Broadband Achromatic Metalens for Tunable Focused Vortex Beam Generation in the Near-Infrared Range
Abstract
:1. Introduction
2. Design Principles for BAMTF
2.1. Dielectric Constant of GST
2.2. Broadband Design Principles
2.3. The Design of the Metalens
3. The Performances of BAMTF-1
3.1. The Achromatic Performances of BAMTF-1
3.2. The Tunable Performances of BAMTF-1
4. The Performances of BAMTF-2
4.1. The Achromatic Performances of BAMTF-2
4.2. The Tunable Performances of BAMTF-2
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shen, Y.J.; Wang, X.J.; Xie, Z.W.; Min, C.J.; Fu, X.; Liu, Q.; Gong, M.L.; Yuan, X.C. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light-Sci. Appl. 2019, 8, 90. [Google Scholar] [CrossRef]
- Li, J.; Zheng, C.L.; Li, J.T.; Wang, G.C.; Liu, J.Y.; Yue, Z.; Hao, X.R.; Yang, Y.; Li, F.Y.; Tang, T.T.; et al. Terahertz wavefront shaping with multi-channel polarization conversion based on all-dielectric metasurface. Photonics Res. 2021, 9, 1937–1947. [Google Scholar] [CrossRef]
- Hu, Y.F.; Liu, X.; Jin, M.K.; Tang, Y.T.; Zhang, X.C.; Li, K.F.; Zhao, Y.; Li, G.X.; Zhou, J. Dielectric metasurface zone plate for the generation of focusing vortex beams. PhotoniX 2021, 2, 10. [Google Scholar] [CrossRef]
- Vallone, G.; D’Ambrosio, V.; Sponselli, A.; Slussarenko, S.; Marrucci, L.; Sciarrino, F.; Villoresi, P. Free-space quantum key distribution by rotation-invariant twisted photons. Phys. Rev. Lett. 2014, 113, 060513. [Google Scholar] [CrossRef]
- Feng, X.; Chen, X.Y.; Lu, Y.C.; Wang, Q.W.; Niu, L.; Xu, Q.; Zhang, X.Q.; Han, J.G.; Zhang, W.L. Direct Emission of Focused Terahertz Vortex Beams Using Indium-Tin-Oxide-Based Fresnel Zone Plates. Adv. Opt. Mater. 2023, 11, 2201628. [Google Scholar] [CrossRef]
- Miyamoto, K.; Kang, B.J.; Kim, W.T.; Sasaki, Y.; Niinomi, H.; Suizu, K.; Rotermund, F.; Omatsu, T. Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate. Sci. Rep. 2016, 6, 38880. [Google Scholar] [CrossRef]
- Pang, F.F.; Xiang, L.N.; Liu, H.H.; Zhang, L.; Wen, J.X.; Zeng, X.L.; Wang, T.Y. Review on fiber-optic vortices and their sensing applications. J. Light. Technol. 2021, 39, 3740–3750. [Google Scholar] [CrossRef]
- Prinz, E.; Hartelt, M.; Spektor, G.; Orenstein, M.; Aeschlimann, M. Orbital angular momentum in nanoplasmonic vortices. ACS Photonics 2023, 10, 340–367. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Xu, Y.; Hong, B.; Zhang, F.; Wang, A.T.; Zhao, W.S. Generation of a focused thz vortex beam from a spintronic THz emitter with a helical fresnel zone plate. Nanomaterials 2023, 13, 2037. [Google Scholar] [CrossRef]
- Piccardo, M.; de Oliveira, M.; Toma, A.; Aglieri, V.; Forbes, A.; Ambrosio, A. Vortex laser arrays with topological charge control and self-healing of defects. Nat. Photonics 2022, 16, 359–365. [Google Scholar] [CrossRef]
- Mazanov, M.; Yermakov, O. Vortex Dynamics and Structured Darkness of Laguerre-Gaussian Beams Transmitted Through Q-Plates Under Weak Axial-Asymmetric Incidence. J. Light. Technol. 2023, 41, 2232–2239. [Google Scholar] [CrossRef]
