Energy Storage Performance of Polymer-Based Dielectric Composites with Two-Dimensional Fillers
Abstract
:1. Introduction
2. Polymer-Based Dielectric Composites
2.1. Basic Information of Dielectric Energy Storage
2.2. Dielectric–Dielectric Composites
2.3. Conductor–Dielectric Composites
2.4. Investigation on Polymer-Based Dielectric Composites
3. Dielectric Polymers
3.1. Non-Ferroelectric Polymers for High-Temperature Film Capacitors
3.2. Ferroelectric Polymers and Blend Polymer Matrix
4. Polymer-Based Composites with 2D Fillers
4.1. Structures of the Composites
4.2. High-k 2D Platelets and Nanosheets
4.2.1. Lead-Free Ceramics
4.2.2. Perovskite Nanosheets
4.2.3. Metal Oxides
Polymer | Preparation or Treatment | Thickness | εr | tan δ | Eb | Ue | Pm | Ref. |
---|---|---|---|---|---|---|---|---|
(μm) | (MV/m) | (J/cm3) | (C/m2) | |||||
A: Non-Ferroelectric polymer | ||||||||
Polypropylene (PP) | - | 10 | 2.2 | <0.02 | 640 | 2.4 | - | [82] |
Polyester (PET) | - | 3 | 3.3 | <0.5 | 570 | 1–1.5 | - | [82] |
Polycarbonate (PC) | - | 2.8 | <0.15 | 528 | 0.5–1 | - | [82] | |
Polyphenylenesulfide (PPS) | - | 3.0 | <0.03 | 550 | 1–1.5 | - | [82] | |
Biaxially oriented polypropylene (BOPP) | metallized and UV irradiation | 7 | 2.2 | - | 720 | 5 | - | [83] |
Poly(propylene-co-p(3-butenyl)styrene) | cross-linking reaction | 10 | 3.0 | - | 650 | >5 | 0.013 | [84] |
Polyimide (PI) | spin-coated | 2.5 | 3.4 | - | 300 | 1–1.5 | - | [81] |
Poly(ether ketone ketone) | melt pressing under pressure | 25 | 3.6 | 0.003 | 450 | 3 | 0.008 | [85] |
Poly(phthalazinone ether ketone) (PPEK) | chemical reaction/hot pressing | 20–40 | 3.5 | <0.01 | 450 | 3.9 | - | [86] |
Aromatic polyurea | thermal vapor deposition and annealing | 2.5 | 4.2 | 0.005 | 800 | >12 | 0.035 | [87] |
Aromatic polythiourea | microwave-assisted polycondensation | 1–5 | 4.5 | <0.002 | 1000 | 22 | 0.045 | [88] |
Meta-phenylene polyurea (m-phPU) | polycondensation | 1–5 | 5.7 | 0.017 | 1000 | >20 | 0.038 | [89] |
Poly(arylene ether urea) (PEEU) | thermal polycondensation | - | 4.7 | 0.008 | 700 | 13 | 0.035 | [90] |
Modified poly(4-methyl-1-pentene) | Ziegler–Natta and hot press and stretch | 10 | 5.0 | 0.015 | 612 | >7 | 0.027 | [91] |
B: PVDF based co-, tri-polymer | ||||||||
PVDF | 12 | 590 | 2.4 | [82] | ||||
PVDF | quench γ-PVDF | 20–30 | 500 | 14 | 0.09 | [105] | ||
PVDF | dopamine modified | 20–30 | 32 | <0.002 | 140 | 2.7 | - | [106] |
P(VDF-TrFE) 93/7 | 80–100 | 12.6 | <0.01 | 350 | 18 | 0.11 | [107] | |
P(VDF-CTFE) 91/9 | extrusion at 190–250 °C | 10 | 13 | 0.03 | 600 | 25 | 0.13 | [110] |
P(VDF-CTFE) | quench in liquid N2 then anneal at 25 °C | 15–25 | 400 | 8 | 0.065 | [111] | ||
P(VDF-CTFE) | cooling to R.T then anneal at 110 °C | 15–25 | 500 | 10 | 0.08 | [111] | ||
P(VDF-HFP) 96/4 | solution cast and uniaxial stretching | 8 | <0.01 | 600 | 27 | 0.08 | [107] | |
P(VDF-HFP) 95.5/4.5 | extrusion and stretch at 110 °C | 3–11 | 12 | - | 700 | >25 | - | [113] |
P(VDF-HFP) | solution cast at RT | 15 | 5.6 | 0.07 | 550 | 20 | 0.07 | [114] |
P(VDF-HFP) | solution cast and stretching and annealing | 8 | 9.6 | <0.05 | 550 | 22 | 0.085 | [114] |
P(VDF-HFP) | melt-pressing and quench and stretching | 20 | 12.2 | 0.03 | 500 | 20 | 0.07 | [114] |
P(VDF-TrFE-CFE) 63/37/7.5 | suspension polymerization | 10–15 | 50 | <0.2 | 400 | 9 | 0.09 | [115] |
P(VDF-TrFE-CTFE) 88.0/5.2/6.8 | Direct polymerization | 20 | 10 | - | 500 | 10.3 | 0.086 | [116] |
P(VDF-TrFE-CTFE) 65.6/26.7/7.7 | 30–40 | 60 | - | >500 | >13 | 0.1 | [117] | |
C: Ferroelectric polymers–polymer composites | ||||||||
P(VDF-TrFE-CTFE)-g-PS (14 wt.%) | hot press at 240 °C and quench and stretched | 80–100 | 9 | <0.01 | 500 | 21 | 0.08 | [107] |
P(VDF-CTFE)97/3-g-PS (34 wt.%) | hot press and quench and stretch | 80–100 | 5 | 0.006 | 600 | 10 | 0.025 | [179] |
P(VDF-TrFE-CTFE)80/18/2-g-PEMA (22 wt.%) | quench at 0 °C | 20 | 6.5 | <0.05 | 550 | 14 | 0.075 | [118] |
P(VDF-CTFE)91/90-BA (10%) | ultraviolet radiation | - | - | 400 | 22.5 | 0.12 | [119] | |
PC/PVDF multilayers 50/50 | 0.38/12 | 3/12 | <0.03 | 600 | 11 | - | [180] | |
PVDF/PMMA (40 wt.%) | quench at 0 °C | 20 | 6 | 0.05 | 400 | 6 | - | [181] |
α-VDF oligomer-P(VDF) 80/20 | uniaxial pressure to eliminate defects | 2 | 4.9 | - | 868 | 27.3 | 0.162 | [120] |
2D Filler | Polymer | Size of Filler | Thickness (µm) | Coupling Agent | Structure | Content | εr | tan δ | Eb (MV/m) | Ue (J/cm3) | η (%) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
High-k ceramics | ||||||||||||
BaTiO3 | P(VDF-TrFE-CTFE) | L: 10 μm, T: 10 μm | - | PM7F | Single layer | 15% | 90.2 | 0.1 | 60 | 1.26 | 74.2 | [145] |
BaTiO3 | PVDF | R: 3–8 μm, T: 0.2–0.5 μm | 10 | - | Single layer | 0.3% | 11.9 | <0.04 | 450 | 9.7 | 55 | [20] |
SrTiO3 | PVDF | R: 3–15 μm, T: 0.2–0.3 μm | - | dopamine | Single layer | 1 wt.% | 10.66 | - | 357 | 9.48 | 57.2 | [146] |
Ba0.6Sr0.4TiO3 | PVDF | R: 3–8 μm, T: 0.1 μm | 100 | PM7F | Single layer | 40% | 62.2 | 0.042 | 29 | 6.36 | - | [137] |
NaBiBaTiO3 | P(VDF–HFP) | L: 5 μm, T: 0.2–0.5 μm | 10 | PVP | 30-1-1-1-30 | 1–30% | 25.3. | 0.05 | 258 | 14.95 | 90 | [151] |
NaNbO3 | PVDF | L: 2–5 μm, T: 0.1–0.5 μm | 15 | PDA | 3-0-3 | 3% | 11 | ~0.04 | 400 | 13.5 | 71 | [131] |
NaNbO3 | P(VDF-HFP) | L: 1–5 μm, T: 0.1–0.5 μm | 10 | Al2O3 | Single layer | 3% | 12 | <0.05 | 440 | 14.59 | 70.1 | [136] |
K0.5Na0.5NbO3 | PVDF | L: 17–40 μm, T: 0.4–3.5 μm | 20 | - | 0-3-0 | 3% | 12 | <0.05 | 350 | 14.5 | 80.2 | [154] |
Na0.5Bi4.5Ti4O15 | PVDF | L: 15–20 μm | - | dopamine | Single layer | 1 wt.% | 16 | 0.1 | 300 | 9.45 | 52.3 | [135] |
SrBi4Ti4O15 | PVDF | R: 1 μm, T: 0.25 μm | 15 | - | 0-5-0 | 5% | 13 | <0.05 | 385 | 11.69 | 78.9 | [155] |
Ca2Nb3O10 | PVDF | L: 150 nm, T: 1.5 nm | 12 | - | Single layer | 2.1 wt.% | 10.5 | - | 792 | 36.2 | 61.2 | [21] |
Ca2Nb3O10 | P(VDF-HFP) | L: 37.4 nm, T: 3 nm | - | - | Single layer | 0.1% | - | - | 853 | 35.9 | - | [160] |
Ca2Nb3O10 | PVDF | L: 100 nm, T: 1.7 nm | 11 | - | Sandwich | 11 | <0.05 | 710 | 25.1 | 80 | [182] | |
Sr2Nb2O7 | PVDF | L: 35 nm, T: 3 nm | 9 | - | Single layer | 5 wt.% | 11 | <0.05 | 600 | 28.4 | 71 | [121] |
Metal oxides | ||||||||||||
ZrO2 | PVDF | L: 20–40 μm, T: 20 nm | - | - | Single layer | 1 wt.% | 10 | <0.04 | 519 | 11.03 | 67.4 | [176] |
Ti0.87O2 | PVDF | L: 15–20 μm, T: 1.2 nm | 10 | - | Single layer | 1 wt.% | 12 | <0.03 | 650 | 21.1 | 60 | [22] |
TiO2 | PMMA/P(VDF-HFP) | R: ~200 μm, T: 6 nm | 10 | dopamine | Single layer | 5 wt.% | 10 | ~0.04 | 570 | 13.0 | 63 | [130] |
Montmorillonite | ||||||||||||
MMT | PVDF | - | 20 | - | Single layer | 0.2 wt.% | 28 | 0.032 | 873 | 24.9 | >60 | [24] |
Na+/MMT | PVDF | - | 30 | ionic liquid | Single layer | - | 15 | <0.02 | 100 | 5.5 | 81 | [183] |
Na+/MMT | polypropylene | T: 20–25 nm | - | - | Single layer | 0.4 wt.% | 3.75 | <0.01 | 530 | 5.2 | 94.9 | [184] |
MMT | PVDF | - | 15 | - | 460 | 7.26 | 69 | [185] | ||||
Transition metal dichalcogenides | ||||||||||||
MoS2 | PVDF | D: 1–2 µm | - | - | Single layer | 0.4% | 11.3 | 0.07 | 200 | 2.3 | ~72 | [186] |
Bi2Te3 | PVDF | R: 0.4–1 µm, T: 0.1 µm | - | Al2O3 | Single layer | 10 vol.% | 140 | 0.05 | 50 | - | - | [76] |
Bi2Te3 | P(VDF-HFP) | R: 0.4–1 µm, T: 0.1 µm | - | SiO2 | Single layer | 10 vol.% | 70.3 | 0.058 | <500 | - | - | [187] |
MoS2 | PI | L: 1 µm | 18 | - | Single layer | 1 vol.% | 3.3 | <0.02 | 395 | 3.35 | >80 | [188] |
MoS2 | Chitin | L: 2 µm | 15 | - | Single layer | 5 wt.% | ~9.8 | ~0.025 | 350 | 4.91 | >80 | [189] |
MoS2 | g-PMMA/PI | T: 1–2 µm | MMA | Single layer | 3 wt.% | 4.2 | 0.015 | 450 | 8.6 | 61.7 | [190] | |
MoS2 | P(VDF-CTFE-DB) | R: 3–5 µm, T: 0.2–0.5 µm | 15 | ZnO | Single layer | 2 wt.% | 12.9 | 0.047 | 300 | 7.2 | 83 | [25] |
Graphene-based fillers | ||||||||||||
Graphene | P(VDF-TrFE-CFE) | L: 0.1–0.4 µm, T: 1.6 nm | ~20 | HBPE-g-HFBA | Single layer | 0.1 wt.% | ~15 | ~0.04 | 250 | 5.0 | 78.1 | [191] |
Graphene | P(VDF-CTFE) | L: 0.2–0.6 µm, T: 1.3 nm | 12 | HBPE-g-PTFEMA | Single layer | 0.8 vol.% | 24.8 | 0.06 | 250 | 4.6 | 62 | [192] |
GO | P(VDF-HFP) | T: 1 nm | 29 | - | Sandwich | 2 wt.% | ~11 | ~0.1 | 300 | 10 | 77 | [193] |
BNNS | ||||||||||||
BNNS | P(VDF-TrFE-CFE) | L: 0.4 µm, T: 10–70 nm | - | - | Single layer | 12 wt.% | 38 | 0.03 | 650 | 20.3 | 78 | [194] |
BNNS | PMMA | L: 0.4 µm, T: 2 nm | - | - | Single layer | 12 wt.% | ~3.6 | 0.044 | 473 | 3.5 | 86 | [195] |
BNNS | PVDF | L: 0.5–1 µm, T: 2–10 nm | 30 | -OH | Single layer | 6 wt.% | 11.1 | ~0.014 | 517 | 13.1 | - | [134] |
BNNS | PVDF | L: 1–2 µm, T: 2 nm | 10 | - | Single layer | 8 wt.% | 8.3 | <0.05 | 486 | 7.25 | - | [196] |
BNNS | PVDF | L: <3 µm, T: 3.9 nm | 12 | - | Sandwiched | 0.16 vol.% | ~11 | <0.07 | 612 | 14.3 | 73 | [197] |
B16-BN | PVDF | L: 1 µm, T: 1.5–2.5 nm | 25 | -OH | Single layer | 8 wt.% | 9.6 | <0.03 | 436 | 9.8 | - | [198] |
BNNS | PEI | L: 1 µm, T: 2.7 nm | 10 | -hydroxyl | Single layer | 4 vol.% | ~3.3 | <0.02 | 700 | 7.67 | 93.6 | [199] |
h-BN | P(VDF-CTFE) | L: ~0.4 µm, T: 1.5 nm | 15 | - | Sandwiched | 0.4-0-0.4 | 35.1 | <0.03 | 300 | 9.1 | 62.8 | [140] |
BNNS | P(VDF-TrFE-CFE) | - | 5–10 | NH2/Epoxy | Matrix free | 18 wt.% | ~32 | <0.05 | 742 | 31.8 | 72.7 | [23] |
BNNS | P(VDF−HFP)/PMMA | L: ~0.1–0.2 µm, T: 5 nm | 25 | lysozyme | Single layer | 5 wt.% | ~10 | <0.06 | 500 | 14.9 | 71 | [122] |
