The Electron–Phonon Interaction at Vicinal Metal Surfaces Measured with Helium Atom Scattering
Abstract
:1. Introduction
2. Theory
3. The Copper Vicinal Surfaces Cu(11α)
4. The Aluminum Vicinal Surfaces Al(221) and Al(332)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Comsa, C.; Mechtersheimer, G.; Poelsema, B.; Tomoda, S. Direct Evidence for Terrace Bending from He Beam Scattering on Pt(997). Surf. Sci. 1979, 89, 123. [Google Scholar] [CrossRef]
- Harris, J.; Liebsch, A.; Comsa, G.; Mechtersheimer, G.; Poelsema, B.; Tomoda, S. Refraction effects in atom scattering from stepped surfaces. Surf. Sci. 1982, 118, 279. [Google Scholar] [CrossRef]
- Villain, J.; Grempel, D.R.; Lapujoulade, J. Roughening transition of high-index crystal faces: The case of copper. J. Phys. F 1985, 15, 809. [Google Scholar] [CrossRef]
- den Nijs, M.; Riedel, E.K.; Conrad, E.H.; Engel, T. Roughening of Stepped Metal Surfaces. Phys. Rev. Lett. 1985, 55, 1689, Erratum in Phys. Rev. Lett. 1986, 56, 1279. [Google Scholar] [CrossRef] [PubMed]
- Conrad, E.H.; Allen, L.R.; Blanchard, D.L.; Engel, T. Kosterlitz-Thouless roughening at the Ni(113) surface. Surf. Sci. 1987, 187, 265. [Google Scholar] [CrossRef]
- Conrad, E.H.; Aten, R.M.; Kaufman, D.S.; Allen, L.R.; Engel, T.; den Nijs, M.; Riedel, E.K. Observation of surface roughening on Ni(115). J. Chem. Phys. 1986, 84, 1015, Erratum in J. Chem. Phys. 1986, 85, 4756. [Google Scholar] [CrossRef]
- Bartolini, A.; Ercolessi, F.; Tosatti, E. “Magic” Vicinal Surfaces Stabilized by Reconstruction. Phys. Rev. Lett. 1989, 63, 872. [Google Scholar] [CrossRef]
- Lapujoulade, J.; Salanon, B.; Fabre, F.; Loisel, B. The Roughening Transition of Vicinal Surfaces, in Kinetics of Ordering and Growth at Surfaces; Lagally, M.G., Ed.; Plenum Press: New York, NY, USA, 1990; p. 355. [Google Scholar]
- Lapujoulade, J. The roughening transition at metal surfaces. Surf. Sci. Rep. 1994, 20, 191. [Google Scholar] [CrossRef]
- Hahn, E.; Schief, H.; Marsico, V.; Fricke, A.; Kern, K. Orientational Instability of Vicinal Pt Surfaces Close to (111). Phys. Rev. Lett. 1994, 72, 3378. [Google Scholar] [CrossRef]
- Frenken, J.W.M.; Stoltze, P. Are Vicinal Metal Surfaces Stable? Phys. Rev. Lett. 1999, 82, 3500. [Google Scholar] [CrossRef]
- Le Goff, E.; Barbier, L.; Masson, L.; Salanon, B. Vicinal surfaces: Free energy, terrace width distribution and step correlation functions. Surf. Sci. 1999, 432, 139. [Google Scholar] [CrossRef]
- Nozières, P. The roughening transition of vicinal surfaces. Eur. Phys. J. B 2001, 24, 383. [Google Scholar] [CrossRef]
- Michel, E.G. Vicinal surfaces. J. Phys. Condens. Matter 2003, 15, E01, a special section collecting ten contributions on the expected relevant role of vicinal surfaces in different areas of surface science. [Google Scholar] [CrossRef]
- Barreteau, C.; Raouafi, F.; Desjonquères, M.-C.; Spanjaard, D. Modelisation of transition and noble metal vicinal surfaces: Energetics, vibrations and stability. J. Phys. Cond. Matter 2003, 15, S3171. [Google Scholar] [CrossRef]
