Field Manipulations in On-Chip Micro/Nanoscale Lasers Based on Colloid Nanocrystals
Abstract
:1. Introduction
2. Review
2.1. Wavelength Manipulation
2.2. Single-Mode and Multi-Wavelength Manipulation
2.3. Polarization Manipulation
2.4. Direction Manipulation
2.5. Coupling Manipulation
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lin, Y.; Browning, C.; Timens, R.B.; Geuzebroek, D.H.; Roeloffzen, C.G.H.; Hoekman, M.; Geskus, D.; Oldenbeuving, R.M.; Heideman, R.G.; Fan, Y.; et al. Characterization of Hybrid InP-TriPleX Photonic Integrated Tunable Based on Silicon Nitride (Si3N4/SiO2) Micro Ring Resonators for optical Coherent System. IEEE Photonics J. 2018, 10, 1400108. [Google Scholar] [CrossRef]
- Bogaerts, W.; Perez, D.; Capmany, J.; Miller, D.A.B.; Poon, J.; Englund, D.; Morichetti, F.; Melloni, A. Programmable Photonic Circuits. Nature 2020, 586, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zhuang, L.; Lowery, A.J. Picosecond Optical Pulse Processing Using a Terahertz-Bandwidth Photonic Integrated Circuit. Nanophotonics 2018, 7, 837–852. [Google Scholar] [CrossRef]
- Lyke, J.C.; Christodoulou, C.G.; Vera, G.A.; Edwards, A.H. An Introduction to Reconfigurable Systems. Proc. IEEE 2015, 103, 291–317. [Google Scholar] [CrossRef]
- Capmany, J.; Gasulla, I.; Perez, D. Microwave Photonics The Programmable Processor. Nat. Photonics 2016, 10, 6–8. [Google Scholar] [CrossRef]
- Zhou, Z.; Ou, X.; Fang, Y.; Alkhazraji, E.; Xu, R.; Wan, Y.; Bowers, J.E. Prospects and Applications of On-Chip Lasers. eLight 2023, 3, 1. [Google Scholar] [CrossRef] [PubMed]
- Grim, J.Q.; Christodoulou, S.; Di Stasio, F.; Krahne, R.; Cingolani, R.; Manna, L.; Moreels, I. Continuous-Wave Biexciton Lasing at Room Temperature Using Solution-Processed Quantum Wells. Nat. Nanotechnol. 2014, 9, 891–895. [Google Scholar] [CrossRef]
- Guzelturk, B.; Kelestemur, Y.; Olutas, M.; Delikanli, S.; Demir, H.V. Amplified Spontaneous Emission and Lasing in Colloidal Nanoplatelets. ACS Nano 2014, 8, 6599–6605. [Google Scholar] [CrossRef]
- Adachi, M.M.; Fan, F.J.; Sellan, D.P.; Hoogland, S.; Voznyy, O.; Houtepen, A.J.; Parrish, K.D.; Kanjanaboos, P.; Malen, J.A.; Sargent, E.H. Microsecond-Sustained Lasing from Colloidal Quantum Dot Solids. Nat. Commun. 2015, 6, 8694. [Google Scholar] [CrossRef]
- Fan, F.; Voznyy, O.; Sabatini, R.P.; Bicanic, K.T.; Adachi, M.M.; McBride, J.R.; Reid, K.R.; Park, Y.-S.; Li, X.; Jain, A.; et al. Continuous-Wave Lasing in Colloidal Quantum Dot Solids Enabled by facet-Selective Epitaxy. Nature 2017, 544, 75–79. [Google Scholar] [CrossRef]
- Bagnall, D.M.; Chen, Y.F.; Zhu, Z.; Yao, T.; Koyama, S.; Shen, M.Y.; Goto, T. Optically Pumped Lasing of ZnO at Room Temperature. Appl. Phys. Lett. 1997, 70, 2230–2232. [Google Scholar] [CrossRef]
- Jia, Y.F.; Kerner, R.A.; Grede, A.J.; Rand, B.P.; Giebink, N.C. Continuous-Wave Lasing in an Organic-Inorganic Lead Halide Perovskite Semiconductor. Nat. Photonics 2017, 11, 784–788. [Google Scholar] [CrossRef]
- Qin, C.; Sandanayaka, A.S.D.; Zhao, C.; Matsushima, T.; Zhang, D.; Fujihara, T.; Adachi, C. Stable Room-Temperature Continuous-Wave Lasing in Quasi-2D Perovskite. Nature 2020, 585, 53–57. [Google Scholar] [CrossRef]
- Zolotarev, V.V.; Rizaev, A.E.; Lutetskiy, A.V.; Slipchenko, S.O.; Pikhtin, N.A. Mode Selection of a Lateral Waveguide for Single-Mode Operation of Lasers with a Distributed Bragg Reflector. Bull. Lebedev Phys. Inst. 2023, 50, S154–S162. [Google Scholar] [CrossRef]
