZnO Blocking Layers with Surface Plasmon Resonance Method. In Proceedings of the Seventeenth Russian-Israeli Bi-National Workshop, Ariel, Israel, 19–21 June 2019; pp. 186–193. [Google Scholar]
- Farbod, M.; Khademalrasool, M.; Talebzadeh, M.D. Plasmon-Enhanced Photocatalysis Based on Ag Plasmonic Nanospheres and ZnO Nanoparticles: Synthesis and Study Mechanisms Governing the Plasmonic Photocatalytic Performance. Plasmonics 2016, 12, 759–769. [Google Scholar] [CrossRef]
- Im, J.H.; Kim, H.S.; Park, N.G. Morphology-Photovoltaic Property Correlation in Perovskite Solar Cells: One-Step Versus Two-Step Deposition of CH3NH3PBI3. APL Mater. 2014, 2, 081510. [Google Scholar] [CrossRef]
- Saliba, M.; Matsui, T.; Seo, J.Y.; Domanski, K.; Correa-Baena, J.P.; Nazeeruddin, M.K.; Zakeeruddin, S.M.; Tress, W.; Abate, A.; Hagfeldt, A. and et al. Cesium-Containing Triple Cation Perovskite Solar Cells: Improved Stability, Reproducibility and High Efficiency. Energ. Environ. Sci. 2016, 9, 1989–1997. [Google Scholar] [CrossRef] [PubMed]
- Luther, J.M.; Jain, P.K.; Ewers, T.; Alivisatos, A.P. Localized Surface Plasmon Resonances Arising from Free Carriers in Doped Quantum Dots. Nat. Mater. 2011, 10, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Kheirandish, A.; Sepehri Javan, N.; Mohammadzadeh, H. Modified Drude Model for Small Gold Nanoparticles Surface Plasmon Resonance Based on the Role of Classical Confinement. Sci. Rep. 2020, 10, 6517. [Google Scholar] [CrossRef]
- Workman, J.; Mark, J.H. Using Reference Materials, Part II: Photometric Standards. Spectroscopy 2019, 34, 18–28. [Google Scholar]
- Macdonald, T.J.; Ambroz, F.; Batmunkh, M.; Li, Y.; Kim, D.; Contini, C.; Poduval, R.; Lui, H.; Shapter, J.G.; Papakonstaninou, I.; et al. TiO2 Nanofiber Photoelectrochemical Cells Loaded with SUB-12 NM AuNPs: Size Dependent Performance Evaluation. Mater. Today Energy 2018, 9, 254–263. [Google Scholar] [CrossRef]
- Simmons, E.L. Diffuse Reflectance Spectroscopy: A Comparison of the Theories. Appl. Optics 1975, 14, 1380. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Lee, C.R.; Im, J.H.; Lee, K.B.; Moehl, T.; Marchioro, A.; Moon, S.J.; Humphry-Baker, R.; Yum, J.H.; Moser, J.E.; et al. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep. 2012, 2, 591. [Google Scholar] [CrossRef] [PubMed]
Sample Code | JSC mA/cm2, ±0.1 | VOC V, ±0.01 | PCE %, ±0.3 | F.F. %, ±0.1 |
---|---|---|---|---|
1 Reference device | 19.8 | 0.98 | 8.6 | 44.4 |
2 with TiO2_MDA | 20.5 | 0.98 | 9.4 | 46.8 |
3 with TiO2-AuNP_MDA | 23.3 | 0.99 | 12.6 | 54.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubtsov, S.; Musin, A.; Danchuk, V.; Shatalov, M.; Prasad, N.; Zinigrad, M.; Yadgarov, L. Plasmon-Enhanced Perovskite Solar Cells Based on Inkjet-Printed Au Nanoparticles Embedded into TiO2 Microdot Arrays. Nanomaterials 2023, 13, 2675. https://doi.org/10.3390/nano13192675
Rubtsov S, Musin A, Danchuk V, Shatalov M, Prasad N, Zinigrad M, Yadgarov L. Plasmon-Enhanced Perovskite Solar Cells Based on Inkjet-Printed Au Nanoparticles Embedded into TiO2 Microdot Arrays. Nanomaterials. 2023; 13(19):2675. https://doi.org/10.3390/nano13192675
Chicago/Turabian StyleRubtsov, Sofia, Albina Musin, Viktor Danchuk, Mykola Shatalov, Neena Prasad, Michael Zinigrad, and Lena Yadgarov. 2023. "Plasmon-Enhanced Perovskite Solar Cells Based on Inkjet-Printed Au Nanoparticles Embedded into TiO2 Microdot Arrays" Nanomaterials 13, no. 19: 2675. https://doi.org/10.3390/nano13192675
APA StyleRubtsov, S., Musin, A., Danchuk, V., Shatalov, M., Prasad, N., Zinigrad, M., & Yadgarov, L. (2023). Plasmon-Enhanced Perovskite Solar Cells Based on Inkjet-Printed Au Nanoparticles Embedded into TiO2 Microdot Arrays. Nanomaterials, 13(19), 2675. https://doi.org/10.3390/nano13192675