- Da Silva, J.L.F.; Barreteau, C.; Schroeder, K.; Blügel, S. All-electron first-principles investigations of the energetics of vicinal Cu surfaces. Phys. Rev. B 2006, 73, 125402. [Google Scholar] [CrossRef]
- Yu, D.K.; Bonzel, H.P.; Scheffler, M. The stability of vicinal surfaces and the equilibrium crystal shape of Pb by first principles theory. New J. Phys. 2006, 8, 65. [Google Scholar] [CrossRef]
- Hecquet, P. Stability of vicinal surfaces and role of the surface stress. Surf. Sci. 2010, 604, 834. [Google Scholar] [CrossRef]
- Guin, L.; Jabbour, M.E.; Shaabani-Ardali, L.; Benoit-Maréchal, L.; Triantafyllidis, N. Stability of Vicinal Surfaces: Beyond the Quasistatic Approximation. Phys. Rev. Lett. 2020, 124, 036101. [Google Scholar] [CrossRef]
- Guin, L.; Jabbour, M.E.; Shaabani-Ardali, L.; Triantafyllidis, N. Revisiting step instabilities on crystal surfaces. Part I: The quasistatic approximation. J. Mech. Phys. Solids 2021, 156, 104574. [Google Scholar]
- Guin, L.; Jabbour, M.E.; Shaabani-Ardali, L.; Triantafyllidis, N. Part II: General theory. J. Mech. Phys. Solids 2021, 156, 104582. [Google Scholar] [CrossRef]
- Marsico, V.; Blanc, M.; Kuhnke, K.; Kern, K. Discrete Row Growth at Vicinal Surfaces. Phys. Rev. Lett. 1997, 78, 94. [Google Scholar] [CrossRef]
- Kuhnke, K.; Kern, K. Vicinal metal surfaces as nanotemplates for the growth of low-dimensional structures. J. Phys. Condens. Matter 2003, 15, S3311. [Google Scholar] [CrossRef]
- Lee, T.-Y.; Sarbach, S.; Kuhnke, K.; Kern, K. Growth and surface alloying of Fe on Pt(997). Surf. Sci. 2006, 600, 3266. [Google Scholar] [CrossRef]
- Tegenkamp, C.H. Vicinal surfaces for functional nanostructures. J. Phys. Condens. Matter 2009, 21, 013002. [Google Scholar] [CrossRef]
- Hendriksen, B.L.M.; Ackermann, M.D.; van Rijn, R.; Stoltz, D.; Popa, I.; Balmes, O.; Resta, A.; Wermeille, D.; Felici, R.; Ferrer, S.; et al. The role of steps in surface catalysis and reaction oscillations. Nat. Chem. 2010, 2, 730. [Google Scholar] [CrossRef]
- Zhang, L.-F.; Flammia, L.; Covaci, L.; Perali, A.; Miloševic, M.V. Multifaceted impact of a surface step on superconductivity in atomically thin films. Phys. Rev. B 2017, 96, 104509. [Google Scholar] [CrossRef]
- Xu, Y.; Jiang, G.; Chiu, J.; Miao, L.; Kotta, E.; Zhang, Y.; Biswas, R.R.; Wray, L.A. Connection topology of step edge state bands at the surface of a three-dimensional topological insulator. New J. Phys. 2018, 20, 073014. [Google Scholar] [CrossRef]
- Wang, Z.-H.; Xu, F.; Li, L.; Lü, R.; Wang, B.; Chen, W.-Q. One-dimensional topological superconductivity at the edges of twisted bilayer graphene nanoribbons. Phys. Rev. B 2019, 100, 094531. [Google Scholar] [CrossRef]
- Xu, L.X.; Ia, Y.Y.Y.; Liu, S.; Li, Y.W.; Wei, L.Y.; Wang, H.Y.; Wang, C.W.; Yang, H.F.; Liang, A.J.; Huang, K.; et al. Evidence of a topological edge state in a superconducting non-symmorphic nodal-line semimetal. Phys. Rev. B 2021, 103, L201109. [Google Scholar] [CrossRef]