- Dang, L.; Zhang, C.; Li, J.; Wei, D.; Huang, L.; Lan, T.; Wang, J.; Iroegbu, P.I.; Shi, L.; Yin, G.; et al. Spectrum Extreme Purification and Modulation of DBR Fiber Laser With Weak Distributed Feedback. J. Light. Technol. 2023, 41, 5437–5444. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.M.; Nalla, V.; Zeng, H.B.; Sun, H.D. Solution-Processed Low Threshold Vertical Cavity Surface Emitting Lasers from All-Inorganic Perovskite Nanocrystals. Adv. Funct. Mater. 2017, 27, 1605088. [Google Scholar] [CrossRef]
- Huang, C.Y.; Zou, C.; Mao, C.Y.; Corp, K.L.; Yao, Y.C.; Lee, Y.J.; Schlenker, C.W.; Jen, A.K.Y.; Lin, L.Y. CsPbBr3 Perovskite Quantum Dot Vertical Cavity Lasers with Low Threshold and High Stability. ACS Photonics 2017, 4, 2281–2289. [Google Scholar] [CrossRef]
- Deschler, F.; Price, M.; Pathak, S.; Klintberg, L.E.; Jarausch, D.D.; Higler, R.; Huttner, S.; Leijtens, T.; Stranks, S.D.; Snaith, H.J.; et al. High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. J. Phys. Chem. Lett. 2014, 5, 1421–1426. [Google Scholar] [CrossRef]
- Armani, D.K.; Kippenberg, T.J.; Spillane, S.M.; Vahala, K.J. Ultra-High-Q Toroid Microcavity on a Chip. Nature 2003, 421, 925–928. [Google Scholar] [CrossRef]
- Noda, S. Seeking the Ultimate Nanolaser. Science 2006, 314, 260–261. [Google Scholar] [CrossRef]
- Khajavikhan, M.; Simic, A.; Katz, M.; Lee, J.H.; Slutsky, B.; Mizrahi, A.; Lomakin, V.; Fainman, Y. Thresholdless Nanoscale Coaxial Lasers. Nature 2012, 482, 204–207. [Google Scholar] [CrossRef]
- Tran, M.A.; Huang, D.; Bowers, J.E. Tutorial on Narrow Linewidth Tunable Semiconductor Lasers Using Si/III-V Heterogeneous Integration. APL Photonics 2019, 4, 111101. [Google Scholar] [CrossRef]
- Jin, W.; Yang, Q.-F.; Chang, L.; Shen, B.; Wang, H.; Leal, M.A.; Wu, L.; Gao, M.; Feshali, A.; Paniccia, M.; et al. Hertz-Linewidth Semiconductor Lasers Using CMOS-Ready Ultra-High-Q Microresonators. Nat. Photonics 2021, 15, 346–353. [Google Scholar] [CrossRef]
- Ahn, N.; Livache, C.; Pinchetti, V.; Klimov, V.I. Colloidal Semiconductor Nanocrystal Lasers and Laser Diodes. Chem. Rev. 2023, 123, 8251–8296. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.M.; Ren, Y.J.; Wang, Y.; Cu, Z.Y.; Li, X.M.; Sun, H.D. Lateral Cavity Enabled Fabry-Perot Microlasers from All-Inorganic Perovskites. Appl. Phys. Lett. 2019, 115, 111103. [Google Scholar] [CrossRef]
- Chen, J.; Du, W.N.; Shi, J.W.; Li, M.L.; Wang, Y.; Zhang, Q.; Liu, X.F. Perovskite Quantum Dot Lasers. InfoMat 2020, 2, 170–183. [Google Scholar] [CrossRef]
- Tian, J.; Tan, Q.Y.; Wang, Y.; Yang, Y.; Yuan, G.; Adamo, G.; Soci, C. Perovskite Quantum Dot One-Dimensional Topological Laser. Nat. Commun. 2023, 14, 1433. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.-S.; Roh, J.; Diroll, B.T.; Schaller, R.D.; Klimov, V.I. Colloidal Quantum Dot Lasers. Nat. Rev. Mater. 2021, 6, 382–401. [Google Scholar] [CrossRef]
- Chang, H.; Min, K.; Lee, M.; Kang, M.; Park, Y.; Cho, K.S.; Roh, Y.G.; Hwang, S.W.; Jeon, H. Colloidal Quantum Dot Lasers Built on a Passive Two-Dimensional Photonic Crystal Backbone. Nanoscale 2016, 8, 6571–6576. [Google Scholar] [CrossRef]
- Rong, K.; Sun, C.; Shi, K.; Gong, Q.; Chen, J. Room-Temperature Planar Lasers Based on Water-Dripping Microplates of Colloidal Quantum Dots. ACS Photonics 2017, 4, 1776–1784. [Google Scholar] [CrossRef]
- Brichkin, S.B.; Razumov, V.F. Colloidal Quantum Dots: Synthesis, Properties and Applications. Russ. Chem. Rev. 2016, 85, 1297–1312. [Google Scholar] [CrossRef]