BNNS | Cellulose | L: 0.6 µm, T: 1.3 nm | - | - | Single layer | 10 wt.% | ~7 | 0.02 | 370 | 4.1 | 75 | [200] |
BNNS | Cellulose | - | - | –COO− | Single layer | 4 vol.% | ~8 | <0.03 | 384 | 3.9 | 66 | [201] |
BNNS | Chitin | L: ~0.5 µm, T: 3.3 nm | 15 | - | Single layer | 6 wt.% | 7.1 | 0.018 | 450 | 8.7 | 90 | [202] |
Ti3C2TX (MXene) | ||||||||||||
Ti3C2TX | PVDF | T: 2–4 µm | 45 | - | multilayer | 2-1-0.1 | 20 | 0.04 | 350 | 12.5 | >60 | [203] |
Ti3C2TX | PVDF | - | 22 | - | multilayer | 4:5 | 41 | 0.028 | 300 | 7.4 | [204] | |
Ti3C2TX | PI | - | 5 | - | Single layer | 0.5 wt.% | 3 | <0.02 | 648 | 8.67 | 84.1 | [26] |
4.3. Montmorillonite
4.4. Graphene-Based Nanosheets
4.5. Boron Nitride Nanosheet Fillers
4.6. Transition Metal Dichalcogenides (TMDs)
4.7. MXene
5. Concluding Remarks and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hao, X. A review on the dielectric materials for high energy-storage application. J. Adv. Dielectr. 2013, 3, 1. [Google Scholar] [CrossRef]
- Chen, Q.; Shen, Y.; Zhang, S.; Zhang, Q. Polymer-Based Dielectrics with High Energy Storage Density. Annu. Rev. Mater. Res. 2015, 45, 433–458. [Google Scholar] [CrossRef]
- Huan, T.D.; Boggs, S.; Teyssedre, G.; Laurent, C.; Cakmak, M.; Kumar, S.; Ramprasad, R. Advanced polymeric dielectrics for high energy density applications. Prog. Mater. Sci. 2016, 83, 236–269. [Google Scholar] [CrossRef]
- Prateek; Thakur, V.K.; Gupta, R.K. Recent Progress on Ferroelectric Polymer-Based Nanocomposites for High Energy Density Capacitors: Synthesis, Dielectric Properties, and Future Aspects. Chem. Rev. 2016, 116, 4260–4317. [Google Scholar] [CrossRef]
- Zhang, X.; Li, B.; Dong, L.; Liu, H.; Chen, W.; Shen, Y.; Nan, C. Superior Energy Storage Performances of Polymer Nanocomposites via Modification of Filler/Polymer Interfaces. Adv. Mater. Interfaces 2018, 5, 1800096. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, L. Polymer nanocomposites for electrical energy storage. J. Polym. Sci. Part B Polym. Phys. 2011, 49, 1421–1429. [Google Scholar] [CrossRef]
- Zhang, L. Development of polymer-based 0–3 composites with high dielectric constant. J. Adv. Dielectr. 2011, 1, 389–406. [Google Scholar] [CrossRef]
- Huang, X.; Jiang, P. Core–Shell Structured High-k Polymer Nanocomposites for Energy Storage and Dielectric Applications. Adv. Mater. 2015, 27, 546–554. [Google Scholar] [CrossRef]
- Barber, P.; Balasubramanian, S.; Anguchamy, Y.; Gong, S.; Wibowo, A.; Gao, H.; Ploehn, H.J.; Zur Loye, H.-C. Polymer Composite and Nanocomposite Dielectric Materials for Pulse Power Energy Storage. Materials 2009, 2, 1697–1733. [Google Scholar] [CrossRef]
- Dang, Z.-M.; Yuan, J.-K.; Zha, J.-W.; Zhou, T.; Li, S.-T.; Hu, G.-H. Fundamentals, processes and applications of high-permittivity polymer–matrix composites. Prog. Mater. Sci. 2012, 57, 660–723. [Google Scholar] [CrossRef]
- Dang, Z.-M.; Yuan, J.-K.; Yao, S.-H.; Liao, R.-J. Flexible Nanodielectric Materials with High Permittivity for Power Energy Storage. Adv. Mater. 2013, 25, 6334–6365. [Google Scholar] [CrossRef] [PubMed]
- Thakur, V.K.; Kessler, M.R. Polymer Nanocomposites: New Advanced Dielectric Materials for Energy Storage Applications. In Advanced Energy Materials; John Wiley & Sons, Inc.: Hoboken, NY, USA, 2014; pp. 207–257. [Google Scholar] [CrossRef]
- Zha, J.-W.; Zheng, M.-S.; Fan, B.-H.; Dang, Z.-M. Polymer-based dielectrics with high permittivity for electric energy storage: A review. Nano Energy 2021, 89, 106438. [Google Scholar] [CrossRef]
- Huang, X.; Sun, B.; Zhu, Y.; Li, S.; Jiang, P. High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications. Prog. Mater. Sci. 2018, 100, 187–225. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, S.; Tang, B. 2D filler-reinforced polymer nanocomposite dielectrics for high-k dielectric and energy storage applications. Energy Storage Mater. 2021, 34, 260–281. [Google Scholar] [CrossRef]
- Pan, Z.; Yao, L.; Zhai, J.; Yao, X.; Chen, H. Interfacial Coupling Effect in Organic/Inorganic Nanocomposites with High Energy Density. Adv. Mater. 2018, 30, e1705662. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Fan, X.; Li, X.; Zhang, Y.; Zhang, Z.; Huang, X. Perspective on interface engineering for capacitive energy storage polymer nanodielectrics. Phys. Chem. Chem. Phys. 2022, 24, 19624–19633. [Google Scholar] [CrossRef]
- Yao, Z.; Song, Z.; Hao, H.; Yu, Z.; Cao, M.; Zhang, S.; Lanagan, M.T.; Liu, H. Homogeneous/Inhomogeneous-Structured Dielectrics and their Energy-Storage Performances. Adv. Mater. 2017, 29, 1601727. [Google Scholar] [CrossRef]
- Wen, F.; Lou, H.; Ye, J.; Bai, W.; Wang, L.; Li, L.; Wu, W.; Xu, Z.; Wang, G.; Zhang, Z.; et al. Preparation and energy storage performance of transparent dielectric films with two-dimensional platelets. Compos. Sci. Technol. 2019, 182, 107759. [Google Scholar] [CrossRef]
- Bao, Z.; Hou, C.; Shen, Z.; Sun, H.; Zhang, G.; Luo, Z.; Dai, Z.; Wang, C.; Chen, X.; Li, L.; et al. Negatively Charged Nanosheets Significantly Enhance the Energy-Storage Capability of Polymer-Based Nanocomposites. Adv. Mater. 2020, 32, e1907227. [Google Scholar] [CrossRef]
- Wen, R.; Guo, J.; Zhao, C.; Liu, Y. Nanocomposite Capacitors with Significantly Enhanced Energy Density and Breakdown Strength Utilizing a Small Loading of Monolayer Titania. Adv. Mater. Interfaces 2018, 5, 1701088. [Google Scholar] [CrossRef]
- Chen, J.; Shen, Z.; Kang, Q.; Qian, X.; Li, S.; Jiang, P.; Huang, X. Chemical adsorption on 2D dielectric nanosheets for matrix free nanocomposites with ultrahigh electrical energy storage. Sci. Bull. 2022, 67, 609–618. [Google Scholar] [CrossRef]
- Ghosh, S.K.; Rahman, W.; Middya, T.R.; Sen, S.; Mandal, D. Improved breakdown strength and electrical energy storage performance ofγ-poly(vinylidene fluoride)/unmodified montmorillonite clay nano-dielectrics. Nanotechnology 2016, 27, 215401. [Google Scholar] [CrossRef] [PubMed]
- Wen, F.; Zhu, C.; Li, L.; Zhou, B.; Zhang, L.; Han, C.; Li, W.; Yue, Z.; Wu, W.; Wang, G.; et al. Enhanced energy storage performance of polymer nanocomposites using hybrid 2D ZnO@MoS2 semiconductive nano-fillers. Chem. Eng. J. 2022, 430, 132676. [Google Scholar] [CrossRef]
- Yu, S.; Ding, C.; Liu, Y.; Liu, Y.; Zhang, Y.; Luo, H.; Zhang, D.; Chen, S. Enhanced breakdown strength and energy density over a broad temperature range in polyimide dielectrics using oxidized MXenes filler. J. Power Sources 2022, 535, 231415. [Google Scholar] [CrossRef]
- Jiang, S.; Jin, L.; Hou, H.; Zhang, L. Chapter 8—Polymer-Based Nanocomposites with High Dielectric Permittivity. In Polymer-Based Multifunctional Nanocomposites and Their Applications; Song, K., Liu, C., Guo, J.Z., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 201–243. [Google Scholar]
- Carpi, F.; Gallone, G.; Galantini, F.; De Rossi, D. Chapter 6—Enhancing the Dielectric Permittivity of Elastomers, Dielectric Elastomers as Electromechanical Transducers; Elsevier: Amsterdam, The Netherlands, 2008; pp. 51–68. [Google Scholar]
- Yao, M.; You, S.; Peng, Y. Dielectric constant and energy density of poly(vinylidene fluoride) nanocomposites filled with core-shell structured BaTiO3@Al2O3 nanoparticles. Ceram. Int. 2017, 43, 3127–3132. [Google Scholar] [CrossRef]
- Niu, Y.; Bai, Y.; Yu, K.; Wang, Y.; Xiang, F.; Wang, H. Effect of the Modifier Structure on the Performance of Barium Titanate/Poly(vinylidene fluoride) Nanocomposites for Energy Storage Applications. ACS Appl. Mater. Interfaces 2015, 7, 24168–24176. [Google Scholar] [CrossRef]
- Almadhoun, M.N.; Bhansali, U.S.; Alshareef, H.N. Nanocomposites of ferroelectric polymers with surface-hydroxylated BaTiO3 nanoparticles for energy storage applications. J. Mater. Chem. 2012, 22, 11196–11200. [Google Scholar] [CrossRef]
- Hao, Y.; Wang, X.; Bi, K.; Zhang, J.; Huang, Y.; Wu, L.; Zhao, P.; Xu, K.; Lei, M.; Li, L. Significantly enhanced energy storage performance promoted by ultimate sized ferroelectric BaTiO3 fillers in nanocomposite films. Nano Energy 2017, 31, 49–56. [Google Scholar] [CrossRef]
- Pan, Z.; Yao, L.; Zhai, J.; Shen, B.; Wang, H. Significantly improved dielectric properties and energy density of polymer nanocomposites via small loaded of BaTiO3 nanotubes. Compos. Sci. Technol. 2017, 147, 30–38. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, P.; Li, Y.; Cheng, Z.-Y.; Brewer, J.C. Preparation process and dielectric properties of Ba0.5Sr0.5TiO3–P(VDF–CTFE) nanocomposites. Compos. Part B Eng. 2014, 56, 284–289. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, L.; Tong, Y.; Cheng, Z. BST-P(VDF-CTFE) nanocomposite films with high dielectric constant, low dielectric loss, and high energy-storage density. Compos. Part B Eng. 2018, 168, 34–43. [Google Scholar] [CrossRef]
- Lu, X.; Zou, X.; Shen, J.; Zhang, L.; Jin, L.; Cheng, Z.-Y. High energy density with ultrahigh discharging efficiency obtained in ceramic-polymer nanocomposites using a non-ferroelectric polar polymer as matrix. Nano Energy 2020, 70, 104551. [Google Scholar] [CrossRef]
- Jin, L.; Luo, W.; Hou, L.; Tian, Y.; Hu, Q.; Wang, L.; Zhang, L.; Lu, X.; Du, H.; Wei, X.; et al. High electric field-induced strain with ultra-low hysteresis and giant electrostrictive coefficient in barium strontium titanate lead-free ferroelectrics. J. Eur. Ceram. Soc. 2018, 39, 295–304. [Google Scholar] [CrossRef]
