Triple-Band Square Split-Ring Resonator Metamaterial Absorber Design with High Effective Medium Ratio for 5G Sub-6 GHz Applications
Abstract
:1. Introduction
2. Unit Cell Design and Analysis
3. MMA Design Analysis
4. Results Analysis
5. Measurement
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, L.; Yi, Y.; Tang, Y.; Li, Z.; Yi, Z.; Liu, L.; Chen, X.; Jian, R.; Wu, P.; Yan, P. A high quality factor ultra-narrow band perfect metamaterial absorber for monolayer molybdenum disulfide. Chin. Phys. B 2021, 31, 038101. [Google Scholar] [CrossRef]
- Fang, S.; Zhou, S.; Yurchenko, D.; Yang, T.; Liao, W.-H. Multistability phenomenon in signal processing, energy harvesting, composite structures, and metamaterials: A review. Mech. Syst. Signal Process. 2022, 166, 108419. [Google Scholar] [CrossRef]
- Hengbo, X. Design, simulation, and measurement of a multiband tunable metamaterial filter. Opt. Mater. 2022, 127, 112253. [Google Scholar] [CrossRef]
- Hakim, M.L.; Alam, T.; Islam, M.T.; Baharuddin, M.H.; Alzamil, A.; Islam, M.S. Quad-Band Polarization-Insensitive Square Split-Ring Resonator (SSRR) with an Inner Jerusalem Cross Metamaterial Absorber for Ku-and K-Band Sensing Applications. Sensors 2022, 22, 4489. [Google Scholar] [CrossRef]
- Sha, W.; Xiao, M.; Huang, M.; Gao, L. Topology-optimized freeform thermal metamaterials for omnidirectionally cloaking sensors. Mater. Today Phys. 2022, 28, 100880. [Google Scholar] [CrossRef]
- Silalahi, H.M.; Chen, Y.-P.; Shih, Y.-H.; Chen, Y.-S.; Lin, X.-Y.; Liu, J.-H.; Huang, C.-Y. Floating terahertz metamaterials with extremely large refractive index sensitivities. Photonics Res. 2021, 9, 1970–1978. [Google Scholar] [CrossRef]
- Wang, W.; Yan, F.; Tan, S.; Zhou, H.; Hou, Y. Ultrasensitive terahertz metamaterial sensor based on vertical split ring resonators. Photonics Res. 2017, 5, 571–577. [Google Scholar] [CrossRef]
- Miao, X.; Xiao, Z.; Cui, Z.; Zheng, T.; Wang, X. Ultra-wideband and Multifunctional Metamaterial Polarization Rotator in Terahertz Band. Plasmonics 2022, 17, 1379–1386. [Google Scholar] [CrossRef]
- Martinez, F.; Maldovan, M. Metamaterials: Optical, Acoustic, Elastic, Heat, Mass, Electric, Magnetic, and Hydrodynamic Cloaking. Mater. Today Phys. 2022, 27, 100819. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Ali, E.M.; Soruri, M.; Dalarsson, M.; Naser-Moghadasi, M.; Virdee, B.S.; Stefanovic, C.; Pietrenko-Dabrowska, A.; Koziel, S.; Szczepanski, S. A comprehensive survey on antennas on-chip based on metamaterial, metasurface, and substrate integrated waveguide principles for millimeter-waves and terahertz integrated circuits and systems. IEEE Access 2022, 10, 3668–3692. [Google Scholar] [CrossRef]
- Shahidul Islam, M.; Islam, M.T.; Almutairi, A.F.; Beng, G.K.; Misran, N.; Amin, N. Monitoring of the human body signal through the Internet of Things (IoT) based LoRa wireless network system. Appl. Sci. 2019, 9, 1884. [Google Scholar] [CrossRef] [Green Version]