- Brus, L.E. Electron–Electron and Electron-hole Interactions in Small Semiconductor Crystallites: The Size Dependence of the Lowest Excited Electronic State. J. Chem. Phys. 1984, 80, 4403–4409. [Google Scholar] [CrossRef]
- Alivisatos, A.P. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 1996, 271, 933–937. [Google Scholar] [CrossRef]
- Chen, Y.J.; Herrnsdorf, J.; Guilhabert, B.; Zhang, Y.F.; Watson, I.M.; Gu, E.D.; Laurand, N.; Dawson, M.D. Colloidal Quantum Dot Random Laser. Opt. Express 2011, 19, 2996–3003. [Google Scholar] [CrossRef]
- Baskoutas, S.; Terzis, A.F. Size-Dependent Band Gap of Colloidal Quantum Dots. J. Appl. Phys. 2006, 99, 013708. [Google Scholar] [CrossRef]
- Moreels, I.; Lambert, K.; Smeets, D.; De Muynck, D.; Nollet, T.; Martins, J.C.; Vanhaecke, F.; Vantomme, A.; Delerue, C.; Allan, G.; et al. Size-Dependent Optical Properties of Colloidal PbS Quantum Dots. ACS Nano 2009, 3, 3023–3030. [Google Scholar] [CrossRef]
- Zorman, B.; Ramakrishna, M.V.; Friesner, R.A. Quantum Confinement Effects in CdSe Quantum Dots. J. Phys. Chem. 1995, 99, 7649–7653. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, S.; Yang, H.; Sun, H. Quaternary Alloy Quantum Dots: Toward Low-Threshold Stimulated Emission and All-Solution-Processed Lasers in the Green Region. Adv. Opt. Mater. 2015, 3, 652–657. [Google Scholar] [CrossRef]
- Wang, Y.; Fong, K.E.; Yang, S.; Ta, V.D.; Gao, Y.; Wang, Z.; Nalla, V.; Demir, H.V.; Sun, H. Unraveling the Ultralow Threshold Stimulated Emission from CdZnS/ZnS Quantum Dot and Enabling High-Q Microlasers. Laser Photonics Rev. 2015, 9, 507–516. [Google Scholar] [CrossRef]
- Chen, Y.J.; Guilhabert, B.; Herrnsdorf, J.; Zhang, Y.F.; Mackintosh, A.R.; Pethrick, R.A.; Gu, E.; Laurand, N.; Dawson, M.D. Flexible Distributed-Feedback Colloidal Quantum Dot Laser. Appl. Phys. Lett. 2011, 99, 241103. [Google Scholar] [CrossRef]
- Asada, M.; Miyamoto, Y.; Suematsu, Y. Gain and the Threshold of Three-Dimensional Quantum-Box Lasers. IEEE J. Quantum Electron. 1986, 22, 1915–1921. [Google Scholar] [CrossRef]
- Liu, H.; Wang, T.; Jiang, Q.; Hogg, R.; Tutu, F.; Pozzi, F.; Seeds, A. Long-Wavelength InAs/GaAs Quantum-Dot Laser Diode Monolithically Grown on Ge Substrate. Nat. Photonics 2011, 5, 416–419. [Google Scholar] [CrossRef]
- Mei, Y.; Weng, G.-E.; Zhang, B.-P.; Liu, J.-P.; Hofmann, W.; Ying, L.-Y.; Zhang, J.-Y.; Li, Z.-C.; Yang, H.; Kuo, H.-C. Quantum Dot Vertical-Cavity Surface-Emitting Lasers Covering the ‘Green Gap’. Light Sci. Appl. 2017, 6, e16199. [Google Scholar] [CrossRef] [PubMed]
- Snee, P.T.; Chan, Y.H.; Nocera, D.G.; Bawendi, M.G. Whispering-Gallery-Mode Lasing from a Semiconductor Nanocrystal/Microsphere Resonator Composite. Adv. Mater. 2005, 17, 1131–1136. [Google Scholar] [CrossRef]
- Krstajić, N.; Childs, D.T.D.; Matcher, S.J.; Livshits, D.; Shkolnik, A.; Krestnikov, I.; Hogg, R.A. Swept-Source Laser Based on Quantum-Dot Semiconductor Optical Amplifier—Applications in Optical Coherence Tomography. IEEE Photonics Technol. Lett. 2011, 23, 739–741. [Google Scholar] [CrossRef]
- Clifford, J.P.; Konstantatos, G.; Johnston, K.W.; Hoogland, S.; Levina, L.; Sargent, E.H. Fast, Sensitive and Spectrally Tuneable Colloidal Quantum-Dot Photodetectors. Nat. Nanotechnol. 2009, 4, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Roh, J.; Park, Y.S.; Lim, J.; Klimov, V.I. Optically Pumped Colloidal-Quantum-Dot Lasing in LED-like Devices with an Integrated Optical Cavity. Nat. Commun. 2020, 11, 271. [Google Scholar] [CrossRef]