- Luo, L.; Li, J.; Wang, M.; Yang, S.; Wu, J.; Gao, X.; Li, C.; Du, W.; Zhang, L.; Li, F. High dielectric permittivity and ultralow dielectric loss in Nb-doped SrTiO3 ceramics. Ceram. Int. 2022, 48, 28438–28443. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, W.; Guo, R.; Zhou, K.; Luo, H. High Discharge Energy Density at Low Electric Field Using an Aligned Titanium Dioxide/Lead Zirconate Titanate Nanowire Array. Adv. Sci. 2019, 5, 1700512. [Google Scholar] [CrossRef]
- Shan, X.; Zhang, L.; Yang, X.; Cheng, Z.-Y. Dielectric composites with a high and temperature-independent dielectric constant. J. Adv. Ceram. 2012, 1, 310–316. [Google Scholar] [CrossRef]
- Zhang, L.; Shan, X.; Wu, P.; Cheng, Z.Y. Dielectric characteristics of CaCu3Ti4O12/P(VDF-TrFE) nanocomposites. Applied Physics A 2012, 107, 597–602. [Google Scholar] [CrossRef]
- Zhang, L.; Shan, X.; Bass, P.; Tong, Y.; Rolin, T.D.; Hill, C.W.; Brewer, J.C.; Tucker, D.S.; Cheng, Z.-Y. Process and Microstructure to Achieve Ultra-high Dielectric Constant in Ceramic-Polymer Composites. Sci. Rep. 2016, 6, 35763. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, Z.; Cao, L.; Yao, X. Synthesis of BF–PT perovskite powders by high-energy ball milling. Mater. Lett. 2007, 61, 1130–1133. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, Z.; Li, Z.; Xia, S.; Yao, X. Preparation and characterization of high T c (1−x) BiScO3−xPbTiO3 ceramics from high energy ball milling process. J. Electroceramics 2008, 21, 605–608. [Google Scholar] [CrossRef]
- Nan, C.-W.; Shen, Y.; Ma, J. Physical Properties of Composites Near Percolation. Annu. Rev. Mater. Res. 2010, 40, 131–151. [Google Scholar] [CrossRef]
- Nan, C.-W. Physics of inhomogeneous inorganic materials. Prog. Mater. Sci. 1993, 37, 1–116. [Google Scholar] [CrossRef]
- Bergman, D.J.; Imry, Y. Critical Behavior of the Complex Dielectric Constant near the Percolation Threshold of a Heterogeneous Material. Phys. Rev. Lett. 1977, 39, 1222–1225. [Google Scholar] [CrossRef]
- Zhang, L.; Bass, P.; Cheng, Z.-Y. Physical aspects of 0–3 dielectric composites. J. Adv. Dielectr. 2015, 5, 1550012. [Google Scholar] [CrossRef]
- Clarkson, M.T. Electrical conductivity and permittivity measurements near the percolation transition in a microemulsion. II. Interpretation. Phys. Rev. A 1988, 37, 2079–2090. [Google Scholar] [CrossRef]
- Kirkpatrick, S. Percolation and Conduction. Rev. Mod. Phys. 1973, 45, 574–588. [Google Scholar] [CrossRef]
- Zhang, L.; Bass, P.; Wang, G.; Tong, Y.; Xu, Z.; Cheng, Z.Y. Dielectric response and percolation behavior of Ni–P(VDF–TrFE) nanocomposites. J. Adv. Dielectr. 2017, 7, 1750015. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, W.; Wang, X.; Bass, P.; Cheng, Z.-Y. Metal-polymer nanocomposites with high percolation threshold and high dielectric constant. Appl. Phys. Lett. 2013, 103, 232903. [Google Scholar] [CrossRef]
- Liu, H.; Shen, Y.; Song, Y.; Nan, C.; Lin, Y.; Yang, X. Carbon Nanotube Array/Polymer Core/Shell Structured Composites with High Dielectric Permittivity, Low Dielectric Loss, and Large Energy Density. Adv. Mater. 2011, 23, 5104–5108. [Google Scholar] [CrossRef]
- Potts, J.R.; Dreyer, D.R.; Bielawski, C.W.; Ruoff, R.S. Graphene-based polymer nanocomposites. Polymer 2011, 52, 5–25. [Google Scholar] [CrossRef]
- He, F.; Lau, S.; Chan, H.L.; Fan, J. High Dielectric Permittivity and Low Percolation Threshold in Nanocomposites Based on Poly(vinylidene fluoride) and Exfoliated Graphite Nanoplates. Adv. Mater. 2009, 21, 710–715. [Google Scholar] [CrossRef]
- Liao, X.; Ye, W.; Chen, L.; Jiang, S.; Wang, G.; Zhang, L.; Hou, H. Flexible hdC-G reinforced polyimide composites with high dielectric permittivity. Compos. Part A Appl. Sci. Manuf. 2017, 101, 50–58. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Z.; Lu, X.; Yang, G.; Zhang, X.; Cheng, Z.-Y. Nano-clip based composites with a low percolation threshold and high dielectric constant. Nano Energy 2016, 26, 550–557. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, X.; Zhang, X.; Jin, L.; Xu, Z.; Cheng, Z.-Y. All-organic dielectric nanocomposites using conducting polypyrrole nanoclips as filler. Compos. Sci. Technol. 2018, 167, 285–293. [Google Scholar] [CrossRef]
- Yuan, J.-K.; Dang, Z.-M.; Yao, S.-H.; Zha, J.-W.; Zhou, T.; Li, S.-T.; Bai, J. Fabrication and dielectric properties of advanced high permittivity polyaniline/poly(vinylidene fluoride) nanohybrid films with high energy storage density. J. Mater. Chem. 2010, 20, 2441–2447. [Google Scholar] [CrossRef]
- Zhang, L.; Du, W.; Nautiyal, A.; Liu, Z.; Zhang, X. Recent progress on nanostructured conducting polymers and composites: Synthesis, application and future aspects. Sci. China Mater. 2018, 61, 303–352. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, L.; Poyraz, S.; Zhang, X. Conducting Polymer—Metal Nanocomposites Synthesis and Their Sensory Applications. Curr. Org. Chem. 2013, 17, 2256–2267. [Google Scholar] [CrossRef]
- Xu, W.; Ding, Y.; Jiang, S.; Zhu, J.; Ye, W.; Shen, Y.; Hou, H. Mechanical flexible PI/MWCNTs nanocomposites with high dielectric permittivity by electrospinning. Eur. Polym. J. 2014, 59, 129–135. [Google Scholar] [CrossRef]
- Chen, Z.; Li, H.; Xie, G.; Yang, K. Core–shell structured Ag@C nanocables for flexible ferroelectric polymer nanodielectric materials with low percolation threshold and excellent dielectric properties. RSC Adv. 2018, 8, 1–9. [Google Scholar] [CrossRef]
- Xu, W.; Feng, Y.; Ding, Y.; Jiang, S.; Fang, H.; Hou, H. Short electrospun carbon nanofiber reinforced polyimide composite with high dielectric permittivity. Mater. Lett. 2015, 161, 431–434. [Google Scholar] [CrossRef]
- Yuan, J.-K.; Yao, S.-H.; Sylvestre, A.; Bai, J. Biphasic Polymer Blends Containing Carbon Nanotubes: Heterogeneous Nanotube Distribution and Its Influence on the Dielectric Properties. J. Phys. Chem. C 2011, 116, 2051–2058. [Google Scholar] [CrossRef]
- Yang, C.; Lin, Y.; Nan, C. Modified carbon nanotube composites with high dielectric constant, low dielectric loss and large energy density. Carbon 2008, 47, 1096–1101. [Google Scholar] [CrossRef]
- Bera, S.; Singh, M.; Thantirige, R.; Tiwary, S.K.; Shook, B.T.; Nieves, E.; Raghavan, D.; Karim, A.; Pradhan, N.R. 2D-Nanofiller-Based Polymer Nanocomposites for Capacitive Energy Storage Applications. Small Sci. 2023, 3, 2300016. [Google Scholar] [CrossRef]
- Wu, H.; Zhuo, F.; Qiao, H.; Venkataraman, L.K.; Zheng, M.; Wang, S.; Huang, H.; Li, B.; Mao, X.; Zhang, Q. Polymer-/Ceramic-based Dielectric Composites for Energy Storage and Conversion. Energy Environ. Mater. 2022, 5, 486–514. [Google Scholar] [CrossRef]
- Behera, R.K.E. A review on polyvinylidene fluoride polymer based nanocomposites for energy storage applications. J. Energy Storage 2022, 48, 103788. [Google Scholar] [CrossRef]
- Wen, F.; Zhu, C.; Lv, W.; Wang, P.; Zhang, L.; Li, L.; Wang, G.; Wu, W.; Ying, Z.; Zheng, X.; et al. Improving the Energy Density and Efficiency of the Linear Polymer PMMA with a Double-Bond Fluoropolymer at Elevated Temperatures. ACS Omega 2021, 6, 35014–35022. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Chen, X.; Zhang, Q.; Tan, D.Q. Advanced dielectric polymers for energy storage. Energy Storage Mater. 2022, 44, 29–47. [Google Scholar] [CrossRef]
- Huang, W.; Ju, T.; Li, R.; Duan, Y.; Duan, Y.; Wei, J.; Zhu, L. High-κ and High-Temperature Dipolar Glass Polymers Based on Sulfonylated and Cyanolated Poly(Arylene Ether)s for Capacitive Energy Storage. Adv. Electron. Mater. 2023, 9, 2200414. [Google Scholar] [CrossRef]
- Wang, R.; Zhu, Y.; Fu, J.; Yang, M.; Ran, Z.; Li, J.; Li, M.; Hu, J.; He, J.; Li, Q. Designing tailored combinations of structural units in polymer dielectrics for high-temperature capacitive energy storage. Nat. Commun. 2023, 14, 2406. [Google Scholar] [CrossRef]
- Luo, S.; Shen, Y.; Yu, S.; Wan, Y.; Liao, W.-H.; Sun, R.; Wong, C.-P. Construction of a 3D-BaTiO3 network leading to significantly enhanced dielectric permittivity and energy storage density of polymer composites. Energy Environ. Sci. 2017, 10, 137–144. [Google Scholar] [CrossRef]
- Zhou, J.; Hou, D.; Cheng, S.; Zhang, J.; Chen, W.; Zhou, L.; Zhang, P. Recent advances in dispersion and alignment of fillers in PVDF-based composites for high-performance dielectric energy storage. Mater. Today Energy 2023, 31, 101208. [Google Scholar] [CrossRef]
- Chen, J.; Wang, X.; Yu, X.; Yao, L.; Duan, Z.; Fan, Y.; Jiang, Y.; Zhou, Y.; Pan, Z. High dielectric constant and low dielectric loss poly(vinylidene fluoride) nanocomposites via a small loading of two-dimensional Bi2Te3@Al2O3 hexagonal nanoplates. J. Mater. Chem. C 2018, 6, 271–279. [Google Scholar] [CrossRef]
- Feng, M.; Feng, Y.; Zhang, T.; Li, J.; Chen, Q.; Chi, Q.; Lei, Q. Recent Advances in Multilayer-Structure Dielectrics for Energy Storage Application. Adv. Sci. 2021, 8, e2102221. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Bass, P.; Dang, Z.-M.; Cheng, Z.-Y. Characterization of percolation behavior in conductor–dielectric 0–3 composites. J. Adv. Dielectr. 2014, 4, 1450035. [Google Scholar] [CrossRef]