- Rahman, A.; Islam, M.T.; Singh, M.J.; Kibria, S.; Akhtaruzzaman, M. Electromagnetic performances analysis of an ultra-wideband and flexible material antenna in microwave breast imaging: To implement a wearable medical bra. Sci. Rep. 2016, 6, 38906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordin, M.A.W.; Islam, M.T.; Misran, N. Design of a compact ultrawideband metamaterial antenna based on the modified split-ring resonator and capacitively loaded strips unit cell. Prog. Electromagn. Res. 2013, 136, 157–173. [Google Scholar] [CrossRef] [Green Version]
- Azim, R.; Islam, M.; Mandeep, J.; Mobashsher, A. A planar circular ring ultra-wideband antenna with dual band-notched characteristics. J. Electromagn. Waves Appl. 2012, 26, 2022–2032. [Google Scholar] [CrossRef]
- Azim, R.; Islam, M.T.; Misran, N. Dual polarized microstrip patch antenna for Ku-band application. Inf. MIDEM-J. Microelectron. Electron. Compon. Mater. 2011, 41, 114–117. [Google Scholar]
- Wang, M.; Yang, Z.; Wu, J.; Bao, J.; Liu, J.; Cai, L.; Dang, T.; Zheng, H.; Li, E. Investigation of SAR reduction using flexible antenna with metamaterial structure in wireless body area network. IEEE Trans. Antennas Propag. 2018, 66, 3076–3086. [Google Scholar] [CrossRef]
- Abdulkarim, Y.I.; Mohanty, A.; Acharya, O.P.; Appasani, B.; Khan, M.S.; Mohapatra, S.; Muhammadsharif, F.F.; Dong, J. A Review on Metamaterial Absorbers: Microwave to Optical. Front. Phys. 2022, 10, 359. [Google Scholar] [CrossRef]
- Pérez-Armenta, C.; Ortega-Moñux, A.; Luque-González, J.M.; Halir, R.; Reyes-Iglesias, P.J.; Schmid, J.; Cheben, P.; Molina-Fernández, Í.; Wangüemert-Pérez, J.G. Polarization-independent multimode interference coupler with anisotropy-engineered bricked metamaterial. Photonics Res. 2022, 10, A57–A65. [Google Scholar] [CrossRef]
- Islam, M.T.; Misran, N. Study of specific absorption rate (SAR) in the human head by metamaterial attachment. IEICE Electron. Express 2010, 7, 240–246. [Google Scholar] [CrossRef] [Green Version]
- Hoque, A.; Tariqul Islam, M.; Almutairi, A.F.; Alam, T.; Jit Singh, M.; Amin, N. A polarization independent quasi-TEM metamaterial absorber for X and Ku band sensing applications. Sensors 2018, 18, 4209. [Google Scholar] [CrossRef] [Green Version]
- Misran, N.; Yusop, S.H.; Islam, M.T.; Ismail, M.Y. Analysis of parameterization substrate thickness and permittivity for concentric split ring square reflectarray element. J. Kejuruter. 2012, 23, 11–16. [Google Scholar]
- Khan, J.; Sehrai, D.A.; Khan, M.A.; Khan, H.A.; Ahmad, S.; Ali, A.; Arif, A.; Memon, A.A.; Khan, S. Design and performance comparison of rotated Y-shaped antenna using different metamaterial surfaces for 5G mobile devices. Comput. Mater. Contin 2019, 2, 409–420. [Google Scholar] [CrossRef]
- Tikhomirov, A.; Omelyanchuk, E.; Semenova, A. Recommended 5G frequency bands evaluation. In Proceedings of the 2018 Systems of Signals Generating and Processing in the Field of on Board Communications, Moscow, Russia, 14–15 March 2018; pp. 1–5. [Google Scholar]
- Wu, Y.; Wang, J.; Lai, S.; Zhu, X.; Gu, W. Transparent and flexible broadband absorber for the sub-6G band of 5G mobile communication. Opt. Mater. Express 2018, 8, 3351–3358. [Google Scholar] [CrossRef]
- Huawei. 5G Spectrum. Available online: https://www.huawei.com/en/public-policy/5g-spectrum (accessed on 1 January 2022).