- Lim, J.; Park, Y.S.; Wu, K.F.; Yun, H.J.; Klimov, V.I. Droop-Free Colloidal Quantum Dot Light-Emitting Diodes. Nano Lett. 2018, 18, 6645–6653. [Google Scholar] [CrossRef]
- Cho, K.-S.; Lee, E.K.; Joo, W.-J.; Jang, E.; Kim, T.-H.; Lee, S.J.; Kwon, S.-J.; Han, J.Y.; Kim, B.-K.; Choi, B.L.; et al. High-Performance Crosslinked Colloidal Quantum-Dot Light-Emitting Diodes. Nat. Photonics 2009, 3, 341–345. [Google Scholar] [CrossRef]
- Micic, O.I.; Cheong, H.M.; Fu, H.; Zunger, A.; Sprague, J.R.; Mascarenhas, A.; Nozik, A.J. Size-Dependent Spectroscopy of InP Quantum Dots. J. Phys. Chem. B 1997, 101, 4904–4912. [Google Scholar] [CrossRef]
- Jung, H.; Park, Y.S.; Ahn, N.; Lim, J.; Fedin, I.; Livache, C.; Klimov, V.I. Two-Band Optical Gain and Ultrabright Electroluminescence from Colloidal Quantum Dots at 1000 A Cm(-2). Nat. Commun. 2022, 13, 3734. [Google Scholar] [CrossRef]
- Pan, T.; Lu, D.Y.; Xin, H.B.; Li, B.J. Biophotonic Probes for Bio-Detection and Imaging. Light Sci. Appl. 2021, 10, 124. [Google Scholar] [CrossRef]
- Gao, X.H.; Yang, L.L.; Petros, J.A.; Marshal, F.F.; Simons, J.W.; Nie, S.M. In Vivo Molecular and Cellular Imaging with Quantum Dots. Curr. Opin. Biotechnol. 2005, 16, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Ackerman, M.M.; Chen, M.L.; Guyot-Sionnest, P. Dual-Band Infrared Imaging Using Stacked Colloidal Quantum Dot Photodiodes. Nat. Photonics 2019, 13, 277–282. [Google Scholar] [CrossRef]
- Kita, T.; Yamamoto, N.; Kawanishi, T.; Yamada, H. Ultra-Compact Wavelength-Tunable Quantum-Dot Laser with Silicon-Photonics Double Ring Filter. Appl. Phys. Express 2015, 8, 062701. [Google Scholar] [CrossRef]
- Nemoto, K.; Kita, T.; Yamada, H. Narrow-Spectral-Linewidth Wavelength-Tunable Laser Diode with Si Wire Waveguide Ring Resonators. Appl. Phys. Express 2012, 5, 082701. [Google Scholar] [CrossRef]
- Steckel, J.S.; Coe-Sullivan, S.; Bulović, V.; Bawendi, M.G. 1.3 μm to 1.55 μm Tunable Electroluminescence from PbSe Quantum Dots Embedded within an Organic Device. Adv. Mater. 2003, 15, 1862–1866. [Google Scholar] [CrossRef]
- Chang, H.; Zhong, Y.; Dong, H.; Wang, Z.; Xie, W.; Pan, A.; Zhang, L. Ultrastable Low-Cost Colloidal Quantum Dot Microlasers of Operative Temperature up to 450 K. Light Sci. Appl. 2021, 10, 60. [Google Scholar] [CrossRef]
- Christodoulou, S.; Ramiro, I.; Othonos, A.; Figueroba, A.; Dalmases, M.; Ozdemir, O.; Pradhan, S.; Itskos, G.; Konstantatos, G. Single-Exciton Gain and Stimulated Emission across the Infrared Telecom Band from Robust Heavily Doped PbS Colloidal Quantum Dots. Nano Lett. 2020, 20, 5909–5915. [Google Scholar] [CrossRef]
- le Feber, B.; Prins, F.; De Leo, E.; Rabouw, F.T.; Norris, D.J. Colloidal-Quantum-Dot Ring Lasers with Active Color Control. Nano Lett. 2018, 18, 1028–1034. [Google Scholar] [CrossRef]
- Neuhaus, S.J.; Marino, E.; Murray, C.B.; Kagan, C.R. Frequency Stabilization and Optically Tunable Lasing in Colloidal Quantum Dot Superparticles. Nano Lett. 2023, 23, 645–651. [Google Scholar] [CrossRef]
- Jung, H.; Han, C.; Kim, H.; Cho, K.S.; Roh, Y.G.; Park, Y.; Jeon, H. Tunable Colloidal Quantum Dot Distributed Feedback Lasers Integrated on a Continuously Chirped Surface Grating. Nanoscale 2018, 10, 22745–22749. [Google Scholar] [CrossRef] [PubMed]
- Whitworth, G.L.; Dalmases, M.; Taghipour, N.; Konstantatos, G. Solution-Processed PbS Quantum Dot Infrared Laser with Room-Temperature Tunable Emission in the Optical Telecommunications Window. Nat. Photonics 2021, 15, 738–742. [Google Scholar] [CrossRef] [PubMed]