- Baer, E.; Zhu, L. 50th Anniversary Perspective: Dielectric Phenomena in Polymers and Multilayered Dielectric Films. Macromolecules 2017, 50, 2239–2256. [Google Scholar] [CrossRef]
- Li, Q.; Yao, F.-Z.; Liu, Y.; Zhang, G.; Wang, H.; Wang, Q. High-Temperature Dielectric Materials for Electrical Energy Storage. Annu. Rev. Mater. Res. 2018, 48, 219–243. [Google Scholar] [CrossRef]
- Tu, N.R.; Kao, K.C. High-field electrical conduction in polyimide films. J. Appl. Phys. 1999, 85, 7267–7275. [Google Scholar] [CrossRef]
- Rabuffi, M.; Picci, G. Status quo and future prospects for metallized polypropylene energy storage capacitors. IEEE Trans. Plasma Sci. 2002, 30, 1939–1942. [Google Scholar] [CrossRef]
- Ho, J.; Ramprasad, R.; Boggs, S. Effect of Alteration of Antioxidant by UV Treatment on the Dielectric Strength of BOPP Capacitor Film. IEEE Trans. Dielectr. Electr. Insul. 2007, 14, 1295–1301. [Google Scholar] [CrossRef]
- Yuan, X.; Chung, T.C.M. Cross-linking effect on dielectric properties of polypropylene thin films and applications in electric energy storage. Appl. Phys. Lett. 2011, 98, 062901. [Google Scholar] [CrossRef]
- Pan, J.; Li, K.; Li, J.; Hsu, T.; Wang, Q. Dielectric characteristics of poly(ether ketone ketone) for high temperature capacitive energy storage. Appl. Phys. Lett. 2009, 95, 022902. [Google Scholar] [CrossRef]
- Pan, J.; Li, K.; Chuayprakong, S.; Hsu, T.; Wang, Q. High-Temperature Poly(phthalazinone ether ketone) Thin Films for Dielectric Energy Storage. ACS Appl. Mater. Interfaces 2010, 2, 1286–1289. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, X.; Lin, M.; Zhang, Q.M. High-energy density in aromatic polyurea thin films. Appl. Phys. Lett. 2009, 94, 202905. [Google Scholar] [CrossRef]
- Wu, S.; Li, W.; Lin, M.; Burlingame, Q.; Chen, Q.; Payzant, A.; Xiao, K.; Zhang, Q.M. Aromatic Polythiourea Dielectrics with Ultrahigh Breakdown Field Strength, Low Dielectric Loss, and High Electric Energy Density. Adv. Mater. 2013, 25, 1734–1738. [Google Scholar] [CrossRef]
- Thakur, Y.; Lin, M.; Wu, S.; Cheng, Z.; Jeong, D.-Y.; Zhang, Q.M. Tailoring the dipole properties in dielectric polymers to realize high energy density with high breakdown strength and low dielectric loss. J. Appl. Phys. 2015, 117, 114104. [Google Scholar] [CrossRef]
- Cheng, Z.; Lin, M.; Wu, S.; Thakur, Y.; Zhou, Y.; Jeong, D.-Y.; Shen, Q.; Zhang, Q.M. Aromatic poly(arylene ether urea) with high dipole moment for high thermal stability and high energy density capacitors. Appl. Phys. Lett. 2015, 106, 202902. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, L.; Zhu, M.; Wang, Y.; Li, N.; Zhang, Z.; Chen, Q.; An, L.; Lin, Y.; Nan, C. Controlled functionalization of poly(4-methyl-1-pentene) films for high energy storage applications. J. Mater. Chem. A 2016, 4, 4797–4807. [Google Scholar] [CrossRef]
- Chung, T.C.M. Functionalization of Polypropylene with High Dielectric Properties: Applications in Electric Energy Storage. Green Sustain. Chem. 2012, 2, 29–37. [Google Scholar] [CrossRef]
- Wu, S.; Burlingame, Q.; Cheng, Z.-X.; Lin, M.; Zhang, Q.M. Strongly Dipolar Polythiourea and Polyurea Dielectrics with High Electrical Breakdown, Low Loss, and High Electrical Energy Density. J. Electron. Mater. 2014, 43, 4548–4551. [Google Scholar] [CrossRef]
- Thakur, Y.; Dong, R.; Lin, M.; Wu, S.; Cheng, Z.; Hou, Y.; Bernholc, J.; Zhang, Q. Optimizing nanostructure to achieve high dielectric response with low loss in strongly dipolar polymers. Nano Energy 2015, 16, 227–234. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Q. Advanced polymer dielectrics for high temperature capacitive energy storage. J. Appl. Phys. 2020, 127, 240902. [Google Scholar] [CrossRef]
- Burlingame, Q.; Wu, S.; Lin, M.; Zhang, Q.M. Conduction Mechanisms and Structure-Property Relationships in High Energy Density Aromatic Polythiourea Dielectric Films. Adv. Energy Mater. 2013, 3, 1051–1055. [Google Scholar] [CrossRef]
- Wu, S.; Lin, M.; Burlingame, Q.; Zhang, Q.M. Meta-aromatic polyurea with high dipole moment and dipole density for energy storage capacitors. Appl. Phys. Lett. 2014, 104, 72903. [Google Scholar] [CrossRef]
- Wen, F.; Zhang, L.; Wang, P.; Li, L.; Chen, J.; Chen, C.; Wu, W.; Wang, G.; Zhang, S. A high-temperature dielectric polymer poly(acrylonitrile butadiene styrene) with enhanced energy density and efficiency due to a cyano group. J. Mater. Chem. A 2020, 8, 15122–15129. [Google Scholar] [CrossRef]
- Zhang, M.; Li, B.; Wang, J.; Huang, H.; Zhang, L.; Chen, L. Polymer Dielectrics with Simultaneous Ultrahigh Energy Density and Low Loss. Adv. Mater. 2021, 33, 2008198. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhang, Q. Field-Activated Electroactive Polymers. MRS Bull. 2008, 33, 183–187. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, J.; Xia, W.; Zhu, X.; Sun, T.; Cao, C.; Zhang, L. Enhanced piezoelectric and acoustic performances of poly(vinylidene fluoride-trifluoroethylene) films for hydroacoustic applications. Phys. Chem. Chem. Phys. 2020, 22, 5711–5722. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, Q. Novel Ferroelectric Polymers for High Energy Density and Low Loss Dielectrics. Macromolecules 2012, 45, 2937–2954. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Q. Ferroelectric Polymers and Their Energy-Related Applications. Macromol. Chem. Phys. 2016, 217, 1228–1244. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, X.; Chen, Q.; Chu, B.; Zhang, Q. Recent development of high energy density polymers for dielectric capacitors. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 1036–1042. [Google Scholar] [CrossRef]
- Li, W.; Meng, Q.; Zheng, Y.; Zhang, Z.; Xia, W.; Xu, Z. Electric energy storage properties of poly(vinylidene fluoride). Appl. Phys. Lett. 2010, 96, 192905. [Google Scholar] [CrossRef]
- Thakur, V.K.; Lin, M.-F.; Tan, E.J.; Lee, P.S. Green aqueous modification of fluoropolymers for energy storage applications. J. Mater. Chem. 2012, 22, 5951–5959. [Google Scholar] [CrossRef]
- Guan, F.; Wang, J.; Yang, L.; Tseng, J.-K.; Han, K.; Wang, Q.; Zhu, L. Confinement-Induced High-Field Antiferroelectric-like Behavior in a Poly(vinylidene fluoride-co-trifluoroethylene-co-chlorotrifluoroethylene)-graft-polystyrene Graft Copolymer. Macromolecules 2011, 44, 2190–2199. [Google Scholar] [CrossRef]
- Cheng, Z.-Y.; Zhang, Q.M.; Bateman, F.B. Dielectric relaxation behavior and its relation to microstructure in relaxor ferroelectric polymers: High-energy electron irradiated poly(vinylidene fluoride–trifluoroethylene) copolymers. J. Appl. Phys. 2002, 92, 6749–6755. [Google Scholar] [CrossRef]
- Cheng, Z.-Y.; Olson, D.; Xu, H.; Xia, F.; Hundal, J.S.; Zhang, Q.M.; Bateman, F.B.; Kavarnos, G.J.; Ramotowski, T. Structural Changes and Transitional Behavior Studied from Both Micro-and Macroscale in the High-Energy Electron-Irradiated Poly(vinylidene fluoride−trifluoroethylene) Copolymer. Macromolecules 2002, 35, 664–672. [Google Scholar] [CrossRef]
- Zhou, X.; Chu, B.; Neese, B.; Lin, M.; Zhang, Q.M. Electrical Energy Density and Discharge Characteristics of a Poly(vinylidene fluoride-chlorotrifluoroethylene)Copolymer. IEEE Trans. Dielectr. Electr. Insul. 2007, 14, 1133–1138. [Google Scholar] [CrossRef]
- Han, R.; Jin, J.; Khanchaitit, P.; Wang, J.; Wang, Q. Effect of crystal structure on polarization reversal and energy storage of ferroelectric poly(vinylidene fluoride-co-chlorotrifluoroethylene) thin films. Polymer 2012, 53, 1277–1281. [Google Scholar] [CrossRef]
- Chu, B.; Zhou, X.; Ren, K.; Neese, B.; Lin, M.; Wang, Q.; Bauer, F.; Zhang, Q.M. A Dielectric Polymer with High Electric Energy Density and Fast Discharge Speed. Science 2006, 313, 334–336. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, X.; Suo, Z.; Zou, C.; Runt, J.; Liu, S.; Zhang, S.; Zhang, Q.M. Electrical breakdown and ultrahigh electrical energy density in poly(vinylidene fluoride-hexafluoropropylene) copolymer. Appl. Phys. Lett. 2009, 94, 162901. [Google Scholar] [CrossRef]
- Guan, F.; Pan, J.; Wang, J.; Wang, Q.; Zhu, L. Crystal Orientation Effect on Electric Energy Storage in Poly(vinylidene fluoride-co-hexafluoropropylene) Copolymers. Macromolecules 2010, 43, 384–392. [Google Scholar] [CrossRef]
- Baojin, C.; Xin, Z.; Neese, B.; Zhang, Q.M.; Bauer, F. Relaxor ferroelectric poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer for high energy density storage capacitors. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 1162–1169. [Google Scholar] [CrossRef]
- Zhang, Z.; Meng, Q.; Chung, T.M. Energy storage study of ferroelectric poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) terpolymers. Polymer 2009, 50, 707–715. [Google Scholar] [CrossRef]
- Zhang, Z.; Chung, T.C.M. Study of VDF/TrFE/CTFE Terpolymers for High Pulsed Capacitor with High Energy Density and Low Energy Loss. Macromolecules 2007, 40, 783–785. [Google Scholar] [CrossRef]
- Li, J.; Tan, S.; Ding, S.; Li, H.; Yang, L.; Zhang, Z. High-field antiferroelectric behaviour and minimized energy loss in poly(vinylidene-co-trifluoroethylene)-graft-poly(ethyl methacrylate) for energy storage application. J. Mater. Chem. 2012, 22, 23468–23476. [Google Scholar] [CrossRef]
