Wettability of Sn-3.0Ag-0.5Cu Solder Reinforced with TiO2 and Al2O3 Nanoparticles at Different Reflow Times
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ghosh, S.K.; Haseeb, A.S.M.A.; Amalina, A. Effects of metallic nanoparticle doped flux on interfacial intermetallic compounds between Sn3.0Ag-0.5Cu and copper substrate. In Proceedings of the IEEE 15th Electronics Packaging Technology Conference (EPTC 2013), Singapore, 11–13 December 2013; pp. 21–26. [Google Scholar]
- Lei, S.; Liang, Z. Properties and Microstructures of Sn-Ag-Cu-X Lead-Free Solder Joints in Electronic Packaging. Adv. Mater. Sci. Eng. 2015, 2015, 639028. [Google Scholar] [CrossRef]
- Laurila, T.; Mattila, T.; Vuorinen, V.; Karppinen, J.; Li, J.; Sippola, M.; Kivilahti, J.K. Evolution of microstructure and failure mechanism of lead-free solder interconnections in power cycling and thermal shock tests. Microelectron. Reliab. 2007, 47, 1135. [Google Scholar] [CrossRef]
- Gao, Y.; Zou, C.; Yang, B.; Zhai, Q.; Liu, J.; Zhuravlev, E.; Schick, C. Nanoparticles of SnAgCu lead-free solder alloy with an equivalent melting temperature of SnPb solder alloy. J. Alloys Compd. 2009, 484, 777–781. [Google Scholar] [CrossRef]
- Almeida, C.M.V.B.; Madureira, M.A.; Bonilla, S.H.; Giannetti, B.F. Assessing the replacement of lead in solders: Effects on resource use and human health. J. Clean. Prod. 2013, 47, 457–464. [Google Scholar] [CrossRef]
- Fazal, M.A.; Liyana, N.K.; Rubaiee, S.; Anas, A. A critical review on performance, microstructure and corrosion resistance of Pb-free solders. Measurement 2019, 134, 897–907. [Google Scholar] [CrossRef]
- Jiang, N.; Zhang, L.; Liu, Z.Q.; Sun, L.; Long, W.M.; He, P.; Xiong, M.Y.; Zhao, M. Reliability issues of lead-free solder joints in electronic devices. Sci. Technol. Adv. Mater. 2019, 20, 876–901. [Google Scholar] [CrossRef] [PubMed]
- Pal, M.K.; Gergely, G.; Koncz-Horváth, D.; Gácsi, Z. Investigation of microstructure and wetting behavior of Sn–3.0Ag–0.5Cu (SAC305) lead-free solder with additions of 1.0 wt % SiC on copper substrate. Intermetallics 2021, 128, 106991. [Google Scholar] [CrossRef]
- Nur Haslinda, M.M.; Ervina Efzan, M.N.; Mohd Mustafa, A.A.; Canan, A. Effects of TiO2 and Al2O3 nanoparticles addition on the thermal properties and wettability of Sn-3.0Ag-0.5Cu-xTiO2-xAl2O3. J. Phys. Conf. Ser. 2022, 2169, 012003. [Google Scholar] [CrossRef]
- Gain, A.K.; Chan, Y.C. The influence of a small amount of Al and Ni nano-particles on the microstructure, kinetics and hardness of Sn-Ag-Cu solder on OSP-Cu pads. Intermetallics 2012, 29, 48–55. [Google Scholar] [CrossRef]
- Liu, X.D.; Han, Y.D.; Jing, H.Y.; Wei, J.; Xu, L.Y. Effect of graphene nanosheets reinforcement on the performance of Sn–Ag–Cu lead-free solder. Mater. Sci. Eng. A 2013, 562, 25–32. [Google Scholar] [CrossRef]
- Ervina, E.M.N.; Amares, S. Review on the effect of alloying element and nanoparticle additions on the properties of Sn-Ag-Cu solder alloys. Solder. Surf. Mt. Technol. 2014, 26, 147–161. [Google Scholar] [CrossRef]