- Foucher, C.; Guilhabert, B.; Laurand, N.; Dawson, M.D. Wavelength-Tunable Colloidal Quantum Dot Laser on Ultra-Thin Flexible Glass. Appl. Phys. Lett. 2014, 104, 141108. [Google Scholar] [CrossRef]
- Iwahashi, S.; Kurosaka, Y.; Sakai, K.; Kitamura, K.; Takayama, N.; Noda, S. Higher-Order Vector Beams Produced by Photonic-Crystal Lasers. Opt. Express 2011, 19, 11963–11968. [Google Scholar] [CrossRef]
- Yoshida, M.; De Zoysa, M.; Ishizaki, K.; Tanaka, Y.; Kawasaki, M.; Hatsuda, R.; Song, B.; Gelleta, J.; Noda, S. Double-Lattice Photonic-Crystal Resonators Enabling High-Brightness Semiconductor Lasers with Symmetric Narrow-Divergence Beams. Nat. Mater. 2019, 18, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Morita, R.; Inoue, T.; De Zoysa, M.; Ishizaki, K.; Noda, S. Photonic-Crystal Lasers with Two-Dimensionally Arranged Gain and Loss for High-Peak-Power Short-Pulse Operation. Nat. Photonics 2021, 15, 311–318. [Google Scholar] [CrossRef]
- Ota, Y.; Katsumi, R.; Watanabe, K.; Iwamoto, S.; Arakawa, Y. Topological Photonic Crystal Nanocavity Laser. Commun. Phys. 2018, 1, 86. [Google Scholar] [CrossRef]
- Kwon, S.H.; Ryu, H.Y.; Kim, G.H.; Lee, Y.H.; Kim, S.B. Photonic Bandedge Lasers in Two-Dimensional Square-Lattice Photonic Slabs. Appl. Phys. Lett. 2003, 83, 3870–3872. [Google Scholar] [CrossRef]
- Grivas, C.; Li, C.Y.; Andreakou, P.; Wang, P.F.; Ding, M.; Brambilla, G.; Manna, L.; Lagoudakis, P. Single-Mode Tunable Laser Emission in the Single-Exciton Regime from Colloidal Nanocrystals. Nat. Commun. 2013, 4, 2376. [Google Scholar] [CrossRef]
- Zhu, Y.P.; Xie, W.Q.; Bisschop, S.; Aubert, T.; Brainis, E.; Geiregat, P.; Hens, Z.; Van Thourhout, D. On-Chip Single-Mode Distributed Feedback Colloidal Quantum Dot Laser under Nanosecond Pumping. ACS Photonics 2017, 4, 2446–2452. [Google Scholar] [CrossRef]
- Dang, C.; Lee, J.; Breen, C.; Steckel, J.S.; Coe-Sullivan, S.; Nurmikko, A. Red, Green and Blue Lasing Enabled by Single-Exciton Gain in Colloidal Quantum Dot Films. Nat. Nanotechnol. 2012, 7, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Cho, K.S.; Jeong, H.; Kim, J.; Lee, C.W.; Koh, W.K.; Roh, Y.G.; Hwang, S.W.; Park, Y. Single-Mode Lasing from a Monolithic Microcavity with Few-Monolayer-Thick Quantum Dot Films. ACS Photonics 2016, 3, 1536–1541. [Google Scholar] [CrossRef]
- Lafalce, E.; Zeng, Q.; Vardeny, Z.V.; Lin, C.H.; Smith, M.J.; Malak, S.T.; Jung, J.; Yoon, Y.J.; Lin, Z.; Tsukruk, V.V. Parity-Time Symmetry and Coupling Effects in Quantum Dot MicroDisk Lasers. In Proceedings of the Novel Optical Materials and Applications, New Orleans, LA, USA, 24–27 July 2017; Optica Publishing Group: Washington, DC, USA, 2017; p. NoW3C.3. [Google Scholar] [CrossRef]
- Lafalce, E.; Zeng, Q.J.; Lin, C.H.; Smith, M.J.; Malak, S.T.; Jung, J.; Yoon, Y.J.; Lin, Z.Q.; Tsukruk, V.V.; Vardeny, Z.V. Robust Lasing Modes in Coupled Colloidal Quantum Dot Microdisk Pairs Using a Non-Hermitian Exceptional Point. Nat. Commun. 2019, 10, 561. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Lafalce, E.; Lin, C.H.; Smith Marcus, J.; Jung, J.; Yoon, Y.; Lin, Z.; Tsukruk, V.V.; Vardeny, Z.V. Control of Whispering Gallery Modes and PT-Symmetry Breaking in Colloidal Quantum Dot Microdisk Lasers with Engineered Notches. Nano Lett. 2019, 19, 6049–6057. [Google Scholar] [CrossRef]