- Manson, J.R.; Benedek, G.; Miret-Artés, S. Atom scattering as a probe of the surface electron-phonon interaction at conducting surfaces. Surf. Sci. Rep. 2022, 77, 100552, Eq. (151), the exponent γ ≡ −η is used, with the value γ = −1. [Google Scholar] [CrossRef]
- Manson, J.R.; Benedek, G.; Miret-Artés, S. Electron–Phonon Coupling Strength at Metal Surfaces Directly Determined from the Helium Atom Scattering Debye–Waller Factor. J. Phys. Chem. Lett. 2016, 7, 1016, Correction in J. Phys. Chem. Lett. 2016, 7, 1691. [Google Scholar]
- Benedek, G.; Miret-Artés, S.; Toennies, J.P.; Manson, J.R. Electron-Phonon Coupling Constant of Metallic Overlayers from Specular He-Atom Scattering. J. Phys. Chem. Lett. 2018, 9, 76. [Google Scholar] [CrossRef]
- Benedek, G.; Manson, J.R.; Miret-Artés, S. The Electron-Phonon Coupling Constant for Single-Layer Graphene on Metal Substrates Determined from He Atom Scattering. Phys. Chem. Chem. Phys. 2021, 23, 7553. [Google Scholar] [CrossRef]
- Benedek, G.; Miret-Artés, S.; Manson, J.R.; Ruckhofer, A.; Ernst, W.E.; Tamtögl, A. Origin of the Electron-Phonon Interaction of Topological Semimetal Surfaces Measured with Helium Atom Scattering. J. Phys. Chem. Lett. 2020, 11, 1927. [Google Scholar] [CrossRef]
- Tamtögl, A.; Kraus, P.; Avidor, N.; Bremholm, M.; Hedegaard, E.M.J.; Iversen, B.B.; Bianchi, M.; Hofmann, P.H.; Ellis, J.; Allison, W.; et al. Electron-Phonon Coupling and Surface Debye Temperature of Bi2Te3(111) from Helium Atom Scattering. Phys. Rev. B 2017, 95, 195401. [Google Scholar] [CrossRef]
- Ruckhofer, A.; Campi, D.; Bremholm, M.; Hofmann, P.H.; Benedek, G.; Bernasconi, M.; Ernst, W.E.; Tamtögl, A. THz Surface Excitations and Electron-Phonon Coupling in Bi2Se3(111) from Helium Atom Scattering. Phys. Rev. Res. 2020, 2, 023186. [Google Scholar] [CrossRef]
- Ruckhofer, A.; Benedek, G.; Bremholm, M.; Ernst, W.E.; Tamtögl, A. Observation of Dirac Charge-Density Waves in Bi2Te2Se. Nanomaterials 2023, 13, 476. [Google Scholar] [CrossRef]
- Anemone, G.; Garnica, M.; Zappia, M.; Casado Aguilar, P.; Taleb, A.A.; Kuo, C.-N.; Lue, C.S.; Politano, A.; Benedek, G.; Vázquez de Parga, A.L.; et al. Experimental determination of surface thermal expansion and electron-phonon coupling constant of 1T-PtTe2. 2D Mater. 2020, 7, 025007. [Google Scholar] [CrossRef]
- Anemone, G.; Casado Aguilar, P.; Garnica, M.; Calleja, F.; Taleb, A.A.; Kuo, C.-N.; Lue, C.S.; Politano, A.; Vázquez de Parga, A.L.; Benedek, G.; et al. Electron-phonon coupling in superconducting 1T-PdTe2. Npj 2D Mater. Appl. 2021, 5, 25. [Google Scholar] [CrossRef]
- Benedek, G.; Manson, J.R.; Miret-Artés, S.; Ruckhofer, A.; Ernst, W.E.; Tamtögl, A.; Toennies, J.P. Measuring the Electron-Phonon Interaction in Two-Dimensional Superconductors with He Atom Scattering. Condens. Matter 2020, 5, 79, Erratum in Condens. Matter 2021, 6, 54. [Google Scholar] [CrossRef]
- Benedek, G.; Manson, J.R.; Miret-Artés, S. The Electron–Phonon Interaction of Low-Dimensional and Multi-Dimensional Materials from He Atom Scattering. Adv. Mater. 2020, 32, 2002072. [Google Scholar] [CrossRef]