- Guan, C.; Feng, R.; Ratni, B.; Ding, X.; Yi, J.; Jin, M.; Wu, Q.; Burokur, S.N. Broadband tunable metasurface platform enabled by dynamic phase compensation. Opt. Lett. 2022, 47, 573–576. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, J.; Lai, S.; Zhu, X.; Gu, W. A transparent and flexible microwave absorber covering the whole WiFi waveband. AIP Adv. 2019, 9, 025309. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Luo, H.; Chen, F. Broadband metamaterial microwave absorber based on asymmetric sectional resonator structures. J. Appl. Phys. 2020, 127, 214902. [Google Scholar] [CrossRef]
- Wang, Q.; Cheng, Y. Compact and low-frequency broadband microwave metamaterial absorber based on meander wire structure loaded resistors. AEU-Int. J. Electron. Commun. 2020, 120, 153198. [Google Scholar] [CrossRef]
- Chen, X.; Li, W.; Wu, Z.; Zhang, Z.; Zou, Y. Origami-based microwave absorber with a reconfigurable bandwidth. Opt. Lett. 2021, 46, 1349–1352. [Google Scholar] [CrossRef]
- Jain, P.; Singh, A.K.; Pandey, J.K.; Bansal, S.; Sardana, N.; Kumar, S.; Gupta, N.; Singh, A.K. An Ultrathin Compact Polarization-Sensitive Triple-band Microwave Metamaterial Absorber. J. Electron. Mater. 2021, 50, 1506–1513. [Google Scholar] [CrossRef]
- Sood, D. Ultrathin Compact Triple-Band Polarization-Insensitive Metamaterial Microwave Absorber. In Mobile Radio Communications and 5G Networks; Springer: Berlin/Heidelberg, Germany, 2021; pp. 607–617. [Google Scholar]
- Kaur, K.P.; Upadhyaya, T.; Palandoken, M.; Gocen, C. Ultrathin dual-layer triple-band flexible microwave metamaterial absorber for energy harvesting applications. Int. J. RF Microw. Comput.-Aided Eng. 2019, 29, e21646. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.K.; Abegaonkar, M.P.; Koul, S.K. A triple band polarization insensitive ultrathin metamaterial absorber for S-C-and X-bands. Prog. Electromagn. Res. M 2019, 77, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.; Gao, M.; Zhang, L.; Wan, G.; Hu, B.J.M.; Letters, O.T. Design of a triple-band metamaterial absorber using equivalent circuit model and interference theory. Microw. Opt. Technol. Lett. 2018, 60, 1676–1681. [Google Scholar] [CrossRef]
- Alkurt, F.Ö.; Bağmancı, M.; Karaaslan, M.; Bakır, M.; Altıntaş, O.; Karadağ, F.; Akgöl, O.; Ünal, E. Design of a dual band metamaterial absorber for Wi-Fi bands. Proc. AIP Conf. Proc. 2018, 1935, 060001. [Google Scholar]
- Tofigh, F.; Amiri, M.; Shariati, N.; Lipman, J.; Abolhasan, M. Polarization-insensitive metamaterial absorber for crowd estimation based on electromagnetic energy measurements. IEEE Trans. Antennas Propag. 2019, 68, 1458–1467. [Google Scholar] [CrossRef]
- Zha, D.; Dong, J.; Cao, Z.; Zhang, Y.; He, F.; Li, R.; He, Y.; Miao, L.; Bie, S.; Jiang, J. A multimode, broadband and all-inkjet-printed absorber using characteristic mode analysis. Opt. Express 2020, 28, 8609–8618. [Google Scholar] [CrossRef] [PubMed]
- D. C. AG. CST Studio Suite. Available online: https://www.3ds.com/products-services/simulia/products/cst-studio-suite/ (accessed on 1 August 2022).