- Hayat, A.; Cui, L.; Liang, H.; Zhang, S.; Zhiyang, X.; Khan, M.A.; Aziz, G.; Zhai, T. Colloidal Quantum Dots Lasing and Coupling in 2D Holographic Photonic Quasicrystals. Opt. Express 2021, 29, 15145–15158. [Google Scholar] [CrossRef] [PubMed]
- Dorn, R.; Quabis, S.; Leuchs, G. Sharper Focus for a Radially Polarized Light Beam. Phys. Rev. Lett. 2003, 91, 233901. [Google Scholar] [CrossRef]
- Chen, R.; Agarwal, K.; Sheppard, C.J.R.; Chen, X. Imaging Using Cylindrical Vector Beams in a High-Numerical-Aperture Microscopy System. Opt. Lett. 2013, 38, 3111–3114. [Google Scholar] [CrossRef]
- Helseth, L.E. Roles of Polarization, Phase and Amplitude in Solid Immersion Lens Systems. Opt. Commun. 2001, 191, 161–172. [Google Scholar] [CrossRef]
- Kim, W.-C.; Park, N.-C.; Yoon, Y.-J.; Choi, H.; Park, Y.-P. Investigation of Near-Field Imaging Characteristics of Radial Polarization for Application to Optical Data Storage. Opt. Rev. 2007, 14, 236–242. [Google Scholar] [CrossRef]
- Zhan, Q. Trapping Metallic Rayleigh Particles with Radial Polarization. Opt. Express 2004, 12, 3377–3382. [Google Scholar] [CrossRef] [PubMed]
- Kozawa, Y.; Sato, S. Optical Trapping of Micrometer-Sized Dielectric Particles by Cylindrical Vector Beams. Opt. Express 2010, 18, 10828–10833. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Tobing, L.Y.M.; Kiffer, A.; Zhang, D.H.; Dang, C.; Demir, H. V Azimuthally Polarized, Circular Colloidal Quantum Dot Laser Beam Enabled by a Concentric Grating. ACS Photonics 2016, 3, 2255–2261. [Google Scholar] [CrossRef]
- Yang, A.; Hryn, A.J.; Bourgeois, M.R.; Lee, W.-K.; Hu, J.; Schatz, G.C.; Odom, T.W. Programmable and Reversible Plasmon Mode Engineering. Proc. Natl. Acad. Sci. USA 2016, 113, 14201–14206. [Google Scholar] [CrossRef]
- Wang, W.; Ramezani, M.; Väkeväinen, A.I.; Törmä, P.; Rivas, J.G.; Odom, T.W. The Rich Photonic World of Plasmonic Nanoparticle Arrays. Mater. Today 2018, 21, 303–314. [Google Scholar] [CrossRef]
- Auguié, B.; Barnes, W.L. Collective Resonances in Gold Nanoparticle Arrays. Phys. Rev. Lett. 2008, 101, 143902. [Google Scholar] [CrossRef]
- Li, R.; Bourgeois, M.R.; Cherqui, C.; Guan, J.; Wang, D.; Hu, J.; Schaller, R.D.; Schatz, G.C.; Odom, T.W. Hierarchical Hybridization in Plasmonic Honeycomb Lattices. Nano Lett. 2019, 19, 6435–6441. [Google Scholar] [CrossRef]
- Wang, D.; Guan, J.; Hu, J.; Bourgeois, M.R.; Odom, T.W. Manipulating Light–Matter Interactions in Plasmonic Nanoparticle Lattices. Acc. Chem. Res. 2019, 52, 2997–3007. [Google Scholar] [CrossRef]
- Yang, A.; Hoang, T.B.; Dridi, M.; Deeb, C.; Mikkelsen, M.H.; Schatz, G.C.; Odom, T.W. Real-Time Tunable Lasing from Plasmonic Nanocavity Arrays. Nat. Commun. 2015, 6, 6939. [Google Scholar] [CrossRef]
- Knudson, M.P.; Li, R.; Wang, D.; Wang, W.; Schaller, R.D.; Odom, T.W. Polarization-Dependent Lasing Behavior from Low-Symmetry Nanocavity Arrays. ACS Nano 2019, 13, 7435–7441. [Google Scholar] [CrossRef]
- Wang, D.; Yang, A.; Wang, W.; Hua, Y.; Schaller, R.D.; Schatz, G.C.; Odom, T.W. Band-Edge Engineering for Controlled Multi-Modal Nanolasing in Plasmonic Superlattices. Nat. Nanotechnol. 2017, 12, 889–894. [Google Scholar] [CrossRef]
- Guan, J.; Sagar, L.K.; Li, R.; Wang, D.Q.; Bappi, G.; Wang, W.J.; Watkins, N.; Bourgeois, M.R.; Levina, L.; Fan, F.J.; et al. Quantum Dot-Plasmon Lasing with Controlled Polarization Patterns. ACS Nano 2020, 14, 3426–3433. [Google Scholar] [CrossRef]