- Soares, D.; Sarmento, M.; Barros, D.; Peixoto, H.; Cerqueira, F. The effect of Bi addition on the electrical and microstructural properties of SAC405 soldered structure. Solder. Surf. Mt. Technol. 2021, 33, 18–36. [Google Scholar] [CrossRef]
- Zhao, X.; Wen, Y.; Li, Y.; Liu, Y.; Wang, Y. Effect of γ-Fe2O3 nanoparticles size on the properties of Sn-1.0Ag-0.5Cu nano-composite solders and joints. J. Alloys Compd. 2016, 662, 272–282. [Google Scholar] [CrossRef]
- Tikale, S.; Prabhu, K.N. Effect of multiple reflow cycles and Al2O3 nanoparticles reinforcement on performance of SAC305 lead-free solder alloy. J. Mater. Eng. Perform. 2018, 27, 3102–3111. [Google Scholar] [CrossRef]
- Qu, M.; Cao, T.; Cui, Y.; Liu, F.; Jiao, Z. Effect of nano-ZnO particles on wettability, interfacial morphology and growth kinetics of Sn-3.0Ag-0.5Cu-xAnO composite solder. J. Mater. Sci. Mater. Electron. 2019, 30, 19214–19226. Available online: https://link.springer.com/article/10.1007/s10854-019-02279-9 (accessed on 12 June 2023). [CrossRef]
- Li, Y.; Zhao, C.X.; Liu, Y.; Wang, L.; Wang, L. Effect of TiO2 addition concentration on the wettability and intermetallic compounds growth of Sn3.0Ag0.5Cu–xTiO2 nano-composite solders. J. Mater. Sci. Mater. Electron. 2014, 25, 3816–3827. [Google Scholar] [CrossRef]
- Wu, J.; Xue, S.; Wang, J.; Wu, M.; Wang, J. Effects of α-Al2O3 nanoparticles-doped on microstructure and properties of Sn–0.3Ag–0.7Cu low-Ag solder. J. Mater. Sci. Mater. Electron. 2018, 29, 7372–7387. [Google Scholar] [CrossRef]
- Amares, S.; Rajkumar, D.; Ervina, E.M.N.; Sia, Y.Y. Reliability Study of Lead Free Sn-3.8Ag-0.7Cu and Copper (Cu) Substrate based on the Microstructure, Physical and Mechanical Properties. J. Mech. Eng. 2018, 5, 169–180. [Google Scholar]
- Tsao, L.C.; Chang, S.Y.; Lee, C.I.; Sun, W.H.; Huang, C.H. Effects of nano-Al2O3 additions on microstructure development and hardness of Sn3.5Ag0.5Cu solder. Mater. Des. 2010, 31, 4831–4835. [Google Scholar] [CrossRef]
- Gain, A.K.; Fouzder, T.; Chan, Y.C.; Yung, W.K.C. Microstructure, kinetic analysis and hardness of Sn–Ag–Cu–1wt% nano-ZrO2 composite solder on OSP-Cu pads. J. Alloys Compd. 2011, 509, 3319–3325. [Google Scholar] [CrossRef]
- Sharma, A.; Sohn, H.R.; Jung, J.P. Effect of Graphene Nanoplatelets on Wetting, Microstructure, and Tensile Characteristics of Sn-3.0Ag-0.5Cu (SAC) Alloy. Metall. Mater. Trans. A 2016, 47, 494–503. [Google Scholar] [CrossRef]
- Jung, D.H.; Sharma, A.; Lim, D.U.; Yun, J.H.; Jung, J.P. Effects of AlN Nanoparticles on the Microstructure, Solderability, and Mechanical Properties of Sn-Ag-Cu Solder. Metall. Mater. Trans. A 2017, 48, 4372–4384. [Google Scholar] [CrossRef]
- Sukpimai, K.; Suwannakrue, W.; Kanlayasiri, K. Wettability and printability of SAC305-xTiO2 Pb-free solder paste on Cu substrate. IOP Conf. Ser. Mater. Sci. 2019, 635, 012009. [Google Scholar] [CrossRef]