- Hakim, M.L.; Alam, T.; Almutairi, A.F.; Mansor, M.F.; Islam, M.T. Polarization insensitivity characterization of dual-band perfect metamaterial absorber for K band sensing applications. Sci. Rep. 2021, 11, 17829. [Google Scholar] [CrossRef]
- Cheng, Y.; Chen, F.; Luo, H. Plasmonic chiral metasurface absorber based on bilayer fourfold twisted semicircle nanostructure at optical frequency. Nanoscale Res. Lett. 2021, 16, 12. [Google Scholar] [CrossRef]
- Wu, T.; Li, W.; Chen, S.; Guan, J. Wideband frequency tunable metamaterial absorber by splicing multiple tuning ranges. Results Phys. 2021, 20, 103753. [Google Scholar] [CrossRef]
- Agarwal, M.; Meshram, M.K. An approach for circuit modeling of a multiband resonators based planar metamaterial absorber. Microw. Opt. Technol. Lett. 2021, 63, 181–187. [Google Scholar] [CrossRef]
- de Araújo, J.B.O.; Siqueira, G.L.; Kemptner, E.; Weber, M.; Junqueira, C.; Mosso, M.M. An ultrathin and ultrawideband metamaterial absorber and an equivalent-circuit parameter retrieval method. IEEE Trans. Antennas Propag. 2020, 68, 3739–3746. [Google Scholar] [CrossRef]
- PathWave Advance Design System (ADS). Available online: https://www.keysight.com/sg/en/lib/resources/sofware-releases/pathwave-ads-2019.html (accessed on 1 January 2022).
- Qiu, Y.; Zhang, P.; Li, Q.; Zhang, Y.; Li, W. A perfect selective metamaterial absorber for high-temperature solar energy harvesting. Sol. Energy 2021, 230, 1165–1174. [Google Scholar] [CrossRef]
- Hakim, M.L.; Alam, T.; Soliman, M.S.; Sahar, N.M.; Baharuddin, M.H.; Almalki, S.H.; Islam, M.T. Polarization insensitive symmetrical structured double negative (DNG) metamaterial absorber for Ku-band sensing applications. Sci. Rep. 2022, 12, 479. [Google Scholar] [CrossRef] [PubMed]
- Angiulli, G.; Versaci, M. Retrieving the Effective Parameters of an Electromagnetic Metamaterial Using the Nicolson-Ross-Weir Method: An Analytic Continuation Problem Along the Path Determined by Scattering Parameters. IEEE Access 2021, 9, 77511–77525. [Google Scholar] [CrossRef]
- Shukoor, M.A.; Dey, S. Novel dual-mode polarization insensitive wide angular stable circular ring based deca-band absorber for RCS and EMI shielding applications. IEEE Trans. Electromagn. Compat. 2022, 64, 1337–1345. [Google Scholar] [CrossRef]
- Hossain, A.; Islam, M.T.; Misran, N.; Islam, M.S.; Samsuzzaman, M. A mutual coupled spider net-shaped triple split ring resonator based epsilon-negative metamaterials with high effective medium ratio for quad-band microwave applications. Results Phys. 2021, 22, 103902. [Google Scholar] [CrossRef]
- Kalraiya, S.; Chaudhary, R.K.; Gangwar, R.K. Polarization independent triple band ultrathin conformal metamaterial absorber for C-and X-frequency bands. AEU-Int. J. Electron. Commun. 2021, 135, 153752. [Google Scholar] [CrossRef]
- Wartak, M.S.; Tsakmakidis, K.L.; Hess, O. Introduction to metamaterials. Phys. Can. 2011, 67, 30–34. [Google Scholar]