- Yao, Y.C.; Yang, Z.P.; Hwang, J.M.; Su, H.C.; Haung, J.Y.; Lin, T.N.; Shen, J.L.; Lee, M.H.; Tsai, M.T.; Lee, Y.J. Coherent and Polarized Random Laser Emissions from Colloidal CdSe/ZnS Quantum Dots Plasmonically Coupled to Ellipsoidal Ag Nanoparticles. Adv. Opt. Mater. 2017, 5, 1600746. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Adamo, G.; Teng, J.; Sun, H. Induced Optical Chirality and Circularly Polarized Emission from Achiral CdSe/ZnS Quantum Dots via Resonantly Coupling with Plasmonic Chiral Metasurfaces. Laser Photonics Rev. 2019, 13, 1800276. [Google Scholar] [CrossRef]
- De Leo, E.; Rossinelli, A.A.; Marqués-Gallego, P.; Poulikakos, L.V.; Norris, D.J.; Prins, F. Polarization-Based Colour Tuning of Mixed Colloidal Quantum-Dot Thin Films Using Direct Patterning. Nanoscale 2022, 14, 4929–4934. [Google Scholar] [CrossRef]
- Winkler, J.M.; Ruckriegel, M.J.; Rojo, H.; Keitel, R.C.; De Leo, E.; Rabouw, F.T.; Norris, D.J. Dual-Wavelength Lasing in Quantum-Dot Plasmonic Lattice Lasers. ACS Nano 2020, 14, 5223–5232. [Google Scholar] [CrossRef]
- Prins, F.; Kim, D.K.; Cui, J.; De Leo, E.; Spiegel, L.L.; McPeak, K.M.; Norris, D.J. Direct Patterning of Colloidal Quantum-Dot Thin Films for Enhanced and Spectrally Selective Out-Coupling of Emission. Nano Lett. 2017, 17, 1319–1325. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.; Sagar, L.K.; Li, R.; Wang, D.Q.; Bappi, G.; Watkins, N.E.; Bourgeois, M.R.; Levina, L.; Fan, F.J.; Hoogland, S.; et al. Engineering Directionality in Quantum Dot Shell Lasing Using Plasmonic Lattices. Nano Lett. 2020, 20, 1468–1474. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.W.; Zhen, B.; Stone, A.D.; Joannopoulos, J.D.; Soljacic, M. Bound States in the Continuum. Nat. Rev. Mater. 2016, 1, 16048. [Google Scholar] [CrossRef]
- Kodigala, A.; Lepetit, T.; Gu, Q.; Bahari, B.; Fainman, Y.; Kante, B. Lasing Action from Photonic Bound States in Continuum. Nature 2017, 541, 196–199. [Google Scholar] [CrossRef] [PubMed]
- Azzam, I.S.; Kildishev, V.A. Photonic Bound States in the Continuum: From Basics to Applications. Adv. Opt. Mater. 2021, 9, 2001469. [Google Scholar] [CrossRef]
- Ren, Y.; Li, P.; Liu, Z.; Chen, Z.; Chen, Y.-L.; Peng, C.; Liu, J. Low-Threshold Nanolasers Based on Miniaturized Bound States in the Continuum. Sci. Adv. 2022, 8, eade8817. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Ding, L.; Sabatini, R.P.; Sagar, L.K.; Bappi, G.; Paniagua-Domínguez, R.; Sargent, E.H.; Kuznetsov, A.I. Bound State in the Continuum in Nanoantenna-Coupled Slab Waveguide Enables Low-Threshold Quantum-Dot Lasing. Nano Lett. 2021, 21, 9754–9760. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Shi, Y.; Shang, H.; Wu, J.; Ma, H.; Wei, M.; Luo, Y.; Chen, Z.; Ye, Y.; Jian, J.; et al. Two-Dimensional Heterostructure Quasi-BIC Photonic Crystal-Emitting Laser with Low Divergence. Nanophotonics 2023, 12, 3257–3265. [Google Scholar] [CrossRef]
- Lv, Y.; Xiong, X.; Liu, Y.; Yao, J.; Li, Y.J.; Zhao, Y.S. Controlled Outcoupling of Whispering-Gallery-Mode Lasers Based on Self-Assembled Organic Single-Crystalline Microrings. Nano Lett. 2019, 19, 1098–1103. [Google Scholar] [CrossRef] [PubMed]
- Elsinger, L.; Petit, R.; Van Acker, F.; Zawacka, N.K.; Tanghe, I.; Neyts, K.; Detavernier, C.; Geiregat, P.; Hens, Z.; Van Thourhout, D. Waveguide-Coupled Colloidal Quantum Dot Light Emitting Diodes and Detectors on a Silicon Nitride Platform. Laser Photonics Rev. 2021, 15, 2000230. [Google Scholar] [CrossRef]
- Suarez, I.; Gordillo, H.; Abargues, R.; Albert, S.; Martinez-Pastor, J. Photoluminescence Waveguiding in CdSe and CdTe QDs-PMMA Nanocomposite Films. Nanotechnology 2011, 22, 435202. [Google Scholar] [CrossRef]