- Tsao, L.C.; Wu, R.W.; Cheng, T.-H.; Fan, K.-H.; Chen, R.S. Effects of nano-Al2O3 particles on microstructure and mechanical properties of Sn3.5Ag0.5Cu composite solder ball grid array joints on Sn/Cu pads. Mater. Des. 2013, 50, 774–781. [Google Scholar] [CrossRef]
- Tan, A.T.; Tan, A.W.; Farazila, Y. Influence of nanoparticle addition on the formation and growth of intermetallic compounds (IMCs) in Cu/Sn–Ag–Cu/Cu solder joint during different thermal conditions. Sci. Technol. Adv. Mater. 2015, 16, 033505. [Google Scholar] [CrossRef]
- Zhang, P.; Xue, S.; Wang, J.; Xue, P.; Zhong, S.; Long, W. Effect of Nanoparticles Addition on the Microstructure and Properties of Lead-Free Solders: A Review. Appl. Sci. 2019, 9, 2044. [Google Scholar] [CrossRef]
- Li, M.; Zhang, L.; Jiang, N.; Zhang, L.; Zhong, S. Materials modification of the lead-free solders incorporated with micro/nano-sized particles: A review. Mater. Des. 2020, 197, 109224. [Google Scholar] [CrossRef]
- Gain, A.K.; Zhang, L. Microstructure, mechanical and electrical performances of zirconia nanoparticles-doped tin-silver-copper solder alloys. J. Mater. Sci. Mater. Electron. 2016, 27, 7524–7533. [Google Scholar] [CrossRef]
- Wang, Y.; Song, G.; Xu, A.; Rosei, F.; Ma, D.; Chen, G. Interfacial reaction-directed synthesis of a ceria nanotube-embedded ultra-small Pt nanoparticle catalyst with high catalytic activity and thermal stability. J. Mater. Chem. A 2016, 4, 14148–14154. [Google Scholar] [CrossRef]
- Xiong, M.Y.; Zhang, L. Interface reaction and intermetallic compound growth behavior of Sn-Ag-Cu lead-free solder joints on different substrates in electronic packaging. Mater. Sci. 2019, 54, 1741–1768. [Google Scholar] [CrossRef]
- Fathian, Z.; Maleki, A.; Niroumand, B. Synthesis and characterization of ceramic nanoparticles reinforced lead-free solder. Ceram. Int. 2017, 43, 5302–5310. [Google Scholar] [CrossRef]
- Zhenyu, Z.; Lei, L.; Hyun, S.C.; Jian, C.; Qian, W.; Yuming, W.; Guisheng, Z. Effect of nano-Al2O3 reinforcement on the microstructure and reliability of Sn–3.0Ag–0.5Cu solder joints. Microelectron. Reliab. 2016, 60, 126–134. [Google Scholar] [CrossRef]
- Tsao, L.C.; Cheng, S.Y.; Chen, C.W.; Chen, T.Y. Effect of nano-TiO2 particles and cooling rate on the thermal, microstructure and mechanical properties of novel low-ag Sn1.5Sb1Ag solders. Mater. Sci. Eng. A 2016, 658, 159–166. [Google Scholar] [CrossRef]
- Gu, Y.; Zhao, X.; Li, Y.; Liu, Y.; Wang, Y.; Li, Z. Effect of nano-Fe2O3 additions on wettability and interfacial intermetallic growth of low-Ag content Sn–Ag–Cu solders on Cu substrates. J. Alloys Compd. 2015, 627, 39–47. [Google Scholar] [CrossRef]
- Bachok, Z.; Saad, A.; Abas, M.; Ali, M.; Fakpan, K. Structural analysis on nanocomposites lead free solder using nanoindentation. J. Adv. Manuf. Technol. (JAMT) 2022, 16, 15–28. Available online: https://jamt.utem.edu.my/jamt/article/view/6383/3991 (accessed on 12 June 2023).