- Yang, Y.H.; Seong, J.; Choi, M.; Park, J.; Kim, G.; Kim, H.; Jeong, J.; Jung, C.H.; Kim, J.; Jeon, G.; et al. Integrated metasurfaces for re-envisioning a near-future disruptive optical platform. Light-Sci. Appl. 2023, 12, 152. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.Q.; Fan, W.H.; Qin, C.; Chen, X. Ultra-Broadband polarization conversion metasurface with high transmission for efficient multi-functional wavefront manipulation in the terahertz range. Nanomaterials 2021, 11, 2895. [Google Scholar] [CrossRef]
- Yao, J.; Lin, R.; Chen, M.K.; Tsai, D.P. Integrated-resonant metadevices: A review. Adv. Photonics 2023, 5, 024001. [Google Scholar] [CrossRef]
- Pan, M.Y.; Fu, Y.F.; Zheng, M.J.; Chen, H.; Zang, Y.J.; Duan, H.G.; Li, Q.; Qiu, M.; Hu, Y.Q. Dielectric metalens for miniaturized imaging systems: Progress and challenges. Light-Sci. Appl. 2022, 11, 195. [Google Scholar] [CrossRef]
- Arbabi, A.; Faraon, A. Advances in optical metalenses. Nat. Photonics 2023, 17, 16–25. [Google Scholar] [CrossRef]
- Hsu, W.L.; Chen, Y.C.; Yeh, S.P.; Zeng, Q.C.; Huang, Y.W.; Wang, C.M. Review of Metasurfaces and Metadevices: Advantages of Different Materials and Fabrications. Nanomaterials 2022, 12, 1973. [Google Scholar] [CrossRef]
- Tang, S.W.; Ding, F. High-efficiency Focused Optical Vortex Generation with Geometric gap-surface Plasmon Metalenses. Appl. Phys. Lett. 2020, 117, 011103. [Google Scholar] [CrossRef]
- Ou, K.; Yu, F.L.; Li, G.H.; Wang, W.J.; Miroshnichenko, A.E.; Huang, L.J.; Wang, P.; Li, T.X.; Li, Z.F.; Chen, X.S.; et al. Mid-infrared Polarization-Controlled Broadband Achromatic Metadevice. Sci. Adv. 2020, 6, eabc0711. [Google Scholar] [CrossRef]
- Song, N.T.; Xu, N.X.; Gao, J.S.; Jiang, X.A.; Shan, D.Z.; Tang, Y.; Sun, Q.; Liu, H.; Chen, X. Broadband achromatic and polarization insensitive focused optical vortex generator based on metasurface consisting of anisotropic nanostructures. Front. Phys. 2022, 10, 846718. [Google Scholar] [CrossRef]
- Abdollahramezani, S.; Hemmatyar, O.; Taghinejad, M.; Taghinejad, H.; Krasnok, A.; Eftekhar, A.A.; Teichrib, C.; Deshmukh, S.; El-Sayed, M.A.; Pop, E.; et al. Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency. Nat. Commun. 2022, 13, 1696. [Google Scholar] [CrossRef]
- Kim, J.; Seong, J.; Yang, Y.; Moon, S.W.; Badloe, T.; Rho, J. Tunable metasurfaces towards versatile metalenses and metaholograms: A review. Adv. Photonics 2022, 4, 024001. [Google Scholar] [CrossRef]
- Jiang, X.Q.; Fan, W.H.; Zhao, L.R.; Chen, X.; Qin, C.; Yan, H.; Wu, Q.; Ju, P. Continuously varifocal metalens for broadband achromatic focusing of terahertz waves. J. Sci.-Adv. Mater. Devices 2023, 8, 100560. [Google Scholar] [CrossRef]
- Li, S.Y.; Zhou, C.B.; Ban, G.X.; Wang, H.; Lu, H.; Wang, Y. Active all-dielectric bifocal metalens assisted by germanium antimony telluride. J. Phys. D-Appl. Phys. 2019, 52, 095106. [Google Scholar] [CrossRef]
- Kang, Q.L.; Li, D.K.; Guo, K.; Gao, J.; Guo, Z.Y. Tunable thermal camouflage based on GST plasmonic metamaterial. Nanomaterials 2021, 11, 260. [Google Scholar] [CrossRef]
- Karvounis, A.; Gholipour, B.; MacDonald, K.F.; Zheludev, N.I. All-dielectric phase-change reconfigurable metasurface. Appl. Phys. Lett. 2016, 109, 051103. [Google Scholar] [CrossRef]