- Gordillo, H.; Suarez, I.; Abargues, R.; Rodriguez-Canto, P.; Almuneau, G.; Martinez-Pastor, J.P. Quantum-Dot Double Layer Polymer Waveguides by Evanescent Light Coupling. J. Light. Technol. 2013, 31, 2515–2525. [Google Scholar] [CrossRef]
- Perez, J.; Suarez, I.; Hervas, J.; Ricchiuti, A.L.; Martinez-Pastor, J.P.; Sales, S. Continuous Broadband MWP True-Time Delay With PbS-PMMA and PbS-SU8 Waveguides. IEEE Photonics Technol. Lett. 2016, 28, 1657–1660. [Google Scholar] [CrossRef]
- Jung, H.; Lee, M.; Han, C.; Park, Y.; Cho, K.S.; Jeon, H. Efficient On-Chip Integration of a Colloidal Quantum Dot Photonic Crystal Band-Edge Laser with a Coplanar Waveguide. Opt. Express 2017, 25, 32919–32930. [Google Scholar] [CrossRef]
- Kress, S.J.P.; Cui, J.; Rohner, P.; Kim, D.K.; Antolinez, F.V.; Zaininger, K.A.; Jayanti, S.V.; Richner, P.; McPeak, K.M.; Poulikakos, D.; et al. A Customizable Class of Colloidal-Quantum-Dot Spasers and Plasmonic Amplifiers. Sci. Adv. 2017, 3, e1700688. [Google Scholar] [CrossRef] [PubMed]
- Rong, K.; Gan, F.; Shi, K.; Chu, S.; Chen, J. Configurable Integration of On-Chip Quantum Dot Lasers and Subwavelength Plasmonic Waveguides. Adv. Mater. 2018, 30, 1706546. [Google Scholar] [CrossRef] [PubMed]
- Rong, K.; Liu, H.; Shi, K.; Chen, J. Pattern-Assisted Stacking Colloidal Quantum Dots for Photonic Integrated Circuits. Nanoscale 2019, 11, 13885–13893. [Google Scholar] [CrossRef] [PubMed]
Physical Property | Cavity Type | CQD Materials | Wavelength (nm) | Threshold (μJ/cm2) | Refs |
---|---|---|---|---|---|
wavelength | WGM | CdSe/CdS/ZnS | 610 | 25 | [60] |
WGM | CdSe/CdS | 560/620 | 1200 ± 400 | [61] | |
DFB | PbS | 1553–1649 | 770 | [64] | |
DFB | CdSe/ZnS | 600–618 | 450 ± 80 | [62] | |
DFB | CdSe/CdS/ZnS | 613.4–623.2 | 404 ± 28 | [63] | |
PhC | CdSe/CdS/ZnS | 620/630 | 1000/300 | [29] | |
single-mode | DFB | CdSe/CdS | 532 | 270 | [71] |
VCSEL | CdSe/ZnCdS | 560 | 135 | [72] | |
VCSEL | CdSe/CdS/ZnS | 623 | 9000 | [73] | |
WGM | CdSe/Cd1−xZnxSe1−ySy | 630–645 | 29 | [75] | |
polarization | DFB | CdSe/CdZnS/ZnS | 626 | 183 | [84] |
W-SLR | CdSe/CdS | 635/644 | 30 | [93] | |
LSPR | CdSe/ZnS | 643 | 6110 | [84] | |
direction | DFB | CdSe/CdZnS | 638 | 120 | [98] |
SLR | CdSe/CdS/ZnS | 635.8–652.5 | 110 | [97] | |
W-SLR | CdSe/CdS | 515 | 1000 | [99] | |
PhC | CdSe/CdS | 626 | 54 | [104] | |
PhC | CdSe/ZnS | 588–612 | 216.75 | [105] | |
outcoupling | WGM | CdSe/ZnS | 630.8 | 116 | [114] |
WGM | CdSe/ZnS | 629.1/639.2 | 175/147 | [113] | |
PhC | CdSe/CdS/ZnS | 624 | 1000 | [111] | |
planar waveguide | \ | \ | \ | [108,109,110] | |
spaser | CdSe/CdS/ZnS | 633 | 180 | [112] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, Y.; Yang, Z.; Li, Z. Field Manipulations in On-Chip Micro/Nanoscale Lasers Based on Colloid Nanocrystals. Nanomaterials 2023, 13, 3069. https://doi.org/10.3390/nano13233069
Gu Y, Yang Z, Li Z. Field Manipulations in On-Chip Micro/Nanoscale Lasers Based on Colloid Nanocrystals. Nanomaterials. 2023; 13(23):3069. https://doi.org/10.3390/nano13233069
Chicago/Turabian StyleGu, Yazhou, Zhengmei Yang, and Zhitong Li. 2023. "Field Manipulations in On-Chip Micro/Nanoscale Lasers Based on Colloid Nanocrystals" Nanomaterials 13, no. 23: 3069. https://doi.org/10.3390/nano13233069
APA StyleGu, Y., Yang, Z., & Li, Z. (2023). Field Manipulations in On-Chip Micro/Nanoscale Lasers Based on Colloid Nanocrystals. Nanomaterials, 13(23), 3069. https://doi.org/10.3390/nano13233069