- Tikale, S.; Prabhu, K.N. Development of low-silver content SAC0307 solder alloy with Al2O3 nanoparticles. Mater. Sci. Eng. A 2020, 787, 139439. [Google Scholar] [CrossRef]
- Al-sorory, H.; Gumaan, M.S.; Shalaby, R.M. Effect of TiO2 nanoparticles on the microstructure, mechanical and thermal properties of rapid quenching SAC355 lead-free solder alloy. Solder. Surf. Mt. Technol. 2023, 35, 18–27. [Google Scholar] [CrossRef]
- Gain, A.K.; Chan, Y.C. Growth mechanism of intermetallic compounds and damping properties of Sn–Ag–Cu-1wt% nano-ZrO2 composite solders. Microelectron. Reliab. 2014, 54, 945–955. [Google Scholar] [CrossRef]
- Tsao, L.C.; Chang, S.Y. Effects of Nano-TiO2 additions on thermal analysis, microstructure and tensile properties of Sn3.5Ag0.25Cu solder. Mater. Des. 2010, 31, 990–993. [Google Scholar] [CrossRef]
- Chang, S.Y.; Jain, C.C.; Chuang, T.H.; Feng, L.P.; Tsao, L.C. Effect of addition of TiO2 nanoparticles on the microstructure, microhardness and interfacial reactions of Sn3.5AgxCu solder. Mater. Des. 2011, 32, 4720–4727. [Google Scholar] [CrossRef]
- Amares, S.; Rajkumar, D. Effect on the wettability, hardness and shear strength properties of 3%-nano Titanium Oxide (TiO2) added Sn-3.8Ag-0.7Cu (SAC)/Copper (Cu) solder joint. MATEC Web Conf. 2014, 237, 02013. [Google Scholar] [CrossRef]
- Erer, A.M.; Oguz, S.; Türen, Y. Influence of bismuth (Bi) addition on wetting characteristics of Sn-3Ag-0.5Cu solder alloy on Cu substrate. Eng. Sci. Technol. Int. J. 2018, 21, 1159–1163. [Google Scholar] [CrossRef]
- Gao, Y.; Bian, X.; Qiu, X.; Jia, Y.; Yi, J.; Wang, G. Investigation of Microstructure and Mechanical Properties of SAC105 Solders with Sb, In, Ni, and Bi Additions. Materials 2023, 16, 4059. [Google Scholar] [CrossRef] [PubMed]
- Ervina, E.M.N.; Zuhailawati, H.; Radzali, O. Low temperature In–Bi–Zn solder alloy on copper substrate. J. Mater. Sci. Mater. Electron. 2016, 27, 1408–1415. [Google Scholar] [CrossRef]
- Efzan, E.M.N.; Aisyah, M. A review of solder evolution in electronic application. Int. J. Eng. Appl. Sci. 2012, 1, 1–10. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3de96da6928bdb6155646f71375087cabe11f7a0 (accessed on 16 October 2023).
- Noor, E.E.M.; Sharif, N.M.; Yew, C.K.; Ariga, T.; Ismail, A.B.; Hussain, Z. Wettability and strength of In–Bi–Sn lead-free solder alloy on copper substrate. J. Alloys Compd. 2010, 507, 290–296. [Google Scholar] [CrossRef]
- Zhang, L.; Tu, K.N. Structure and properties of lead-free solders bearing micro and nano particles. Mater. Sci. Eng. R 2014, 82, 1–32. [Google Scholar] [CrossRef]
- Shen, J.; Chan, Y.C. Research advances in nano-composite solders. Microelectron. Reliab. 2009, 49, 223–234. [Google Scholar] [CrossRef]
- Suganuma, K. Lead-Free Soldering in Electronics: Science, Technology and Environmental Impact, 1st ed.; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Wan, Y.; Hu, X.; Xu, T.; Li, Y.; Jiang, X. Interfacial IMC growth of SAC305/Cu joint with a novel dual-layer of Ni(P)/Cu plating during solid-state aging. Microelectron. Eng. 2018, 199, 69–79. [Google Scholar] [CrossRef]