- Hakim, M.L.; Alam, T.; Islam, M.S.; Salaheldeen M., M.; Almalki, S.H.A.; Baharuddin, M.H.; Alsaif, H.; Islam, M.T. Wide-Oblique-Incident-Angle Stable Polarization-Insensitive Ultra-Wideband Metamaterial Perfect Absorber for Visible Optical Wavelength Applications. Materials 2022, 15, 2201. [Google Scholar] [CrossRef]
- Chen, Q.; Bie, S.; Yuan, W.; Xu, Y.; Xu, H.; Jiang, J. Low frequency absorption properties of a thin metamaterial absorber with cross-array on the surface of a magnetic substrate. J. Phys. D Appl. Phys. 2016, 49, 425102. [Google Scholar] [CrossRef]
- Garg, P.; Jain, P. Isolation improvement of MIMO antenna using a novel flower shaped metamaterial absorber at 5.5 GHz WiMAX band. IEEE Trans. Circuits Syst. II Express Briefs 2019, 67, 675–679. [Google Scholar] [CrossRef]
- Zhang, Q.-L.; Jin, Y.-T.; Feng, J.-Q.; Lv, X.; Si, L.-M. Mutual coupling reduction of microstrip antenna array using metamaterial absorber. In Proceedings of the 2015 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Suzhou, China, 1–3 July 2015; pp. 1–3. [Google Scholar]
- Merzaki, F.; Besnier, P.; Himdi, M.; Castel, X.; Sergolle, M.; Levavasseur, T.; Caldamone, P. A Compact Double-Sided FSS Absorbing Wall for Decoupling 5G Antenna Arrays. IEEE Trans. Electromagn. Compat. 2021, 64, 303–314. [Google Scholar] [CrossRef]
- Chen, H.; Guo, L.; Li, M.; Destruel, A.; Liu, C.; Weber, E.; Liu, F.; Crozier, S. Metamaterial-inspired radiofrequency (RF) shield with reduced specific absorption rate (SAR) and improved transmit efficiency for UHF MRI. IEEE Trans. Biomed. Eng. 2020, 68, 1178–1189. [Google Scholar] [CrossRef] [PubMed]
- Hannan, S.; Islam, M.T.; Soliman, M.S.; Faruque, M.R.I.; Misran, N.; Islam, M. A co-polarization-insensitive metamaterial absorber for 5G n78 mobile devices at 3.5 GHz to reduce the specific absorption rate. Sci. Rep. 2022, 12, 11193. [Google Scholar] [CrossRef] [PubMed]
- Amiri, M.; Tofigh, F.; Shariati, N.; Lipman, J.; Abolhasan, M. Review on metamaterial perfect absorbers and their applications to IoT. IEEE Internet Things J. 2020, 8, 4105–4131. [Google Scholar] [CrossRef]
- Bakır, M.; Karaaslan, M.; Unal, E.; Akgol, O.; Sabah, C. Microwave metamaterial absorber for sensing applications. Opto-Electron. Rev. 2017, 25, 318–325. [Google Scholar] [CrossRef]
Parameters | Value (mm) |
---|---|
R1 | 8.90 |
R2 | 5.00 |
G1 | 1.40 |
G2 | 0.53 |
L1 | 0.60 |
L2 | 2.80 |
L3 | 0.60 |
L4 | 0.40 |
W1 | 0.40 |
W2 | 0.50 |
h | 1.60 |
Design | Resonance Frequency (GHz) | Maximum Absorption Frequency (GHz) | Pack Absorption |
---|---|---|---|
Design 1 | 2.72–2.79 | 2.76 | 97% |
Design 2 | 2.50–2.54 | 2.52 | 92% |
5.94–6.14 | 6.04 | 84% | |
Design 3 | 4.92–5.04 | 4.98 | 93% |
Final Design | 2.47–2.52 | 2.5 | 90% |
4.82–4.97 | 4.9 | 99% | |
5.9–6.11 | 6 | 97% |
Mode | Permeability (Less than Zero) | Permittivity (Less than Zero) |
---|---|---|
TE | 4.035–4.95, 4.98–5.96, 6.115–7 | 2–4.03, 4.925–4.99, 5.955–6.13 |