- Zheng, C.L.; Wang, G.C.; Li, J.; Li, J.T.; Wang, S.L.; Zhao, H.L.; Li, M.Y.; Yue, Z.; Zhang, Y.T.; Zhang, Y.; et al. All-Dielectric Metasurface for Manipulating the Superpositions of Orbital Angular Momentum via Spin-Decoupling. Adv. Opt. Mater. 2021, 9, 2002007. [Google Scholar] [CrossRef]
- Li, J.; Wang, G.C.; Zheng, C.L.; Li, J.T.; Yang, Y.; Zhang, Z.; Yang, M.S.; Zhao, H.L.; Li, F.Y.; Tang, T.T.; et al. All-silicon metasurfaces for polarization multiplexed generation of terahertz photonic orbital angular momentum superposition states. J. Mater. Chem. C 2021, 9, 5478–5485. [Google Scholar] [CrossRef]
- Aieta, F.; Kats, M.A.; Genevet, P.; Capasso, F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 2015, 347, 1342–1345. [Google Scholar] [CrossRef]
- Wang, S.M.; Wu, P.C.; Su, V.C.; Lai, Y.C.; Chu, C.H.; Chen, J.W.; Lu, S.H.; Chen, J.; Xu, B.B.; Kuan, C.H.; et al. Broadband achromatic optical metasurface devices. Nat. Commun. 2017, 8, 187. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.R.; Jiang, X.Q.; Li, C.X.; Gong, S.X.; Yu, W.X. High-NA and broadband achromatic metalens for sub-diffraction focusing of long-wavelength infrared waves. Results Phys. 2023, 46, 106308. [Google Scholar] [CrossRef]
- Zou, X.J.; Lin, R.Y.; Fu, Y.L.; Gong, G.X.; Zhou, X.X.; Wang, S.M.; Zhu, S.N.; Wang, Z.L. Advanced optical imaging based on metasurafces. Adv. Opt. Mater. 2023, 10, 2203149. [Google Scholar] [CrossRef]
- Arosa, Y.; Fuente, R. Refractive index spectroscopy and material dispersion in fused silica glass. Opt. Lett. 2020, 45, 4268–4271. [Google Scholar] [CrossRef]
- Wang, Y.J.; Chen, Q.M.; Yang, W.H.; Ji, Z.H.; Jin, L.M.; Ma, X.; Song, Q.H.; Boltasseva, A.; Han, J.C.; Shalaev, V.M.; et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nat. Commun. 2021, 12, 5560. [Google Scholar] [CrossRef]
- Wang, Y.L.; Fan, Q.B.; Xu, T. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture. Opto-Electron Adv. 2021, 4, 200008. [Google Scholar] [CrossRef]
- Meem, M.; Banerji, S.; Pies, C.; Oberbiermann, T.; Majumder, A.; Sensale-Rodriguez, B.; Menon, R. Large-area, high-numerical-aperture multi-level diffractive lens via inverse design. Optica 2020, 7, 252–253. [Google Scholar] [CrossRef]
- Aiello, M.D.; Backer, A.S.; Sapon, A.J.; Smits, J.; Perreault, J.D.; Llull, P.; Acosta, V.M. Achromatic varifocal metalens for the visible spectrum. ACS Photonics 2019, 6, 2432–2440. [Google Scholar] [CrossRef]
- Shen, Z.X.; Zhou, S.H.; Li, X.A.; Ge, S.J.; Chen, P.; Hu, W.; Lu, Y.Q. Liquid crystal integrated metalens with tunable chromatic aberration. Adv. Photonics 2020, 2, 036002. [Google Scholar] [CrossRef]
- Hu, T.; Feng, X.; Wei, Y.X.; Wang, S.Q.; Wei, Y.H.; Yang, Z.Y.; Zhao, M. Design of an achromatic zoom metalens doublet in the visible. Opt. Lett. 2022, 47, 6460–6463. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.H.; Li, Z.Y.; Qin, S.; Huang, H.; Jie, K.Q.; Guo, J.P.; Liu, H.Z.; Meng, H.Y.; Wang, F.Q.; Yang, X.B.; et al. Band-tunable achromatic metalens based on phase change material. Opt. Express 2022, 30, 17541–17553. [Google Scholar] [CrossRef]
- Zhou, H.W.; Cao, Z.Y.; Wang, Z.X.; Yang, Z.Y. Design of an achromatic optical polarization-insensitive zoom metalens. Opt. Lett. 2022, 47, 1263–1266. [Google Scholar] [CrossRef] [PubMed]