- Lapujoulade, J.; Perreau, J.; Kara, A. The Thermal Attenuation of Elastic Scattering of Helium from Copper Single Crystal Surfaces. Surf. Sci. 1983, 129, 59. [Google Scholar] [CrossRef]
- Lapujoulade, J.; Lejay, Y.; Papanicolaou, N. Diffraction of Helium from a Stepped Surface: Cu(117)—An Experimental Study. Surf. Sci. 1979, 90, 133. [Google Scholar] [CrossRef]
- Witte, G.; Braun, J.; Lock, A.; Toennies, J.P. Helium-atom-scattering study of the dispersion curves of step-localized phonons on Cu(211) and Cu(511). Phys. Rev. B 1995, 52, 2165. [Google Scholar] [CrossRef]
- Miret-Artés, S.; Toennies, J.P.; Witte, G. Surface-scattering study of the interaction potential of He atoms with the step edges of the Cu(211) and Cu(511) vicinal surfaces. Phys. Rev. B 1996, 54, 5881. [Google Scholar] [CrossRef]
- Lock, A. Untersuchung der Struktur und Dynamik von Gestuften Metall-Einkrill-oberflächen Mittels Helium-Atomstreuung; Bericht 2/1991; Max-Planck-Institut für Strömungsforschung: Göttingen, Germany, 1991; ISSN 0436-1199. [Google Scholar]
- Hinch, B.J.; Lock, A.; Madden, H.H.; Toennies, J.P.; Witte, G. Helium-atom scattering investigation of facetting of the Al stepped (332) surface. Phys. Rev. B 1990, 42, 1547. [Google Scholar] [CrossRef]
- Medel-Ruiz, C.I.; Molina-Contreras, J.R.; Frausto-Reyes, C.; Sevilla-Escoboza, J.R.; Pérez Ladron de Guevara, H. Influence of the surface roughness on electron-phonon interaction in an intrinsic CdTe single crystal. Phy. B 2021, 603, 412785. [Google Scholar] [CrossRef]
- Beeby, J.L. Scattering of helium atoms from surfaces. J. Phys. Chem. 1971, 4, L359. [Google Scholar] [CrossRef]
- Vidali, G.; Ihm, G.; Kim, H.-Y.; Cole, M.V. Potentials of physical adsorption. Surf. Sci. Rep. 1991, 12, 133. [Google Scholar] [CrossRef]
- Gartland, P.O.; Berge, S.; Slagsvold, B.J. Photoelectric work function of a copper single-crystal for (100), (110), (111) and (112) faces. Phys. Rev. Lett. 1972, 28, s738. [Google Scholar] [CrossRef]
- Grepstad, J.; Gartland, P.; Slagsvold, B. Anisotropic workfunction of of clean and smooth low-index faces of aluminium. Surf. Sci. 1976, 57, 348, The (111) terrace workfunction is used for the two vicinal surfaces. [Google Scholar] [CrossRef]
- Witte, G. Characterization of Structure and Dynamics of Clean and Adsorbate Covered Oxide and Metal Surfaces. Ph. D. Thesis, Georg-August Universität, Göttingen, Germany, 1995. [Google Scholar]
- Lock, A.; Toennies, J.P.; Witte, G. Surface Phonons at Stepped Metal Surfaces. J. Electron. Spectrosc. Relat. Phenom 1999, 54–55, 309. [Google Scholar]
- Lapujoulade, J.; Lejay, Y.; Armand, G. The Thermal Attenuation of Coherent Elastic Scattering of Noble Gas from Metal Surfaces. Surf. Sci. 1980, 95, 107. [Google Scholar] [CrossRef]
- Zhang, Y.; Flannigan, D.J. Imaging Nanometer Phonon Softening at Crystal surface Steps with 4D Ultrafast Electron Microscopy. Nano Lett. 2021, 21, 7332. [Google Scholar] [CrossRef]
- Noonan, J.R.; Davis, H.L.J. Confirmation of an Exception to the ‘‘General Rule’’of Surface Relaxations. Vac. Sci. Technol. 1990, A8, 2671. [Google Scholar] [CrossRef]