- Chen, X.-Z.; Li, Z.-W.; Cheng, Z.-X.; Zhang, J.-Z.; Shen, Q.-D.; Ge, H.-X.; Li, H.-T. Greatly Enhanced Energy Density and Patterned Films Induced by Photo Cross-Linking of Poly(vinylidene fluoride-chlorotrifluoroethylene). Macromol. Rapid Commun. 2010, 32, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Rahimabady, M.; Chen, S.; Yao, K.; Tay, F.E.H.; Lu, L. High electric breakdown strength and energy density in vinylidene fluoride oligomer/poly(vinylidene fluoride) blend thin films. Appl. Phys. Lett. 2011, 99, 142901. [Google Scholar] [CrossRef]
- Bai, H.; Zhu, K.; Wang, Z.; Shen, B.; Zhai, J. 2D Fillers Highly Boost the Discharge Energy Density of Polymer-Based Nanocomposites with Trilayered Architecture. Adv. Funct. Mater. 2021, 31, 2102646. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, J.; Tan, S.; Peng, B.; Qiao, B.; Zhang, Z.; Huang, X.; Sui, H. Improving Energy Storage Density and Efficiency of Polymer Dielectrics by Adding Trace Biomimetic Lysozyme-Modified Boron Nitride. ACS Appl. Energy Mater. 2020, 3, 7952–7963. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, X.; Wang, Z.; Chen, W.; Yuan, Q.; Wang, Y. Laminated ferroelectric polymer composites exhibit synchronous ultrahigh discharge efficiency and energy density via utilizing multiple-interface barriers. J. Mater. Chem. A 2022, 10, 20402–20413. [Google Scholar] [CrossRef]
- Li, H.; Zhou, Y.; Liu, Y.; Li, L.; Liu, Y.; Wang, Q. Dielectric polymers for high-temperature capacitive energy storage. Chem. Soc. Rev. 2021, 50, 6369–6400. [Google Scholar] [CrossRef]
- Pan, Z.; Li, L.; Wang, L.; Luo, G.; Xu, X.; Jin, F.; Dong, J.; Niu, Y.; Sun, L.; Guo, C.; et al. Tailoring Poly(styrene-co-maleic anhydride) Networks for All-Polymer Dielectrics Exhibiting Ultrahigh Energy Density and Charge-Discharge Efficiency at Elevated Temperatures. Adv. Mater. 2022, 35, e2207580. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Yang, M.; Zhou, L.; Fan, Y.; He, S.; Pan, J.; Tang, T.; Xiao, Y.; Nan, C.; Shen, Y. Scalable Ultrathin All-Organic Polymer Dielectric Films for High-Temperature Capacitive Energy Storage. Adv. Mater. 2022, 34, e2207421. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, X.; Feng, Y.; Yin, J. Recent progress in polymer/two-dimensional nanosheets composites with novel performances. Prog. Polym. Sci. 2022, 126, 101505. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Z.; Shen, X.; Liu, X.; Han, N.M.; Zheng, Q.; Mai, Y.-W.; Kim, J.-K. Graphene/Boron Nitride–Polyurethane Microlaminates for Exceptional Dielectric Properties and High Energy Densities. ACS Appl. Mater. Interfaces 2018, 10, 26641–26652. [Google Scholar] [CrossRef]
- Wang, H.; Xie, H.; Wang, S.; Gao, Z.; Li, C.; Hu, G.-H.; Xiong, C. Enhanced dielectric property and energy storage density of PVDF-HFP based dielectric composites by incorporation of silver nanoparticles-decorated exfoliated montmorillonite nanoplatelets. Compos. Part A Appl. Sci. Manuf. 2018, 108, 62–68. [Google Scholar] [CrossRef]
- Zhu, Y.; Yao, H.; Jiang, P.; Wu, J.; Zhu, X.; Huang, X. Two-Dimensional High-k Nanosheets for Dielectric Polymer Nanocomposites with Ultrahigh Discharged Energy Density. J. Phys. Chem. C 2018, 122, 18282–18293. [Google Scholar] [CrossRef]
- Pan, Z.; Liu, B.; Zhai, J.; Yao, L.; Yang, K.; Shen, B. NaNbO3 two-dimensional platelets induced highly energy storage density in trilayered architecture composites. Nano Energy 2017, 40, 587–595. [Google Scholar] [CrossRef]
- Yang, M.; Zhao, H.; He, D.; Bai, J. Constructing a continuous amorphous carbon interlayer to enhance dielectric performance of carbon nanotubes/polyvinylidene fluoride nanocomposites. Carbon 2017, 116, 94–102. [Google Scholar] [CrossRef]
- Kou, Y.; Zhou, W.; Li, X.; Wang, Z.; Li, Y.; Cai, H.; Liu, D.; Chen, F.; Wang, G.; Dang, Z.-M. Enhanced dielectric properties of PVDF nanocomposites with modified sandwich-like GO@PVP hybrids. Polym. Technol. Mater. 2019, 59, 592–605. [Google Scholar] [CrossRef]
- Wu, L.; Wu, K.; Liu, D.; Huang, R.; Huo, J.; Chen, F.; Fu, Q. Largely enhanced energy storage density of poly(vinylidene fluoride) nanocomposites based on surface hydroxylation of boron nitride nanosheets. J. Mater. Chem. A 2018, 6, 7573–7584. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, X.; Sun, Z.; Li, Y.; Li, J.; Shi, Y. Enhanced energy storage property of plate-like Na0.5Bi4.5Ti4O15/poly(vinylidene fluoride) composites through texture arrangement. Ceram. Int. 2019, 45, 18356–18362. [Google Scholar] [CrossRef]
- Pan, Z.; Ding, Q.; Yao, L.; Huang, S.; Xing, S.; Liu, J.; Chen, J.; Zhai, J. Simultaneously enhanced discharge energy density and efficiency in nanocomposite film capacitors utilizing two-dimensional NaNbO3@Al2O3 platelets. Nanoscale 2019, 11, 10546–10554. [Google Scholar] [CrossRef]
- Wang, L.; Gao, F.; Xu, J.; Zhang, K.; Kong, J.; Reece, M.; Yan, H. Enhanced dielectric tunability and energy storage properties of plate-like Ba0.6Sr0.4TiO3/poly(vinylidene fluoride) composites through texture arrangement. Compos. Sci. Technol. 2018, 158, 112–120. [Google Scholar] [CrossRef]
- Shile, M.; Hongwei, L.; Yang, S.; Ming, W.; Jiaqi, Z.; Jingyi, M.; Fumin, H.; Weitao, S.; Xiaodong, Z.; Ting, T.; et al. Research progress of layered PVDF-based nanodielectric energy storage characteristics. Polym. Bull. 2023, 1–41. [Google Scholar] [CrossRef]
- Guo, Y.; Wu, S.; Liu, S.; Xu, J.; Pawlikowska, E.; Szafran, M.; Rydosz, A.; Gao, F. Enhanced dielectric tunability and energy storage density of sandwich-structured Ba0.6Sr0.4TiO3/PVDF composites. Mater. Lett. 2022, 306, 130910. [Google Scholar] [CrossRef]
- Zhang, X.; Ye, H.; Chen, H.; Xu, L. Improved polarization and energy density in boron nitride nanosheets/poly(vinylidene fluoride-chlorotrifluoroethylene) nanocomposite with trilayered architecture regulation. Nanotechnology 2020, 31, 355401. [Google Scholar] [CrossRef] [PubMed]
- Pei, J.-Y.; Zha, J.-W.; Zhou, W.-Y.; Wang, S.-J.; Zhong, S.-L.; Yin, L.-J.; Zheng, M.-S.; Cai, H.-W.; Dang, Z.-M. Enhancement of breakdown strength of multilayer polymer film through electric field redistribution and defect modification. Appl. Phys. Lett. 2019, 114, 103702. [Google Scholar] [CrossRef]
- Wu, P.; Zhang, L.; Shan, X. Microstructure and dielectric response of BaSrTiO3/P(VDF-CTFE) nanocomposites. Mater. Lett. 2015, 159, 72–75. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, L.; Talebinezhad, H.; Tong, Y.; Cheng, Z.-Y. Effects of CuO additive on the dielectric property and energy-storage performance of BaTiO3-SiO2 ceramic-glass composite. Ceram. Int. 2018, 44, 16977–16983. [Google Scholar] [CrossRef]
- Yang, P.; Li, L.; Yuan, H.; Wen, F.; Zheng, P.; Wu, W.; Zhang, L.; Wang, G.; Xu, Z. Significantly enhanced energy storage performance of flexible composites using sodium bismuth titanate based lead-free fillers. J. Mater. Chem. C 2020, 8, 14910–14918. [Google Scholar] [CrossRef]
- Lv, X.; Luo, H.; Chen, S.; Han, X.; Ma, C.; Zhou, X.; Liu, W.; Wu, Z.; Zhou, K.; Zhang, D. BaTiO3 platelets and poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) hybrid composites for energy storage application. Mech. Syst. Signal Process. 2018, 108, 48–57. [Google Scholar] [CrossRef]
- Zhang, R.; Sheng, Q.; Ye, L.; Long, S.; Zhou, B.; Wen, F.; Yang, J.; Wang, G.; Bai, W. Two-dimensional SrTiO3 platelets induced the improvement of energy storage performance in polymer composite films at low electric fields. Ceram. Int. 2021, 48, 7145–7152. [Google Scholar] [CrossRef]
- Panda, S.; Pasha, S.K.K. Amplified Dielectric Properties of PVDF–HFP/SrTiO3 Nanocomposites for a Flexible Film Capacitor. Langmuir. 2023, 39, 13345–13358. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, S.; Xu, X.; Xu, J.; Bulejak, W.; Szafran, M.; Gao, F. Hygrothermal aging behavior of sandwich-structure Ba0.6Sr0.4TiO3/PVDF composites with high energy storage property and dielectric tunability. J. Alloys Compd. 2023, 962, 171058. [Google Scholar] [CrossRef]
- Jing, L.; Li, W.; Gao, C.; Li, M.; Fei, W. Achieving high energy storage performance in BiFeO3@TiO2 filled PVDF-based composites with opposite double heterojunction via electric field tailoring. Chem. Eng. J. 2022, 450, 138143. [Google Scholar] [CrossRef]
- Chen, M.; Yin, J.; Liu, X.; Feng, Y.; Su, B.; Lei, Q. Microstructure and dielectric property study of polyimide/BaTiO3 nanocomposite films. Thin Solid Film. 2013, 544, 116–119. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, D.; Zhou, K.; Zhou, X.; Luo, H. Abrahams, Significantly enhanced energy storage density of sandwich-structured (Na0.5Bi0.5)0.93Ba0.07TiO3/P(VDF-HFP) composites induced by PVP-modified two-dimensional platelets. J. Mater. Chem. A 2016, 4, 18050–18059. [Google Scholar]
- Luo, H.; Wu, Z.; Zhou, X.; Yan, Z.; Zhou, K.; Zhang, D. Enhanced performance of P(VDF-HFP) composites using two-dimensional BaTiO3 platelets and graphene hybrids. Compos. Sci. Technol. 2018, 160, 237–244. [Google Scholar] [CrossRef]
- Wang, X.W.; Fan, J.T.; Manikandan, M.; Zhang, B.H.; Guo, J.N.; Chen, J.Y.; Yang, F.; Zheng, M.M.; Zhang, H.X.; Hou, M.Z.; et al. Recent advances in composite films of lead-free ferroelectric ceramics and poly (vinylidene fluoride) (PVDF) for energy storage capacitor: A review. J. Mater. Sci. 2023, 58, 124–143. [Google Scholar] [CrossRef]