- Chen, L.D.; Huang, M.L.; Zhou, S.M. Effect of electromigration on intermetallic compound formation in line-type Cu/Sn/Cu interconnect. J. Alloys Compd. 2010, 504, 535–541. [Google Scholar] [CrossRef]
- Chung, C.K.; Duh, J.G.; Kao, C.R. Direct evidence for a Cu-enriched region at the boundary between Cu6Sn5 and Cu3Sn during Cu/Sn reaction. Scr. Mater. 2010, 63, 258–260. [Google Scholar] [CrossRef]
- Yu, D.Q.; Wu, C.M.L.; Law, C.M.T.; Wang, L.; Lai, J.K.L. Intermetallic compounds growth between Sn-3.5Ag lead-free solder and Cu substrate by dipping method. J. Alloys Compd. 2005, 392, 192–199. [Google Scholar] [CrossRef]
- Yu, D.Q.; Wang, L. The growth and roughness evolution of intermetallic compounds of Sn-Ag-Cu/Cu interface during soldering reaction. J. Alloys Compd. 2008, 458, 542–547. [Google Scholar] [CrossRef]
- Ren, G.; Wilding, I.J.; Collins, M.N. Alloying influences on low melt temperature SnZn and SnBi solder alloys for electronic interconnections. J. Alloys Compd. 2016, 665, 251–260. [Google Scholar] [CrossRef]
- Mehrabi, K.; Khodabakhshi, F.; Zareh, E.; Shahbazkhan, A.; Simchi, A. Effect of alumina nanoparticles on the microstructure and mechanical durability of meltspun lead-free solders based on tin alloys. J. Alloys Compd. 2016, 688 Pt A, 143–155. [Google Scholar] [CrossRef]
- Tang, Y.; Li, G.Y.; Pan, Y.C. Influence of TiO2 nanoparticles on IMC growth in Sn–3.0Ag–0.5Cu–xTiO2 solder joints in reflow process. J. Alloys Compd. 2013, 554, 195–203. [Google Scholar] [CrossRef]
- Tsao, L.C. Suppressing effect of 0.5 wt.% nano-TiO2 addition into Sn–3.5Ag–0.5Cu solder alloy on the intermetallic growth with Cu substrate during isothermal aging. J. Alloys Compd. 2011, 509, 8441–8448. [Google Scholar] [CrossRef]
- Chuang, T.H.; Wu, M.W.; Chang, S.Y.; Ping, S.F.; Tsao, L.C. Strengthening mechanism of nano-Al2O3 particles reinforced Sn3.5Ag0.5Cu lead-free solder. J. Mater. Sci. Mater. Electron. 2011, 22, 1021–1027. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed Muzni, N.H.; Mhd Noor, E.E.; Abdullah, M.M.A.B. Wettability of Sn-3.0Ag-0.5Cu Solder Reinforced with TiO2 and Al2O3 Nanoparticles at Different Reflow Times. Nanomaterials 2023, 13, 2811. https://doi.org/10.3390/nano13202811
Mohamed Muzni NH, Mhd Noor EE, Abdullah MMAB. Wettability of Sn-3.0Ag-0.5Cu Solder Reinforced with TiO2 and Al2O3 Nanoparticles at Different Reflow Times. Nanomaterials. 2023; 13(20):2811. https://doi.org/10.3390/nano13202811
Chicago/Turabian StyleMohamed Muzni, Nur Haslinda, Ervina Efzan Mhd Noor, and Mohd Mustafa Al Bakri Abdullah. 2023. "Wettability of Sn-3.0Ag-0.5Cu Solder Reinforced with TiO2 and Al2O3 Nanoparticles at Different Reflow Times" Nanomaterials 13, no. 20: 2811. https://doi.org/10.3390/nano13202811
APA StyleMohamed Muzni, N. H., Mhd Noor, E. E., & Abdullah, M. M. A. B. (2023). Wettability of Sn-3.0Ag-0.5Cu Solder Reinforced with TiO2 and Al2O3 Nanoparticles at Different Reflow Times. Nanomaterials, 13(20), 2811. https://doi.org/10.3390/nano13202811