- Grimvall, G. The Electron-Phonon Interaction in Metals; North-Holland: New York, NY, USA, 1981. [Google Scholar]
- Hu, Q.; Yang, F.; Wang, X.; Li, J.; Liu, W.; Kong, L.; Li, S.; Yan, L.; Xu, J.; Ding, H. Surface superconductivity emerged from disordered surface in undoped BaFe2As2. Phys. Rev. Mater. 2023, 7, 034801. [Google Scholar] [CrossRef]
Surface | ϕ | ns | ac | D | T1–T2 | λHAS | ||
---|---|---|---|---|---|---|---|---|
[eV] | [Å2] | [Å−2] | [meV] | [°K] | ||||
Cu(110) a | 4.48 b | 6.8 d | 9.22 | 35.60 e | 6.27 h | 200–500 | 1.20 | 0.11 |
500–800 | 1.96 | 0.18 | ||||||
Cu(111) a | 4.94 b | 8.5 d | 5.64 | 20.34 e | 8.85 h | 500–800 | 0.70 | 0.12 |
36.09 f | 500–800 | 1.09 | 0.13 | |||||
Cu(113) a | 4.53 c | 6.8 d | 6.52 n | 35.60 e | 6.35 h | 200–500 | 1.04 | 0.13 |
500–800 | 2.20 | 0.28 | ||||||
Cu(115) a | 4.53 c | 6.8 d | 6.52 n | 13.27 e | 6.35 h | 200–500 | 0.74 | 0.18 |
500–800 | 1.37 | 0.33 | ||||||
Cu(117) a | 4.53 c | 6.8 d | 6.52 n | 13.27 g | 6.35 h | 100–400 | 0.47 | 0.11 |
400–700 | 0.84 | 0.20 | ||||||
Cu(001) a | 4.59 b | 6.8 d | 6.52 | 12.94 a | 9.70 o | 200–500 | 0.49 | 0.10 |
500–800 | 0.69 | 0.14 | ||||||
Al(221) i | 4.26 k | 1.6 d | 7.09 n | 21.91 k | 7.0 h,l | 232–550 | 1.17 | 0.71 |
550–711 | 1.12 | 1.33 | ||||||
Al(332) j | 4.26 k | 1.6 d | 7.09 m,n | 20.70 t | 7.0 h | 308–606 | 0.92 | 0.61 |
21.34 s | 7.0 h | 308–606 | 1.68 | 1.10 | ||||
11.83 | 414–494 | 0.20 | 0.66 | |||||
414–711 | 1.59 | 1.42 |
Surface | ϕ | ns | ac | ki,max | D | T | η | λHAS |
---|---|---|---|---|---|---|---|---|
[eV] | [Å2] | [Å−2] | [meV] | [°K] | ||||
Cu(112) a | 4.53 b | 6.8 c | 5.64 d | ~5.0 | 8.25 e | 130 | 1 | 0.29 |
~6.5 | 2 | 0.45 | ||||||
15.9 i | ~5.0 | 8.25 e | 130 | 1 | 0.10 | |||
~6.5 | 2 | 0.16 | ||||||
Cu(115) a | 4.53 b | 6.8 c | 6.52 d | ~5.5 | 6.35 e | 130 | 1 | 0.26 |
~7.0 | 2 | 0.38 | ||||||
Al(221) f | 4.26 h | 1.6 c | 7.09 d | ~6.5 | 7.0 e | 135 | 1 | 0.72 |
Al(332) g | 4.26 h | 1.6 c | 7.09 d | ~7.2 | 7.0 e | 130 | 1 | 0.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benedek, G.; Miret-Artés, S.; Manson, J.R.; Toennies, J.P. The Electron–Phonon Interaction at Vicinal Metal Surfaces Measured with Helium Atom Scattering. Nanomaterials 2023, 13, 2997. https://doi.org/10.3390/nano13232997
Benedek G, Miret-Artés S, Manson JR, Toennies JP. The Electron–Phonon Interaction at Vicinal Metal Surfaces Measured with Helium Atom Scattering. Nanomaterials. 2023; 13(23):2997. https://doi.org/10.3390/nano13232997
Chicago/Turabian StyleBenedek, Giorgio, Salvador Miret-Artés, Joseph R. Manson, and Jan Peter Toennies. 2023. "The Electron–Phonon Interaction at Vicinal Metal Surfaces Measured with Helium Atom Scattering" Nanomaterials 13, no. 23: 2997. https://doi.org/10.3390/nano13232997
APA StyleBenedek, G., Miret-Artés, S., Manson, J. R., & Toennies, J. P. (2023). The Electron–Phonon Interaction at Vicinal Metal Surfaces Measured with Helium Atom Scattering. Nanomaterials, 13(23), 2997. https://doi.org/10.3390/nano13232997