- Lin, Y.; Sun, C.; Zhan, S.; Zhang, Y.; Yang, H.; Yuan, Q. Two-dimensional sheet-like K0.5Na0.5NbO3 platelets and sandwich structure induced ultrahigh discharge efficiency in poly(vinylidenefluoride)-based composites. Compos. Sci. Technol. 2020, 199, 108368. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, Y.; Sun, C.; Zhan, S.; Yuan, Q.; Yang, H. Energy storage performance in polymer dielectrics by introducing 2D SrBi4Ti4O15 nanosheets. Ceram. Int. 2020, 46, 15270–15275. [Google Scholar] [CrossRef]
- Osada, M.; Sasaki, T. (Invited) New Dielectric Nanomaterials Fabricated from Nanosheet Technique. ECS Trans. 2012, 45, 3–8. [Google Scholar] [CrossRef]
- Osada, M.; Sasaki, T. Nanoarchitectonics in dielectric/ferroelectric layered perovskites: From bulk 3D systems to 2D nanosheets. Dalton Trans. 2018, 47, 2841–2851. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Morita, S.; Byun, K.-N.; Shi, Y.; Taniguchi, T.; Yamamoto, E.; Kobayashi, M.; Ebina, Y.; Sasaki, T.; Osada, M. Ultrahigh Energy Storage in 2D High-κ Perovskites. Nano Lett. 2023, 23, 3788–3795. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-H.; Kim, H.-J.; Osada, M.; Li, B.-W.; Ebina, Y.; Sasaki, T. 2D Perovskite Nanosheets with Thermally-Stable High-κ Response: A New Platform for High-Temperature Capacitors. ACS Appl. Mater. Interfaces 2014, 6, 19510–19514. [Google Scholar] [CrossRef]
- Shen, Z.-H.; Bao, Z.-W.; Cheng, X.-X.; Li, B.-W.; Liu, H.-X.; Shen, Y.; Chen, L.-Q.; Li, X.-G.; Nan, C.-W. Designing polymer nanocomposites with high energy density using machine learning. Npj Comput. Mater. 2021, 7, 110. [Google Scholar] [CrossRef]
- Li, J.; Liu, X.; Feng, Y.; Chen, D.; Li, Y.; Yue, D.; Huang, B.; Yin, J. Constructing bidirectional-matched interface between polymer and 2D nanosheets for enhancing energy storage performance of the composites. Energy Storage Mater. 2023, 54, 605–614. [Google Scholar] [CrossRef]
- Li, J.; Seok, S.I.; Chu, B.; Dogan, F.; Zhang, Q.; Wang, Q. Nanocomposites of Ferroelectric Polymers with TiO2 Nanoparticles Exhibiting Significantly Enhanced Electrical Energy Density. Adv. Mater. 2009, 21, 217–221. [Google Scholar] [CrossRef]
- Guo, N.; DiBenedetto, S.A.; Tewari, P.; Lanagan, M.T.; Ratner, M.A.; Marks, T.J. Nanoparticle, Size, Shape, and Interfacial Effects on Leakage Current Density, Permittivity, and Breakdown Strength of Metal Oxide−Polyolefin Nanocomposites: Experiment and Theory. Chem. Mater. 2010, 22, 1567–1578. [Google Scholar] [CrossRef]
- Schuman, T.P.; Siddabattuni, S.; Cox, O.; Dogan, F. Improved Dielectric Breakdown Strength of Covalently-Bonded Interface Polymer–Particle Nanocomposites. Compos. Interfaces 2010, 17, 719–731. [Google Scholar] [CrossRef]
- Tang, H.; Sodano, H.A. High energy density nanocomposite capacitors using non-ferroelectric nanowires. Appl. Phys. Lett. 2013, 102, 063901. [Google Scholar] [CrossRef]
- Chu, B.; Lin, M.; Neese, B.; Zhou, X.; Chen, Q.; Zhang, Q.M. Large enhancement in polarization response and energy density of poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) by interface effect in nanocomposites. Appl. Phys. Lett. 2007, 91, 122909. [Google Scholar] [CrossRef]
- Liu, W.; Liu, H.; Cheng, L.; Li, S. Enhanced energy storage performance in polypropylene-acrylic acid grafted polypropylene-ZrO2 ternary nanocomposites. J. Phys. D Appl. Phys. 2023, 56, 244001. [Google Scholar] [CrossRef]
- Cheng, L.; Liu, W.; Liu, C.; Liu, X.; Li, S. Enhanced energy storage properties of polypropylene/maleic anhydride-grafted polypropylene/nano-ZrO2 ternary system. J. Appl. Polym. Sci. 2019, 136, 48211. [Google Scholar] [CrossRef]
- Fredin, L.A.; Li, Z.; Lanagan, M.T.; Ratner, M.A.; Marks, T.J. Substantial Recoverable Energy Storage in Percolative Metallic Aluminum-Polypropylene Nanocomposites. Adv. Funct. Mater. 2013, 23, 3560–3569. [Google Scholar] [CrossRef]
- Kong, F.; Zhou, W.; Peng, W.; Liang, C.; Wu, H.; Lin, N.; Wang, G.; Liu, D.; Feng, A.; Liu, X. Interface modified Si@SiO2/PVDF composite dielectrics with synchronously ameliorative dielectric and mechanical properties. J. Appl. Polym. Sci. 2023, 140, e54214. [Google Scholar] [CrossRef]
- Li, L.; Fu, Q.; Li, Y.; Li, W. High dielectric constant, low loss, and low percolation threshold dielectric composites based on polyvinylidene fluoride and ferroferric oxide nanorods. Appl. Phys. Lett. 2016, 109, 072905. [Google Scholar] [CrossRef]
- Yao, T.; Zhou, W.; Peng, W.; Zhou, J.; Li, T.; Wu, H.; Zheng, J.; Lin, N.; Liu, D.; Hou, C. Insights into concomitant enhancements of dielectric properties and thermal conductivity of PVDF composites filled with core@double-shell structured Zn@ZnO@PS particles. J. Appl. Polym. Sci. 2022, 139, e53069. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, W.; Zhou, J.; Cao, J.; Liu, J.; Niu, H.; Liu, D.; Feng, A.; Li, Y. Remarkably enhanced dielectric properties in PVDF composites via engineering core@shell structured ZnO@PS nanoparticles. J. Mater. Sci. Mater. Electron. 2023, 34, 1314. [Google Scholar] [CrossRef]
- Yao, T.; Zhou, W.; Cao, G.; Peng, W.; Liu, J.; Dong, X.; Chen, X.; Zhang, Y.; Chen, Y.; Yuan, M. Engineering of core@double-shell structured Zn@ZnO@PS particles in poly(vinylidene fluoride) composites towards significantly enhanced dielectric performances. J. Appl. Polym. Sci. 2023, 140, e53772. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, F.; Zhu, H. Enhanced dielectric properties of polyvinylidene fluoride with addition of SnO2 nanoparticles. Phys. Status solidi (RRL)—Rapid Res. Lett. 2016, 10, 753–756. [Google Scholar] [CrossRef]
- Shen, Y.; Du, J.; Zhang, X.; Huang, X.; Song, Y.; Wu, H.; Lin, Y.; Li, M.; Nan, C.-W. Enhanced breakdown strength and suppressed leakage current of polyvinylidene fluoride nanocomposites by two-dimensional ZrO2 nanosheets. Mater. Express 2016, 6, 277–282. [Google Scholar] [CrossRef]
- Li, M.; Yao, M.; Su, Z.; Gao, W.; Yao, X. Improved breakdown strength and energy density of Al2O3/nano-ZrO2 composite films via enhanced interfacial repairing behavior. Ceram. Int. 2018, 44, 21428–21436. [Google Scholar] [CrossRef]
- Li, H.; Ai, D.; Ren, L.; Yao, B.; Han, Z.; Shen, Z.; Wang, J.; Chen, L.; Wang, Q. Scalable Polymer Nanocomposites with Record High-Temperature Capacitive Performance Enabled by Rationally Designed Nanostructured Inorganic Fillers. Adv. Mater. 2019, 31, e1900875. [Google Scholar] [CrossRef]
- Guan, F.; Yang, L.; Wang, J.; Guan, B.; Han, K.; Wang, Q.; Zhu, L. Confined Ferroelectric Properties in Poly(Vinylidene Fluoride-co-Chlorotrifluoroethylene)-graft-Polystyrene Graft Copolymers for Electric Energy Storage Applications. Adv. Funct. Mater. 2011, 21, 3176–3188. [Google Scholar] [CrossRef]
- Mackey, M.; Schuele, D.E.; Zhu, L.; Flandin, L.; Wolak, M.A.; Shirk, J.S.; Hiltner, A.; Baer, E. Reduction of Dielectric Hysteresis in Multilayered Films via Nanoconfinement. Macromolecules 2012, 45, 1954–1962. [Google Scholar] [CrossRef]
- Meng, Q.; Li, W.; Zheng, Y.; Zhang, Z. Effect of poly(methyl methacrylate) addition on the dielectric and energy storage properties of poly(vinylidene fluoride). J. Appl. Polym. Sci. 2010, 116, 2674–2684. [Google Scholar] [CrossRef]
- Liu, H.; Chen, J.; Wang, J.; Sun, Y.; Wang, C.; Zhang, P.; Shen, Z.; Zhang, X.; Li, B.-W.; Nan, C.-W.; et al. Greatly enhanced energy density in polymer nanocomposites coated with high-k perovskite nanosheets. Mater. Today Energy 2023, 31, 101213. [Google Scholar] [CrossRef]
- Song, S.; Xia, S.; Liu, Y.; Lv, X.; Sun, S. Effect of Na+ MMT-ionic liquid synergy on electroactive, mechanical, dielectric and energy storage properties of transparent PVDF-based nanocomposites. Chem. Eng. J. 2019, 384, 123365. [Google Scholar] [CrossRef]
- Hu, J.; Zhao, X.; Xie, J.; Liu, Y.; Sun, S. Influence of organic Na+-MMT on the dielectric and energy storage properties of maleic anhydride-functionalized polypropylene nanocomposites. J. Polym. Res. 2022, 29, 182. [Google Scholar] [CrossRef]
- Xie, J.; Liu, H.; Zhao, X.; Hu, J.; Liu, Y.; Wang, Y.; Sun, S.; Song, S. The influence of organic montmorillonite on the breakdown strength and energy density of poly(vinylidene fluoride)-based nanocomposites. J. Appl. Polym. Sci. 2022, 139, 51945. [Google Scholar] [CrossRef]
- Jia, Q.; Huang, X.; Wang, G.; Diao, J.; Jiang, P. MoS2 Nanosheet Superstructures Based Polymer Composites for High-Dielectric and Electrical Energy Storage Applications. J. Phys. Chem. C 2016, 120, 10206–10214. [Google Scholar] [CrossRef]
- Chen, J.; Wang, X.; Yu, X.; Fan, Y.; Duan, Z.; Jiang, Y.; Yang, F.; Zhou, Y. Significantly improved dielectric performances of nanocomposites via loading two-dimensional core-shell structure Bi2Te3@SiO2 nanosheets. Appl. Surf. Sci. 2018, 447, 704–710. [Google Scholar] [CrossRef]
- Cheng, D.; Wang, H.; Liu, B.; Wang, S.; Li, Y.; Xia, Y.; Xiong, C. Dielectric properties and energy-storage performance of two-dimensional molybdenum disulfide nanosheets/polyimide composite films. J. Appl. Polym. Sci. 2019, 136. [Google Scholar] [CrossRef]
- Chen, H.; Li, X.; Yu, W.; Wang, J.; Shi, Z.; Xiong, C.; Yang, Q. Chitin/MoS2 Nanosheet Dielectric Composite Films with Significantly Enhanced Discharge Energy Density and Efficiency. Biomacromolecules 2020, 21, 2929–2937. [Google Scholar] [CrossRef]