EM Mode | Frequency GHz | Permeability | Permittivity | Refractive Index | |||
---|---|---|---|---|---|---|---|
Real | Imaginary | Real | Imaginary | Real | Imaginary | ||
TE | 2.5 | 185.14 | −196.032 | −83.43 | −148.299 | 26.10 | −212.603 |
4.9 | −58.04 | −82.8933 | 21.67 | −89.6942 | −17.95 | −94.9491 | |
6 | 16.27 | −49.2774 | −52.29 | −98.8149 | −6.38 | −75.90 |
Ref. | MMA | Size Length × Width × Thickness mm3 | Substrate | Operating Frequency (GHz) | Absorption % | Metamaterial Property | EMR |
---|---|---|---|---|---|---|---|
[24] | Four C shape ring | 40 × 20 × 6.25 | PET-PDMS-PET | 3.2–11 | 80% | N/A | 2.34 |
[27] | Split square ring | 40 × 40 × 11 | PET-PDMS-PET | 2.2–5.83 | 80% | N/A | 3.40 |
[38] | Three square rings | 32.4 × 34 × 0.1 | PET | 1–4.5 | 90% | - | 8.82 |
[31] | Two modified rings | 10 × 10 × 1.6 | FR-4 | 3.36, 3.95, 10.48 | 92.9%, 96.8%, 99.9% | SNG | 8.92 |
[32] | Three Concentric metallic resonators | 10 × 10 × 0.8 | FR-4 | 3.95, 5.92, 9.21 | 92.2%, 94.5%, 98.7% | N/A | 7.59 |
[33] | Six distinct concentric rings | 33.5 × 33.5 × 6 | Neoprene rubber | 1.75, 2.17, 2.6 | 96.91%, 96.41%, 90.12% | N/A | 5.11 |
[34] | Triple circular slot ring | 14 × 14 × 1 | FR-4 | 2.9, 4.18, 9.25 | 97%, 96.45%, 98.20% | N/A | 7.38 |
[35] | Circular ring and inner Jerusalem cross | 13.8 × 13.8 × 1 | FR-4 | 4.4, 6.05, 13.9 | 97% | N/A | 4.94 |
[36] | Two C shape square ring | 34 × 34 × 3.2 | FR-4 | 2.45 and 5 | 90%, 99% | N/A | 3.60 |
[37] | Split circular rings | 18 × 18 × 1.75 | Rogers RO 3003 | 2.4, 5.1 | 99% | N/A | 6.94 |
proposed | Square splits ring resonator | 9.5 × 9.5 × 1.6 | FR-4 | 2.5, 4.9, 6 | 90%, 99%, 97% | SNG | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hakim, M.L.; Islam, M.T.; Alam, T.; Abdul Rahim, S.K.; Bais, B.; Islam, M.S.; Soliman, M.S. Triple-Band Square Split-Ring Resonator Metamaterial Absorber Design with High Effective Medium Ratio for 5G Sub-6 GHz Applications. Nanomaterials 2023, 13, 222. https://doi.org/10.3390/nano13020222
Hakim ML, Islam MT, Alam T, Abdul Rahim SK, Bais B, Islam MS, Soliman MS. Triple-Band Square Split-Ring Resonator Metamaterial Absorber Design with High Effective Medium Ratio for 5G Sub-6 GHz Applications. Nanomaterials. 2023; 13(2):222. https://doi.org/10.3390/nano13020222
Chicago/Turabian StyleHakim, Mohammad Lutful, Mohammad Tariqul Islam, Touhidul Alam, Sharul Kamal Abdul Rahim, Badariah Bais, Md. Shabiul Islam, and Mohamed S. Soliman. 2023. "Triple-Band Square Split-Ring Resonator Metamaterial Absorber Design with High Effective Medium Ratio for 5G Sub-6 GHz Applications" Nanomaterials 13, no. 2: 222. https://doi.org/10.3390/nano13020222
APA StyleHakim, M. L., Islam, M. T., Alam, T., Abdul Rahim, S. K., Bais, B., Islam, M. S., & Soliman, M. S. (2023). Triple-Band Square Split-Ring Resonator Metamaterial Absorber Design with High Effective Medium Ratio for 5G Sub-6 GHz Applications. Nanomaterials, 13(2), 222. https://doi.org/10.3390/nano13020222