- Cao, T.; Liu, K.; Tang, Y.; Deng, J.; Li, K.; Li, G. A high-index Ge2Sb2Te5-based fabry–perot cavity and its application for third-harmonic generation. Laser Photon Rev. 2019, 13, 1900063. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Chou, J.B.; Li, J.Y.; Li, H.S.; Du, Q.Y.; Yadav, A.; Zhou, S.; Shalaginov, M.Y.; Fang, Z.R.; Zhong, H.K.; et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nat. Commun. 2019, 10, 4279. [Google Scholar] [CrossRef]
- Shportko, K.; Kremers, S.; Woda, M.; Lencer, D.; Robertson, J.; Wuttig, M. Resonant bonding in crystalline phase-change materials. Nat. Mater. 2008, 7, 653–658. [Google Scholar] [CrossRef]
- Park, J.W.; Eom, S.H.; Lee, H.; Da Silva, J.L.F.; Kang, Y.S.; Lee, T.Y.; Khang, Y.H. Optical properties of pseudobinary GeTe, Ge2Sb2Te5, GeSb2Te4, GeSb4Te7, and Sb2Te3 from ellipsometry and density functional theory. Phys. Rev. B 2009, 80, 115209. [Google Scholar] [CrossRef]
- Gerislioglu, B.; Bakan, G.; Ahuja, R.; Adam, J.; Mishra, Y.K.; Ahmadivand, A. The role of Ge2Sb2Te5 in enhancing the performance of functional plasmonic devices. Mater. Today Phys. 2020, 12, 100178. [Google Scholar] [CrossRef]
Ref. | Bandwidth | Method | Functionality | Focusing Efficiency |
---|---|---|---|---|
[19] | 3.50–4.75 μm | Polarization multiplexing | Switchable topological charge of vortex beam | N/A |
[23] | 1.8–2.2 THz | Indium antimonide | Tunable focal length from 736.25 to 861.02 μm | 13.2–73.3% |
[37] | 483–620 nm | Polarization switchable | Tunable focal length from 220 to 550 μm | 5–50% |
[38] | 0.9–1.4 THz | Liquid crystal | Achromatic to large dispersion | 26.1–33.9% |
[39] | 440–640 nm | Moiré principle | Continuous zoom range of 1× to 10× | 6.06–86.20% |
[40] | 830–1100 nm | Phase change Material (Sb2S3) | Switchable operating achromatic band | 35–55% |
[41] | 1310–1550 nm | Alvarez principle | Tunable focal length from 19.8 to 31.2 μm | 10–28% |
This work | 1.33–1.60 μm | Phase change Material (GST) | Tunable focal length from 23.80 to 38.90 μm (BAMTF-1)Tunable focal length from 18.58 to 27.80 μm (BAMTF-2) | 26.2–51.4% (BAMTF-1) 11.2–39.9% (BAMTF-2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Jiang, X.; Wang, Z.; Chen, Y.; Chen, L.; Gao, B.; Yu, W. Broadband Achromatic Metalens for Tunable Focused Vortex Beam Generation in the Near-Infrared Range. Nanomaterials 2023, 13, 2765. https://doi.org/10.3390/nano13202765
Zhao L, Jiang X, Wang Z, Chen Y, Chen L, Gao B, Yu W. Broadband Achromatic Metalens for Tunable Focused Vortex Beam Generation in the Near-Infrared Range. Nanomaterials. 2023; 13(20):2765. https://doi.org/10.3390/nano13202765
Chicago/Turabian StyleZhao, Lvrong, Xiaoqiang Jiang, Zhihai Wang, Yuwei Chen, Lu Chen, Bo Gao, and Weixing Yu. 2023. "Broadband Achromatic Metalens for Tunable Focused Vortex Beam Generation in the Near-Infrared Range" Nanomaterials 13, no. 20: 2765. https://doi.org/10.3390/nano13202765
APA StyleZhao, L., Jiang, X., Wang, Z., Chen, Y., Chen, L., Gao, B., & Yu, W. (2023). Broadband Achromatic Metalens for Tunable Focused Vortex Beam Generation in the Near-Infrared Range. Nanomaterials, 13(20), 2765. https://doi.org/10.3390/nano13202765