- Li, J.; Zhang, J.; Zhang, S.; Ren, K. 2D MoS2 Nanosheet-Based Polyimide Nanocomposite with High Energy Density for High Temperature Capacitor Applications. Macromol. Mater. Eng. 2021, 306, 2100079. [Google Scholar] [CrossRef]
- Jiang, H.; Ye, H.; Xu, L. One-pot synthesis of hexafluorobutyl acrylate hyperbranched copolymer for graphene/poly(vinylidenefluoride-trifluoroethylene- chlorofluoroethylene) dielectric composite. Nanotechnology 2022, 33, 215703. [Google Scholar] [CrossRef]
- Ye, H.; Zhang, X.; Xu, C.; Han, B.; Xu, L. Enhanced dielectric property and energy density in poly(vinylidene fluoride-chlorotrifluoroethylene) nanocomposite incorporated with graphene functionalized with hyperbranched polyethylene-graft-poly(trifluoroethyl methacrylate) copolymer. J. Mater. Chem. C 2018, 6, 11144–11155. [Google Scholar] [CrossRef]
- Chen, J.; Li, Y.; Wang, Y.; Dong, J.; Xu, X.; Yuan, Q.; Niu, Y.; Wang, Q.; Wang, H. Significantly improved breakdown strength and energy density of tri-layered polymer nanocomposites with optimized graphene oxide. Compos. Sci. Technol. 2020, 186, 107912. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, G.; Liu, F.; Han, K.; Gadinski, M.R.; Xiong, C.; Wang, Q. Solution-processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets. Energy Environ. Sci. 2014, 8, 922–931. [Google Scholar] [CrossRef]
- Liu, F.; Li, Q.; Li, Z.; Liu, Y.; Dong, L.; Xiong, C.; Wang, Q. Poly(methyl methacrylate)/boron nitride nanocomposites with enhanced energy density as high temperature dielectrics. Compos. Sci. Technol. 2017, 142, 139–144. [Google Scholar] [CrossRef]
- Peng, X.; Liu, X.; Qu, P.; Yang, B. Enhanced breakdown strength and energy density of PVDF composites by introducing boron nitride nanosheets. J. Mater. Sci. Mater. Electron. 2018, 29, 16799–16804. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhu, Y.; Huang, X.; Chen, J.; Li, Q.; He, J.; Jiang, P. High Energy Density Polymer Dielectrics Interlayered by Assembled Boron Nitride Nanosheets. Adv. Energy Mater. 2019, 9, 1901826. [Google Scholar] [CrossRef]
- Wu, L.; Luo, N.; Xie, Z.; Liu, Y.; Chen, F.; Fu, Q. Improved breakdown strength of Poly(vinylidene Fluoride)-based composites by using all ball-milled hexagonal boron nitride sheets without centrifugation. Compos. Sci. Technol. 2020, 190, 108046. [Google Scholar] [CrossRef]
- Chen, H.; Pan, Z.; Wang, W.; Chen, Y.; Xing, S.; Cheng, Y.; Ding, X.; Liu, J.; Zhai, J.; Yu, J. Ultrahigh discharge efficiency and improved energy density in polymer-based nanocomposite for high-temperature capacitors application. Compos. Part A Appl. Sci. Manuf. 2021, 142, 106266. [Google Scholar] [CrossRef]
- Lao, J.; Xie, H.; Shi, Z.; Li, G.; Li, B.; Hu, G.-H.; Yang, Q.; Xiong, C. Flexible Regenerated Cellulose/Boron Nitride Nanosheet High-Temperature Dielectric Nanocomposite Films with High Energy Density and Breakdown Strength. ACS Sustain. Chem. Eng. 2018, 6, 7151–7158. [Google Scholar] [CrossRef]
- Yang, J.; Xie, H.; Chen, H.; Shi, Z.; Wu, T.; Yang, Q.; Xiong, C. Cellulose nanofibril/boron nitride nanosheet composites with enhanced energy density and thermal stability by interfibrillar cross-linking through Ca2+. J. Mater. Chem. A 2018, 6, 1403–1411. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H.; Li, X.; Zhang, C.; Yu, W.; Zhou, L.; Yang, Q.; Shi, Z.; Xiong, C. Flexible dielectric film with high energy density based on chitin/boron nitride nanosheets. Chem. Eng. J. 2020, 383, 123147. [Google Scholar] [CrossRef]
- Feng, Y.; Deng, Q.; Peng, C.; Hu, J.; Li, Y.; Wu, Q.; Xu, Z. An ultrahigh discharged energy density achieved in an inhomogeneous PVDF dielectric composite filled with 2D MXene nanosheets via interface engineering. J. Mater. Chem. C 2018, 6, 13283–13292. [Google Scholar] [CrossRef]
- Li, W.; Song, Z.; Zhong, J.; Qian, J.; Tan, Z.; Wu, X.; Chu, H.; Nie, W.; Ran, X. Multilayer-structured transparent MXene/PVDF film with excellent dielectric and energy storage performance. J. Mater. Chem. C 2019, 7, 10371–10378. [Google Scholar] [CrossRef]
- Kelarakis, A.; Hayrapetyan, S.; Ansari, S.; Fang, J.; Estevez, L.; Giannelis, E.P. Clay nanocomposites based on poly(vinylidene fluoride-co-hexafluoropropylene): Structure and properties. Polymer 2010, 51, 469–474. [Google Scholar] [CrossRef]
- Polizos, G.; Tomer, V.; Manias, E.; Randall, C.A. Epoxy-based nanocomposites for electrical energy storage. II: Nanocomposites with nanofillers of reactive montmorillonite covalently-bonded with barium titanate. J. Appl. Phys. 2010, 108, 074117. [Google Scholar] [CrossRef]
- Tomer, V.; Polizos, G.; Manias, E.; Randall, C.A. Epoxy-based nanocomposites for electrical energy storage. I: Effects of montmorillonite and barium titanate nanofillers. J. Appl. Phys. 2010, 108, 074116. [Google Scholar] [CrossRef]
- Atanassov, A.; Kostov, G.; Kiryakova, D.; Borisova-Koleva, L. Properties of clay nanocomposites based on poly(vinylidene fluoride-co- hexafluoropropylene). J. Thermoplast. Compos. Mater. 2012, 27, 126–141. [Google Scholar] [CrossRef]
- Patro, T.U.; Mhalgi, M.V.; Khakhar, D.; Misra, A. Studies on poly(vinylidene fluoride)–clay nanocomposites: Effect of different clay modifiers. Polymer 2008, 49, 3486–3499. [Google Scholar] [CrossRef]
- Lopes, A.C.; Costa, C.M.; Tavares, C.J.; Neves, I.C.; Lanceros-Mendez, S. Nucleation of the Electroactive γ Phase and Enhancement of the Optical Transparency in Low Filler Content Poly(vinylidene)/Clay Nanocomposites. J. Phys. Chem. C 2011, 115, 18076–18082. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Jiang, S.L.; Yu, Y.; Xiong, G.; Zhang, Q.F.; Guang, G.Z. Phase transformation mechanisms and piezoelectric properties of poly(vinylidene fluoride)/montmorillonite composite. J. Appl. Polym. Sci. 2012, 123, 2595–2600. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Wu, C.; Zhou, P.; Zhou, J.; Huo, J.; Davis, K.; Konstantinou, A.C.; Nguyen, H.; Cao, Y. Polyamideimide dielectric with montmorillonite nanosheets coating for high-temperature energy storage. Chem. Eng. J. 2022, 437, 135430. [Google Scholar] [CrossRef]
- Kumar, N.; Sengwa, R.J. Broadband dielectric behaviour and structural characterization of PVDF/PMMA/OMMT polymer nanocomposites for promising performance nanodielectrics in flexible technology advances. Phys. Scr. 2023, 98, 085915. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, C.; LaChance, A.M.; Zhou, J.; Gao, Y.; Zhang, Y.; Sun, L.; Cao, Y.; Liang, X. Interfacial polarization suppression of P(VDF-HFP) film through 2D montmorillonite nanosheets coating. Prog. Org. Coatings 2022, 172, 107119. [Google Scholar] [CrossRef]
- Ma, Y.; Tong, W.; Wang, W.; An, Q.; Zhang, Y. Montmorillonite/PVDF-HFP-based energy conversion and storage films with enhanced piezoelectric and dielectric properties. Compos. Sci. Technol. 2018, 168, 397–403. [Google Scholar] [CrossRef]
- Liu, H.; Xu, P.; Yao, H.; Chen, W.; Zhao, J.; Kang, C.; Bian, Z.; Gao, L.; Guo, H. Controllable reduction of graphene oxide and its application during the fabrication of high dielectric constant composites. Appl. Surf. Sci. 2017, 420, 390–398. [Google Scholar] [CrossRef]
- Fan, P.; Wang, L.; Yang, J.; Chen, F.; Zhong, M. Graphene/poly(vinylidene fluoride) composites with high dielectric constant and low percolation threshold. Nanotechnology 2012, 23, 365702. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Han, N.M.; Wu, Y.; Liu, X.; Shen, X.; Zheng, Q.; Kim, J.-K. Ultrahigh dielectric constant and low loss of highly-aligned graphene aerogel/poly(vinyl alcohol) composites with insulating barriers. Carbon 2017, 123, 385–394. [Google Scholar] [CrossRef]
- Zhang, T.; Huang, W.; Zhang, N.; Huang, T.; Yang, J.; Wang, Y. Grafting of polystyrene onto reduced graphene oxide by emulsion polymerization for dielectric polymer composites: High dielectric constant and low dielectric loss tuned by varied grafting amount of polystyrene. Eur. Polym. J. 2017, 94, 196–207. [Google Scholar] [CrossRef]
- Rasul, G.; Kiziltas, A.; Arfaei, B.; Shahbazian-Yassar, R. 2D boron nitride nanosheets for polymer composite materials. npj 2D Mater. Appl. 2021, 5, 56. [Google Scholar] [CrossRef]
- Jiang, X.-F.; Weng, Q.; Wang, X.-B.; Li, X.; Zhang, J.; Golberg, D.; Bando, Y. Recent Progress on Fabrications and Applications of Boron Nitride Nanomaterials: A Review. J. Mater. Sci. Technol. 2015, 31, 589–598. [Google Scholar] [CrossRef]
- Cui, Z.; Cao, Z.; Ma, R.; Dobrynin, A.V.; Adamson, D.H. Boron Nitride Surface Activity as Route to Composite Dielectric Films. ACS Appl. Mater. Interfaces 2015, 7, 16913–16916. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, Y.; Wang, J.; Li, H.; Xu, W.; Li, B.; Chen, L.-Q.; Wang, Q. Lightweight Porous Polystyrene with High Thermal Conductivity by Constructing 3D Interconnected Network of Boron Nitride Nanosheets. ACS Appl. Mater. Interfaces 2020, 12, 46767–46778. [Google Scholar] [CrossRef]
- Xie, B.-H.; Huang, X.; Zhang, G.-J. High thermal conductive polyvinyl alcohol composites with hexagonal boron nitride microplatelets as fillers. Compos. Sci. Technol. 2013, 85, 98–103. [Google Scholar] [CrossRef]
- Li, H.; Ren, L.; Zhou, Y.; Yao, B.; Wang, Q. Recent progress in polymer dielectrics containing boron nitride nanosheets for high energy density capacitors. High Volt. 2020, 5, 365–376. [Google Scholar] [CrossRef]
- Liu, X.; Ji, T.; Li, N.; Liu, Y.; Yin, J.; Su, B.; Zhao, J.; Li, Y.; Mo, G.; Wu, Z. Preparation of polyimide composites reinforced with oxygen doped boron nitride nano-sheet as multifunctional materials. Mater. Des. 2019, 180, 107963. [Google Scholar] [CrossRef]
- Yang, M.; Zhao, H.; He, D.; Bai, J. Largely enhanced dielectric properties of carbon nanotubes/polyvinylidene fluoride binary nanocomposites by loading a few boron nitride nanosheets. Appl. Phys. Lett. 2016, 109, 072906. [Google Scholar] [CrossRef]
- Li, Q.; Liu, F.; Yang, T.; Gadinski, M.R.; Zhang, G.; Chen, L.-Q.; Wang, Q. Sandwich-structured polymer nanocomposites with high energy density and great charge–discharge efficiency at elevated temperatures. Proc. Natl. Acad. Sci. USA 2016, 113, 9995–10000. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, L.; Wang, R.; Poyraz, S.; Cook, J.; Bozack, M.J.; Das, S.; Zhang, X.; Hu, L. Ultrafast Microwave Nano-manufacturing of Fullerene-Like Metal Chalcogenides. Sci. Rep. 2016, 6, 22503. [Google Scholar] [CrossRef]
- Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O.V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033. [Google Scholar] [CrossRef]
- Choi, W.; Choudhary, N.; Han, G.H.; Park, J.; Akinwande, D.; Lee, Y.H. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 2017, 20, 116–130. [Google Scholar] [CrossRef]
- Eksik, O.; Gao, J.; Shojaee, S.A.; Thomas, A.; Chow, P.; Bartolucci, S.F.; Lucca, D.A.; Koratkar, N. Epoxy Nanocomposites with Two-Dimensional Transition Metal Dichalcogenide Additives. ACS Nano 2014, 8, 5282–5289. [Google Scholar] [CrossRef]
- He, D.; Wang, Y.; Zhang, L.; Song, S.; Deng, Y. Poly(vinylidene fluoride)-Based composites modulated via multiscale two-dimensional fillers for high dielectric performances. Compos. Sci. Technol. 2018, 159, 162–170. [Google Scholar] [CrossRef]
- Pan, X.-R.; Wang, M.; Qi, X.-D.; Zhang, N.; Huang, T.; Yang, J.-H.; Wang, Y. Fabrication of sandwich-structured PPy/MoS2/PPy nanosheets for polymer composites with high dielectric constant, low loss and high breakdown strength. Compos. Part A Appl. Sci. Manuf. 2020, 137, 106032. [Google Scholar] [CrossRef]
- Cheng, Y.; Pan, Z.; Bai, H.; Chen, H.; Yao, L.; Ding, X.; Shi, S.; Liu, J.; Xie, Z.; Xu, J.; et al. Two-Dimensional Fillers Induced Superior Electrostatic Energy Storage Performance in Trilayered Architecture Nanocomposites. ACS Appl. Mater. Interfaces 2022, 14, 8448–8457. [Google Scholar] [CrossRef]
- Wang, H.-Q.; Wang, J.-W.; Wang, X.-Z.; Gao, X.-H.; Zhuang, G.-C.; Yang, J.-B.; Ren, H. Dielectric properties and energy storage performance of PVDF-based composites with MoS2@MXene nanofiller. Chem. Eng. J. 2022, 437, 135431. [Google Scholar] [CrossRef]
- Huang, J.; Zhong, Y.; Zhang, L.; Cai, J. Extremely Strong and Transparent Chitin Films: A High-Efficiency, Energy-Saving, and “Green” Route Using an Aqueous KOH/Urea Solution. Adv. Funct. Mater. 2017, 27, 1701100. [Google Scholar] [CrossRef]
- Naguib, M.; Mochalin, V.N.; Barsoum, M.W.; Gogotsi, Y. 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials. Adv. Energy Mater. 2014, 26, 992–1005. [Google Scholar] [CrossRef] [PubMed]
- Anasori, B.; Lukatskaya, M.R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098. [Google Scholar] [CrossRef]
- Khazaei, M.; Ranjbar, A.; Arai, M.; Sasaki, T.; Yunoki, S. Electronic properties and applications of MXenes: A theoretical review. J. Mater. Chem. C 2017, 5, 2488–2503. [Google Scholar] [CrossRef]
- Naguib, M.; Barsoum, M.W.; Gogotsi, Y. Ten Years of Progress in the Synthesis and Development of MXenes. Adv. Mater. 2021, 33, 2103393. [Google Scholar] [CrossRef] [PubMed]
- VahidMohammadi, A.; Rosen, J.; Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021, 372, eabf1581. [Google Scholar] [CrossRef] [PubMed]
- Gong, K.; Zhou, K.; Qian, X.; Shi, C.; Yu, B. MXene as emerging nanofillers for high-performance polymer composites: A review. Compos. Part B Eng. 2021, 217, 108867. [Google Scholar] [CrossRef]
- Parajuli, D.; Murali, N.C.; Karki, B.D.K.; Samatha, K.; Kim, A.; Park, M.; Pant, B. Advancements in MXene-Polymer Nanocomposites in Energy Storage and Biomedical Applications. Polymers 2022, 14, 3433. [Google Scholar] [CrossRef]
- Dayananda, D.; Reddy, P.L.; Deshmukh, K.; Kumar, Y.R.; Kesarla, M.K.; Kar, T.; Sadasivuni, K.K.; Pasha, S.K.K. Chapter 22—MXene-based flexible polymer composites as high dielectric constant materials. In Mxenes and Their Composites; Sadasivuni, K.K., Deshmukh, K., Pasha, S.K.K., Kovářík, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 725–758. [Google Scholar]
- Abdah, M.A.A.M.; Awan, H.T.A.; Mehar, M.; Mustafa, M.N.; Walvekar, R.; Alam, M.W.; Khalid, M.; Umapathi, R.; Chaudhary, V. Advancements in MXene-polymer composites for high-performance supercapacitor applications. J. Energy Storage 2023, 63, 106942. [Google Scholar] [CrossRef]
- Liu, X.; Chen, D.; Yang, C.; Li, Y.; Feng, Y.; Li, J.; Yue, D.; Zhang, J.; Li, Y.; Yin, J. Study on energy and information storage properities of 2D-MXene/polyimide composites. Compos. Part B Eng. 2022, 241, 110014. [Google Scholar] [CrossRef]
- Tu, S.; Jiang, Q.; Zhang, X.; Alshareef, H.N. Large Dielectric Constant Enhancement in MXene Percolative Polymer Composites. ACS Nano 2018, 12, 3369–3377. [Google Scholar] [CrossRef] [PubMed]
- Tu, S.; Jiang, Q.; Zhang, J.; He, X.; Hedhili, M.N.; Zhang, X.; Alshareef, H.N. Enhancement of Dielectric Permittivity of Ti3C2Tx MXene/Polymer Composites by Controlling Flake Size and Surface Termination. ACS Appl. Mater. Interfaces 2019, 11, 27358–27362. [Google Scholar] [CrossRef] [PubMed]
- Mirkhani, S.A.; Zeraati, A.S.; Aliabadian, E.; Naguib, M.; Sundararaj, U. High Dielectric Constant and Low Dielectric Loss via Poly(vinyl alcohol)/Ti3C2Tx MXene Nanocomposites. ACS Appl. Mater. Interfaces 2019, 11, 18599–18608. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.; Wang, J.-W.; Liu, D.-N.; Wei, L.; Wu, S.-Q.; Ren, H. A novel high permittivity percolative composite with modified MXene. Polymer 2019, 174, 86–95. [Google Scholar] [CrossRef]
- Ma, W.; Yang, K.; Wang, H.; Li, H. Poly(vinylidene fluoride-co-hexafluoropropylene)-MXene Nanosheet Composites for Microcapacitors. ACS Appl. Nano Mater. 2020, 3, 7992–8003. [Google Scholar] [CrossRef]
- Mazhar, S.; Qarni, A.A.; Haq, Y.U.; Haq, Z.U.; Murtaza, I. Promising PVC/MXene based flexible thin film nanocomposites with excellent dielectric, thermal and mechanical properties. Ceram. Int. 2020, 46, 12593–12605. [Google Scholar] [CrossRef]
- Wei, L.; Wang, J.-W.; Gao, X.-H.; Wang, H.-Q.; Wang, X.-Z.; Ren, H. Enhanced Dielectric Properties of a Poly(dimethyl siloxane) Bimodal Network Percolative Composite with MXene. ACS Appl. Mater. Interfaces 2020, 12, 16805–16814. [Google Scholar] [CrossRef]
- Wu, W.; Zhao, W.J.; Sun, Q.J.; Yu, B.; Yin, X.M.; Cao, X.W.; Feng, Y.H.; Li, R.K.Y.; Qu, J.P. Surface treatment of two dimensional MXene for poly(vinylidene fluoride) nanocomposites with tunable dielectric permittivity. Compos. Commun. 2020, 23, 100562. [Google Scholar] [CrossRef]
- Zhang, P.; Lai, J.; Wang, R. Flexible Nanocomposites Based on P(VDF-TrFE) Matrix and MXene 2-D Fillers with Low Percolation Threshold and High Dielectric Constant. J. Electron. Mater. 2022, 51, 6264–6274. [Google Scholar] [CrossRef]
- Malik, R.; Parida, R.; Parida, B.N.; Nayak, N.C. Structural, thermal and dielectric properties of 2D layered Ti3C2Tx (MXene) filled poly (ethylene-co-methyl acrylate) (EMA) nanocomposites. J. Appl. Polym. Sci. 2023, 140, e53460. [Google Scholar] [CrossRef]
- Tsyganov, A.; Vikulova, M.; Artyukhov, D.; Zheleznov, D.; Gorokhovsky, A.; Gorshkov, N. Intercalation Effects on the Dielectric Properties of PVDF/Ti3C2Tx MXene Nanocomposites. Nanomaterials 2023, 13, 1337. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, J.; Zhu, X.; Yin, Y.; Xue, J.; Xia, F.; Li, Y.; Xue, Q. Plate-barrier architecture of rGO-TiO2 derived from MXene for constructing well-aligned polymer nanocomposites with excellent dielectric performance. Compos. Sci. Technol. 2022, 218, 109191. [Google Scholar] [CrossRef]
- Zhang, L.; Nie, L.; Zhang, S.; Dong, Z.; Zhou, Q.; Zhang, Z.; Pan, G.-B. 2D conductive MOF modified MXene nanosheets for poly (vinylidene fluoride) nanocomposite with high permittivity. Mater. Lett. 2022, 314, 131820. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, L.; Liu, B.; Hua, H.; Jiang, H.; Yin, C.; Wen, F. Energy Storage Performance of Polymer-Based Dielectric Composites with Two-Dimensional Fillers. Nanomaterials 2023, 13, 2842. https://doi.org/10.3390/nano13212842
You L, Liu B, Hua H, Jiang H, Yin C, Wen F. Energy Storage Performance of Polymer-Based Dielectric Composites with Two-Dimensional Fillers. Nanomaterials. 2023; 13(21):2842. https://doi.org/10.3390/nano13212842
Chicago/Turabian StyleYou, Liwen, Benjamin Liu, Hongyang Hua, Hailong Jiang, Chuan Yin, and Fei Wen. 2023. "Energy Storage Performance of Polymer-Based Dielectric Composites with Two-Dimensional Fillers" Nanomaterials 13, no. 21: 2842. https://doi.org/10.3390/nano13212842
APA StyleYou, L., Liu, B., Hua, H., Jiang, H., Yin, C., & Wen, F. (2023). Energy Storage Performance of Polymer-Based Dielectric Composites with Two-Dimensional Fillers. Nanomaterials, 13(21), 2842. https://doi.org/10.3390/nano13212842